eV STSARCES
7\ Standards for Safety Related Complex Electronict&ys

FinaL RepPorT

Safety-Related Complex Electronic Systems

Coordinator : INERIS

Partners : BIA
HSE
INRS
VTT
CETIM
INSHT — CNVM
SP
TOV
SICK AG
JAY Electronique

Commencement date : 1% December 1997 - Completion date : 29" february 2000

European Commission — DG XII
Contract SMT 4CT97-2191

Summary

This project answers to a dedicated call for reseah in support to European
Standardisation issued by the « Standard, Measureméand Testing » Programme.

STSARCES examines the validation aspects of safetgtated parts of control

systems for machinery with regards to the problemsencountered with modern
electronic and programmable electronic technologiesThis research was carried out
by 11 research organisations, notified bodies andanufacturers from 6 countries of
the EU through a range of related issues, includingsoftware and hardware
validation, to assist in the development of pr EN®4-2 “Safety of machinery, Safety
related parts of control systems, part 2 validatioh

This report develops a framework for harmonized valdation procedures, which

should be standardised by CEN/CENELEC. The methodohy is based on the
overall safety lifecycle concept of a system, whicis quite new in the field of the
machinery sector, and covers both hardware and softare. A significant part of the

report deals with the software lifecycle, since its not developed in EN 954.

The Markov modelling approach, also innovative wherapplied to the field of the

machinery, has revealed very successful. The immeninfluence of the diagnostic
coverage could be demonstrated and data on approfte on-line test intervals for

dedicated architectures, combined with realistic MTF values, are provided and

justified. This information provides fundamental advice for the system designer as
well as hints for the persons carrying out the evaltions.

Attention has been given to prevent divergences fro the requirements of the IEC
61508 since this norm has basic safety publicatimtatus. As a positive repercussion,
STSARCES determines the validation methods of Progmmable Electronic
Systems in their uses for safety functions both iEN 954 and draft IEC 62061, a
machine application standard derived from IEC 61508 It does allow defining
credible and understandable links between categorse(EN 954) and safety integrity
levels or SlLs (draft IEC 62061). This connections indispensable during the design
and development phases of control circuits for thenachinery which make use of
components based on the category concept, like megtical, hydraulic, pneumatic,
electro-mechanical ones, and PES better characteed by SIL concept.

An extensive presentation of the almost definitivaesults to ensure their wide
acceptance by manufacturers has been carried out athe occasion of the
International Conference on « Safety of IndustrialAutomated Systems », Montreal,
October 1999. Thanks to its Organizing Committee, everal sessions could be
chaired by STSARCES members. The obtained feedbackas influenced the

presentation of this report, structured as a comprbensive guided tour through the

lifecycle of systems, and with more deeply detailedechnical contributions

transferred to the annexes.

1.1.
1.2.
1.3.
1.4.
1.5.

2.1.
2.2.

3.1

3.2.

3.3.

3.4.

3.5.

Table of contents

INTRODUCTION 10
Obijective 10
What are complex electronic systems ? 12
Problems to solve 13
EN 954-1 & IEC 61508 13
View of test houses 14
ANALYSIS OF PRESENT SITUATION 16
Increasing use of CES for safety applications 16
Basis for the validation of CES 19
ACHIEVING SAFETY BY FOLLOWING THE LIFE CYCLE 20
Introduction 20
3.1.1. The Overall Safety LIfECYCIE ...ttt eeeeeas 20
3.1.2. The E/E/PES Safety LIfECYCIEuiicceeeeiiieiiiieee ettt a e e e e e e e e e s e eeeee e 21
3.1.3. The SOftWare LIFECYCIEooo ittt e e ettt e e e e e e e aaaaaaeaeaas 21
3.1.4. LIfEeCYCIE REQUITEIMENLS.uuuiiiiiiieeieeeee e e e e e e e e s e e s ettt e e e e e e eeeeaee s s s s s s aneesbesaanerrereaaaaeaeeaeaeans 24
Specification 26
3.2.1. Specification procedure for safety SOftWAre...........oooii e 26
3.2.2. Specification METNOUS ..o e e e e e e e e e e s e e e e s e reees 27
3.2.3. Case tools for safety software SpeCifiC@BUON.ooii i 29
Architecture 32
3.3.1. Designated CES Architectures for MacChinErY...........uuvieeiiiiiiiieee et 32
3.3.2. Common Architectures for MaChinery ... 33
3.3.3. Designated architectures of CES for the M@Ci SECIONcccoeiiiiiiiiiiie e e e 40
3.3.4. Conclusions for designated CES Architectfmesachinery..........ccccccooiiiiiiiiiiiccc e 43
3.3.5. Influence of SOftWare ArChItECIUIE ...coeiiii e 46
3.3.6. Key Questions for Software Fault Avoidarm®tigh ArchiteCturecvoviiievevieeieeeeeeeeee. 53
Design and development 55
S 1o 11T PSPPSR PTRRRPRI 55
3.4.2. Fault detection in MicrocCOMPULEr NAIAWALEeeeiiiiiiiiiaeae e 61
Validation 79

G 7 Y0 A [(Yo W03 1o o T 79

4.1.
4.2
4.3.

4.4,
4.5,

5.1.
5.2.

6.1.
6.2.
6.3.
6.4.

3.5.2. ValidAtION PrOCESS. ...ceiiiiiieii ettt ettt e e e e e e e e e e e e e e e s be e ettt e eeaeaaaaaaaaaaeesaaaaaannnnnnnnneees
3.5.3. Verification and validation Of SOfWAIE............oiiiiiiiiiiiiiee e

3.5.4. Validation Of NATAWATE.oee et e e ettt e e e et e e e e e e e st s e sb e e saa e s st e sesaaessannesees

APPLICABILITY OF EN 954 AND IEC 61508 TO THE MAC HINERY SECTOR

Introduction
Common requirements & differences between BE&Band IEC 61508

Practical difficulties encountered during niaehvalidation using the EN 954-1 & IEC 61508 stanmts$

4.3.1. Selection of the machine and safety-relatedrol system to be validated..............cmmereereeennnne
4.3.2. Hazardous events CONSIARIEMceecrerieiiieieiiiei et e e
4.3.3. Matters arising from the application of EBUOLooooiiiiiiiiiiii e

4.3.4. Matters arising from the application of IBL508..............ccooeiiiiieeiiniieeee e e er e e e e e e eaeeaeeees

Conclusions from machine safety-related cosiystem validation exercise

Technigues & measures for machine validation

USER'S GUIDE

Validation methodology for SRCES

What we cannot answer

CONCLUSIONS

Contribution of STSARCES to the EN954
contribution of STSARCES to IEC 62061
Experience exchange between partners foratadid of complex electronic systems for machinery

Validation of the project by external manufaets

PUBLICATIONS

BIBLIOGRAPHY

125

125
128

130

131

132
331

134

135

136

Figure 1:
Figure 2 :
Figure 3:
Figure 4 :
Figure 5:
Figure 6 :
Figure 7 :
Figure 8 :
Figure 9 :
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Figures

Laser scanner for area protection

The software V-lifecycle

Major portion attributed to specificatioin the causes of failures
Operation safety means

Block diagram of a single channel syskdthout fault detection
Block diagram of a single channel syskgth implemented tests
Block diagram of a dual channel systdth eomparison
Implementation of an emergency stop tionausing mixed technology
Block diagram of a triple channel systeith comparison

: Comparison of different architecturesdiin machinery

: Phenomena leading to a common mode éail

: Example for Recovery Blocks

: Principle of N-version programming

: Diagnostic coverage defined as low,iomacind high

: The families of CICs

: ASIC Simplified Design Flow

: PLD/FPGA Simplified Design Flow

: Overview of the validation process [Nrg54-2 1999]

17
22
26
27
33
34
36
38
40
41
48
50
51
62
71
76
77
80

Table 1:
Table 2 :
Table 3:
Table 4 :
Table 5:
Table 6 :
Table 7 :
Table 8 :
Table 9:
Table 10
Table 11:
Table 12:
Table 13:
Table 14
Table 15:
Table 16:
Table 17:
Table 18:

Table 19 :

Table 20

Table 21 :
Table 22 :

Tables

Specification methods

Case tools for safety software specificet

Software specifications

Possible designated architectures fohmacy
Interface with system architecture

Software that can be parametrized byisee
Pre-existent Software

Software Design

Development Languages

: Coding

Safety principles for monitoring of th®gessing unit
Safety principles for monitoring of inizdrie memory
Safety principles for monitoring of véali@a memory

: Safety principles for monitoring of I{@its and interface
Safety principles for monitoring of dptths

Safety principles for monitoring of suppbwer
Safety principles for monitoring of pragr execution
Overview of Integrated Circuits

Methods for fault detection

: Safety validation tests for electronistems

Phase Model

Validation Tests for Components with Med Test Complexity

28
29
30
45
56
57
58
59
60
60
67
68
68
68
69
69
70
73
102
103
104
106

Annex 1

Annex 2

Annex 3

Annex 4

Annex 5

Annex 6

Annex 7

Annex 8

Annex 9

Annex 10

Annex 11

Annex 12

Annex 13

Annex 14

Annex

WP 1.1 : Software engineering tasks - Case tools

WP 1.2 : Software quality and safety requirements

WP 1.2 : Guide to evaluating software quality aatkty requirements
WP 1.2 : Guide for the construction of softwargtse

WP 1.2 : Common mode faults in safety systems

WP 2.1 : Quantitative Analysis of Complex Elecim8ystems using Fault Tree Analysis and Markov
Modelling

WP 2.2 : Methods for fault detection

WP 3.1 : Safety Validation of Complex Componeritalidation by Analysis

WP 3.2 : Validation of complex components : Intenparison black box/white box tests
WP 3.3 : Safety Validation of Complex Componeri&hdation Tests

WP 4 : Applicability of IEC 61508 & EN 954. Task: 1A study of the links and divergences between
IEC 61508 and EN 954.

WP 4 : Task 2 : Machine Validation Exercise
WP 4 : Task 3 : Design Process Analysis

WP 5 : ASIC development and validation in safeignponents

Glossary

Acronyms Definition
«/» No requirement
«O» Obligatory quality requirement
«R» Recommended quality requirement
ASIC Application specific integrated circuit
BB Black Box
CAT Category (according to EN 954-1)
CcC Current converter
CCF Common cause factd¥)(
CCs Formalism used to describe parallelism sensntic
CES Complex Electronic System
CMF Common Mode Failures
COB Chip On Board
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
D Drive
DNC Direct Numerical Control
E/E/EP Electrical/Electronic/Electronic Programneatbystem) according to IEC 61508
EEPLD Electrically Erasable Programmable Logic Bevi
EEPROM Electrically Erasable Programmable Read ®tdynory
EMC Electro-Magnetic Compatibility
EN European Norm
EPLD Erasable Programmable Logic Device
ES Emergency stop (actuator)
EUC Equipment Under Control
FMEA Failure Mode and Effect Analysis
FMECA Failure Mode, Effect and Criticity Analysis
FPGA Field Programmable Gates Array
FTA Fault Tree Analysis
HCPLD High Capacity Programmable Logic Device
HW HardWare
IEC International Electrotechnical Committee
IN (Input of a) switch-off path of the drive
Ip, IP (Input of the) switch-off path of the drifer the PED
Iw, IW (Input of the) switch-off path of the drivfer the watchdog

Acronyms

Definition

M

Motor

MCM Multi Chip Module

MTTF, MTTFy4 Mean time to dangerous failure

PDF (Average) probability of a dangerous failure fpaur
PED Programmable Electronic Device

PES Programmable Electronic System

PFD (Average) probability of failure on demand

PHA Preliminary Hazards Analysis

PLC Programmable logic controller

PN Petri Network

RAM Random Access Memory

RC Relay circuit

ROM Read Only Memory

S general sensor

SADT Structured Analysis Design Technique

SART Structured Analysis Real Time

SIL Safety Integrity Level according to IEC 61508
SRCES Safety Related Complex Electronic System
SRCPES Safety Related Complex Programmable EléctBystem
Statecharts Specification method based on transstjstems
SW SoftWare

WwB White Box

WD Watchdog

Z Formal specification language based on the Zeritingory of sets
) Common cause factor (CCF)

10

1. INTRODUCTION

1.1. Objective

STSARCES (Standards for Safety-Related Complex tileic Systems) was funded by the
European Commission in answer to a dedicated callpfoposals for research in support to
European standardisation, initiated by CEN/CENELE&nd issued by the « Standard,
Measurementt and Testing » Programme in 1996, tomie the validationaspects of safety-
related parts of control systems for machinery wathard to the problems encountered with modern
electronic and programmable electronic technologi€kis research was focused upon the
development, or completion, of knowledge regardiatidation techniques for both hardware and
software elements of a machine control system | tbntext of the Machinery Directive
(98/37/EC) and its implementing Regulations.

This research was carried out by a partnershigdesea organisations through completion of five
work-packages (WPs) on a range of related issnekiding software and hardware validation. The
objective was to assist in the development of arergmg standard, prEN 954-2 ‘Safety of
machinery — Safety-related parts of control systemBart 2. Validation’ by production of an

document which describes proposed harmonised Vaiidmethods.

Pr EN 954-2 is a draft European standard that pesvidetails of the measures and techniques that
should be applied in order to validate the safetsted parts for all technologies applied of cdntro
systems for machinery. This proposed standardeetat safety-related parts designed in accordance
with the general principles set out in EN 954-D94 ‘Safety of machinery — Safety-related parts of
control systems — Part 1. General principles faigle.

A constraint imposed upon any validation methodgetiged from this research programme was
that attention should be given to prevent divergefiom the requirements of IEC 61508
‘Functional safety of electrical/electronic/prognauable electronic safety-related systems’. This was
necessary since IEC 61508 has basic safety pubhcstiatus and its principles may be preferable to
those of EN 954 for electrotechnical aspects oktgaklated complex electronic systems for
machinery control.

INERIS, coordinator of the STSARCES project, angl fibllowing organisations participated in the
research programme :

« INERIS (Institut National de I'Environnement Indust et des Risques, of France)

« BIA (Berufsgenossenschaftliches Institut fur Arbsitherheit, of Germany)

! validation is the activity of demonstrating thhetsafety-related parts of the control system undesideration, before or after installation, meets
in all respects the safety and functional perforcearequirements specified for that safety-relatattrol system.

HSE (Health & Safety Executive, of United Kingdom)

INRS (Institut National de Recherche et de Sécunitérance)

VTT (Technical Research Centre, of Finland)

CETIM (Centre Technique des Industries MecaniqaEBrance)

INSHT (Instituto Nacional de Seguridad e Higieneséifirabajo, of Spain)
JAY (Jay Electronique SA, of France)

SP (Swedish National Testing and Research InstitditSweden)

TUV (TUV Product Service GMBH, of Germany)

SICK AG (SICK AG Safety Systems Division, of Gerrgan

The research programme work-packages were assagned

Work-package 1 : Software safety (leader — INRS)

> WP 1.1 Software engineering tasks : CASE tools (BT

> WP 1.2 Tools for software faults avoidance (INRS)
Work-package 2 : Hardware safety (leader — BIA)

> WP 2.1 Quantitative analysis (BIA)
> WP 2.2 Methods for fault detection (SP)

Work-package 3 : Safety validation of complex comgrs (leader — VTT)

> WP 3.1 Validation by analysis (VTT)
> WP 3.2 Intercomparison white-box/black-box tes&SHT)
> WP 3.3 Validation tests (TUV)

Work-package 4 : Link between the EN 954 and IEGO0&1standards (leader — HSE)

Work-package 5 : Innovative technologies and des{gader — INERIS)

> Operational partners : Industrial JAY and test-loNERIS

11

12

1.2. What are complex electronic system8

The Machinery Directive (98/37/EC), which coversnamnents that are separately supplied to fulfil

a safety function, and EN 292 : 1991 ‘Safety of miaery — Basic concepts, general principles for
design’ are, in general, based upon establishedtipga in machine control system design, such as
guard or power interlocking, where personnel masess hazardous areas for tasks such as setting,
tool changing and maintenance. These safeguardsoarmonly designed and implemented at the
machine after its basic control system design le@s ltompleted. This retrospective application of
safeguards was (and remains) a practicable solutioenever there was an adequate degree of
independence from the machines control system.

However, this approach to machinery safety has bhewn to be less viable with the emergence of
electronic and programmable electronic solutiorenégically referred to as ‘complex electronic
systems’ for the STSARCES Project) which have tonloee closely integrated within the design of
a machines control system. The safety-related absystems that implement these solutions often
comprise a range of devices/components and elak#iiectronic technologies.

These complex electronic systems may be charaatleais machine control systems in which :

+ the failure mode of at least one constituent desrosomponent is not well defined ; or

« the behaviour of the device or component undert faoihditions cannot be completely
determined ; or

+ there is insufficient dependable failure data (frbebd experience) to support claims for
rates of failure for detected and undetected dangeiailures of the device or component.

An example of a ‘complex’ electronic systems arespnce detection, speed and motion control
schemes at a numerically controlled (NC) machir@s Thay involve a programmable electronic
based machine controller that performs designattstysand non-safety functions.

This controller may be capable of processing tipatisignals received from motion control devices
(or sensors) installed adjacent to the dangerdasimg or moving shafts and transmitting an output
signal to actuating devices, such as a power dsygem (which may be a complex electronic
system in its own right) in order to reduce (omp3tihe speed or motion to a safe level.

13

1.3. Problems to solve

Complex electronic and programmable electronicais/and components, such as large scale (LSI)
and very large scale integrated (VLSI) circuitsplagation specific integrated circuits (ASICs),
programmable logic controllers (PLCs), microcorind, etc, are increasingly being used in safety-
related functions implemented by machine contreteys.

The safety performance of such devices and comp®nevhether as individual parts or in
combination as a complete safety-related system blean found difficult to establish in practice.
This is primarily a result of the fundamental cleéeaistics of a complex electronic system, which
make it difficult to establish that its final imphentation satisfies the necessary functional atgaf
performance requirements by testing a machine.

Consequently, it has been found that testing h&e teupplemented by analysis of the design of the
complex safety-realed electronic system used inhimacy control to properly evaluate the safety
performance of its hardware and software elemdifitsre are a variety of measures and techniques
for this design analysis based on quantitative guitative methodologies which may be used by
machinery manufacturers and test houses.

Most established techniques and measures, sucukigrée and failure mode and effects analyses,
have merit when used in combination with convergidesting philosophies for complex safety-
related electronic systems. The difficulty for gid@ners is in determining which measures may be
suitable for particular machinery applications andchieving consistency in their use.

These difficulties have to some extent been adddedsy existing and emerging standards
considered by the STSARCES Project.

1.4. EN 954-1 & IEC 61508

The STSARCES Project has included a comparisohefitethodologies and requirements of two
standards : IEC 61508 (Functional safety of elealtelectronic/programmable electronic safety-
related systems) and EN 954 (Safety of machinégfety related parts of control systems). This
was carried out to determine how different arerdggiirements of these two standards for complex
electronic and programmable electronic technologiesn applied to machinery control systems.

14

Both standards propose a structured approach tewheddesign of safety-related control systems
but differ in that EN 954 is designed to addressypkes of control system technologies whilst draft
IEC 61508 has been primarily (but not exclusiyelgsigned to apply to electrical, electronic and
programmable electronic (referred to as E/E/PEgthaafety-related control systems. The standards
require that the safety-related functions of thietem system are classified: IEC 61508 requires$ tha
the safety-related functions performed by a machioentrol system be allocated a safety integrity
level whilst EN 954 uses the concept of safetyqrerhnce and places the system into one of five
categories. There is a significant difference & way that the safety integrity levels and catesgori
are derived and defined and it is the problemstthiatdifference causes that have been considered,
especially as the two classifications were compaved a view to developing a strategy to link
them.

IEC 61508 uses a safety lifecycle approach to enthat the design of a safety control system is
systematically carried out. This lifecycle appro&lexamined in the project to establish whether it
would be suitable for the design of machinery cargystems.

1.5. View of test houses

Certified safety-related CES are on the marketyaao in the machinery sector. Despite today
there is no harmonised validation procedure for @€Sollowing remarks can be made :

« The use of CES for safety-related control systeras for some time also been the
advanced state of the art for the machine sector.

« There have been no accidents with the certifiedhines and safety devices which are
attributable to programmable electronic technolimggontrol unit.

+ In view of the large number of different applicaisoin practical use and the encouragingly
low accident rate, it can be stated that CES hdse proven themselves as a safety
technology in mechanical engineering and, furtheemthat they often permit entirely new
protection concepts.

« The expenditure for development on the part of the rfenturer and for validation by a
testing body are usually different than those ftassical control technologies. The
challenge is to assure safety as well as high ahisity despite of high complexity. The
greater flexibility, the lower production costs, ethfrequently lower maintenance
requirement and the greater reliability compengatéhe extra costs.

« Almost all manufacturers involved in certificatiggrocesses had to make conceptual
changes during development because, in some c&sem)s weaknesses became apparent
in the course of validation.

« Often only manufacturers involved in certificatiggrocedures with many years of
experience in classical safety control systems thadsufficient know-how to develop

15

acceptable CES solutions. Other manufacturers wére wackling safety applications for
the first time were frequently unable to produceeatable solutions.

+ The idea of specifying validation procedures forSPiE standards so rigidly that every
body and every person always comes to the samédt resevery part of the validation
appears to be exaggerated in view of the complefithe subject being dealt with. Even
IEC 61508, with its more than 300 pages, prepayesebected international experts, is no
guarantee for that. There is a technical limit tandardisation here which leads to the
serious question of whether we should not be sadistith a framework for a harmonised
validation procedure.

As can be seen by these remarks European testshaese to give constructive answers to the
validation of safety-related CES. Validation proeest are developed and there are several test
houses who certify safety-related CES accordingpéomachinery directive. There is still a lack of
harmonisation between the different test houseskingrin that field. This final report of the
European Project "Standards for Safety-Related Qexnjlectronic Systems” will develop a
framework for a harmonised validation procedure olhishould be standardised by
CEN/CENELEC.

16

2. ANALYSIS OF PRESENT SITUATION

2.1. Increasing use of CES for safety applications

At the end of the 70s/beginning of the 80s, elentreystems were introduced into mechanical
engineering. At first, they were used only in fuons not related to safety. However, attempts were
made to use such technology for safety-criticalliappons. This intention met with the better
resistance of practically all established safetyests. It was not surprising : the electronic
techniques met none of the safety criteria andcpies of classic control technology which had
been successfully applied in the past. A comparssmws just how big the problem was :

+ Inherent safety, in other words, safety guarantgethe design of individual components,
cannot be achieved with electronic systems.

« It is virtually impossible to exclude the possityilof failures with physical causes, as is the
case with electromechanical circuits.

« The nature of possible defects and their consegseare usually known in the case of
electromechanical components; they are mostly unkrfor complex integrated circuits.

« Programmable systems are highly complex. We haaedept — and this is something new
— that these systems are no longer fully testable.

« If modifications are made, there is a relativelghirisk — compared with conventional
technology — that serious defects are integratégowt being noticed.

+ Electro-Magnetic Compatibility (EMC) is no probleim electromechanical components;
there is extreme sensibility, however, in PES.

« Several other proven safety methods such as gnograintrol circuits, starting up by logic
,high* make little sense or are not practicable in eleitreystems.

These problems were solved by national and intienmait standardisation papers which introduced
basic requirements especially during design anthtesf CES to overcome these difficulties. All
these papers are based on a safety life cyclefdllosving three examples will illustrate how the
situation developed during the past ten years.

Presumably, paper-cutting machines were the fiegtlimes to use computers for safety functions at
the beginning of the 80s. Paper-cutting machindsichvare used in large numbers in paper-
processing factories, are especially dangerous imeshFingers and hands can be seriously injured
by the press cross-head and blade if a cut uneagligcbccurs as a result of a malfunction or if
integrated protective devices (electro-sensitiveadeand two-hand control) fail.

17

This posed a problem because there was a lackaofigal experience in industrial applications and

suitable assessment methods. In cooperation witGeaman test house, the first machine

manufacturer decided to develop the control in igeredundancy where one channel was the
computer, another was hard-wired in CMOS logic.tHe course of over 15 years and several
generations of machines, almost all manufacturdrdame paper-cutting machines now use

computer control systems. State-of-the-art techmofor category 4 controls (according to EN 954-

1) means : diverse or homogeneous redundancy waiksdfe comparator, two-hand control and

lightcurtain.

The great need of industry forced the nationalddastisation body in Germany to create a general
standard for safety-related computer control, si¢ 0 VDE 0801". The technical content of this
national standard has later been brought into theofean, see EN954-1and international
standardisation, see IEC 61508

Electro-sensitive protective equipment has beerd use ensure the safety of machines and
potentially dangerous areas for almost 30 yeardaG@rotective field geometry has always been
unchangeable: computers were not used until ar@@8a. At the beginning of the 90s several light
curtains have been manufactured which containedocoatrollers in homogeneous redundancy. As
a basis for certification the German draft DIN V EM801 was used. This standard is based on
DIN V 19250 which builds up a hierarchical system of eighk neduction levels. These first light
curtains using CES were certified according to ll&ef DIN V VDE 19250 and could be used as
electro-sensitive protective devices for power pess

Receiver D

Rotating Mirror

1 e ——

- f— A —m]

"Time of Flight
Measurement"

Figure 1 : Laser scanner for area protection

In the last 2-3 years, there has been a real "goaneap” in these systems. Not only
microprocessors but the applied physical princigle revolutionising the previous safety
philosophy of electro-sensitive protective equiptnémthe past, for example, the safety function of
electro-sensitive protective devices was actuatatusively through interruption of the beam of
light.

18

In the illustrated examplé-igure) of the "laser scanner”, the human body in the daage is
detected through the reflection of an infrared bedirhight. A rotating beam of light rapidly scans
the danger area and transmits an image of thet@itba computer. To determine the person's exact
position, the running time of the light from theuggment to the person and back is measured. The
protective field geometry can be adjusted via tifensre. This makes its use very flexible.

The electro-sensitive scanner depicted here isemehted in Category 3 according to EN 954-1.
The architecture of the system is single-channelleth numerous self-tests and additional
monitoring devices

The first company to introduce such a system omitheket took 15 man years in a development
period of 3 years. Because of the many fundameptastions which had to be answered, the effort
to validate the first system by the test house tb&kman-years. Today more than sixty thousand
computer controlled electro-sensitive devices aeduin all kinds of applications. An accident,
caused by technical faults in the system, waseyminted since now.

Machining centres are numerically controlled andeh#acilities to enable tools to be changed
automatically from a magazine or similar storagdt un accordance with the machining
programme. The most dangerous situation is an wwg@ movement, start or speed acceleration
when the worker observes the process while theegtige guards are still open. To avoid this risk
the machining centres in the past required to @mehclose the protective guards very often in the
setting mode.

With a new safety concept, based on computersytinker can operate in the setting mode by open
protective guards and observe and estimate theingshmovements. In the new approach a safe
monitoring was integrated in a diverse redundambater. The computers primarily responsible
for the non-safety functions of the machine aré¢ pathe diverse redundant architecfure

If the automatic motion is controlled in this safay the user can move inside defined areas. Any
deviation in space or velocity is detected by theede redundant adjustable speed power drive
system, realised by safe software. In a highlyilflexway the machine can be adapted to the work
of the user and not vice versa. The safety funsti@alised by the integrated monitoring are safely
reduced speed, safe operational stop, safe sl limit switch (by software) and safe pasiti
switches (by software).

19

2.2. Basis for the validation of CES

As mentioned in the previous paragraph safetyedl&ES today are certified according to EN 954
in conjunction with national specifications, likdNDV VDE 0801. Some authorities also have used
draft international standard IEC 61508 for the ifiedtion of safety-related programmable logic
controllers. In most cases a certificate has EN 954-1, ndtispecifications and sometimes IEC
61508 mentioned as test requirements. Neverthtlday there is no internationally used procedure
for the validation of safety-related CES in the maery sector and practice between test-houses in
Europe. Some general remarks can be made on tisedbéise procedures used today :

« Validation at the end of development only, when fineduct is complete, is no longer
possible. As the development process itself is ssemial subject of the validation, it is
advisable to involve the validating body in advanterder to agree on the documents to
be submitted.

« The specification of the safety-related CES is®f kmportance and needs to be inspected
by the certifying authority. One of the importanputs of the specification is the required
risk reduction of the CES when used in a specdfety function. If a CES is manufactured
without a specific safety function in mind, the imiim achievable risk reduction of the
CES, as a subsystem, has to be specified.

« During all phases of the product life cycle analgtiand testing measures are necessary to
achieve a product which is robust against randodhsystematic failures. These measures
have to be taken mainly by the CES manufacturer #ey increase the effort of
development dramatically.

« Software is getting more and more important for shéety integrity of modern CES. A
comprehensive understanding of the safety-relatd#tivare is essential for the CES
validation. The simpler the hardware looks like there complex the integrated software
can be.

« The installer and user of the CES needs suffigr@tmation and also ergonomic software
for a safe installation and use of safety-relat&5CThis documentation and the software
are a very important part of the validation process

« The modification of CES is a very critical processd has to be planed during the first
design. The certifying authorities have to be imedl into the entire maintenance process
of safety-related CES.

The following chapter will describe a harmonisedgadure for the validation of safety-related CES
while chapter 4 considers the applicability of EB#&nd IEC 61508 to the machinery sector.

20

3. ACHIEVING SAFETY BY FOLLOWING THE LIFE CYCLE

3.1. Introduction

3.1.1. The Overall Safety Lifecycle

The complexity of current electronic systems ishsti@at it is impossible for the analyst to validate
the safety level of a CES system by carrying ouy activities when the design process is well
underway or even completed.

This new approach, called the lifecycle, was notimportant for electromechanical or low
integrated electronic technologies which were gaheused until now in the safety of machinery.

To deal with safety correctly, it is now necesdarjrave an overall view of the different stageg tha
mark out the “life” of an application, from the dgfion of the limits of this application through a
least the safety validation (It is often difficditir the machinery to deal with the maintenance and
the final decommissioning of the elements). Thasges are generally grouped within a safety
lifecycle at global application level (Cf. IEC 61%Q). This lays down the activities necessary to
implement the different means for risk reductioamely CES systems, but also safety-related
systems based on other technologies and exteshaledluction facilities.

Three broad parts in the overall safety lifecy@a be distinguished.

[1] The first stages, based on the definition of thecept and a hazard and a risk
analysis at global application level in particuldead to allocating safety
requirements to the different means of risk redaunctifwo reference systems can
potentially be employed to carry out hazard an# asalyses : EN 954 (in
conjunction with EN 105%) and IEC 61508 (see chapter 4 for the choice of a
reference system).

[2] Then comes the lifecycle inherent to the develognwnthe CES system(s)
employed, but also to safety-related systems basedther technologies and
external risk reduction facilities.

[8] These two first parts are completed by the phakestallation and overall safety
validation, operation and possible modificationsthe E/E/PES (with, where
appropriate, a return to the adequate life cycksph

21

3.1.2. The E/E/PES Safety LifeCycle

In this section, the content of the lifecycle caméeg the development of CES Systems will be

examined. This cycle starts at the specificatiorihef necessary and sufficient conditions for the
realisation of such systems and finishes whenhal CES safety-related systems are no longer
available for use.

The principle phases that make up the lifecyadtetiae following :

« Specification : Based on the allocation made in akerall safety lifecycle, this phase
specifies the safety functions carried out by tiSG&s well as the performance in terms of
Safety Integrated Level (IEC 61508) or of categ@i 954), the choice of one or the other
being oriented by considering the elements giverhapter 4.

« Architecture : This phase determines the hardwaieple channel, dual or triple
redundancy, diagnostic coverage, etc.) and softase of diversity, etc.) architecture
adopted to develop the CES(s), see chapter 3.3.

« Design and development : This phase is intendatk$sign and produce the hardware and
software of the CES system(s) in order to respket requirements laid down in the
specification phase. Safety validation planningtlted CES in question must take place
alongside this phase. Section 3.1.3 looks at theip life cycle of the software.

« Validation : The validation is intended to ensunattthe requirements laid down in the
specification phase are indeed respected.

So as not be judge and judged, the interventionthefanalyst are carried out primarily at CES
specification and validation level. Sections 3.3 deal with each of these phases.

3.1.3. The Software LifeCycle

The software life cycle is a subset of the CESclitde which concerns the activities occurring
during a period of time that starts when softwasedesigned and ends when the software is
permanently disused.

The unrolling of the activities is defined in retat to the particularities of the project , for exale,
complexity of the system under consideration arel dbftware, end-use of previously developed
products, production of a prototype or availabiltfytesting materials. The organisation of these
activities can be represented by different, distiifecycles, defined according to the type of paij

in question.

22

3.1.3.1.The software V-lifecycle

The V-shaped cycle is chosen for its simplicity &edause it is adapted to software products. A test
activity is placed directly across from a developmactivity to ensure that the specified elements
have been correctly achieved.

This lifecycle corresponds to a continuous develepinactivity, with no or infrequent deliveries of
intermediate products and with no significant cleanp the specifications.

This V-shaped representation is illustrated inftlewing schema :

System < verfication System validation
specifications
Software | verfiation Software validation
specifications tests
Verification Software

Preliminary desig . '
(soft. architecture integration tests

\ /

Detailed design | Verfication Module tests

N/

Coding

Figure 2 : The software V-lifecycle

Software definition usually includes the followisgquential development activities :

Specification : activity that consists in descripthe expected software functionalities, and
that takes into account inputs and any applicabitestraints.

Design : activity of constructing the software atetture (usually called "preliminary
design"), which allows the implementation of softevapecifications and the construction
of detailed algorithms (activity usually referreml ds "detailed design"). The source code
can then be constructed without any further infaroma

Coding : activity of producing the source codelanguages such as assembly language or
C, which can then be accepted by an assembler ity for the production of
executable instructions for use by the target msoe

Executable code production: activity in which th#edlent code components are grouped
(by link editing especially) into a form that allswhe generation of an executable code for
loading into the target system.

23

These definition activities are complemented byvearfe verification activities, the goal of which is
to verify that the software product satisfies spedirequirements at each development steps and to
detect any errors that might have been introducethgl the software development.

The principal activity of any software verificatida testing. Other activities such as review or
analysis (for example rereading the code) are plessomponents of software verification.

Software testing activities generally include diffiet phases that correspond to different
development activities :

Module tests at the level of each individual modeda be used to demonstrate that the
module carries out the specified function, and a@hiy function. Different types of module
tests can be found, including logical tests (es®arch, verification of correctness of the
interconnections of the different branches, seéoctabnormal behaviour) and calculation
tests (verification of calculation results, perfamee and exactness of algorithms).
Calculation tests typically include data tests withpecification limits as well as outside
these limits (abnormal state), at the specifieditimand at algorithmic singularities.
Abnormal behaviour tests (outside boundary valaégrithmic singularities, errors) are
generally referred to as robustness tests.

Software integration tests are used to demonsdtinatethe functional units made up of an
assembly of modules operate correctly. This typeesf is principally concerned with the
verification of the interconnections between moduldata circulation, dynamic aspects
and the sequencing of expected events. They typigatiude tests on inter-modular
connections, dynamic aspects, the sequencing oéctagh events, and the rerun of
operations in case of interruption.

Validation tests are to check that the softwardaited in the hardware satisfies the
functional specifications, especially by verifyingardware/software interfaces, general
performance levels, real-time operation, generattions, and the use and allocation of
resources.

24

3.1.3.2.0ther software lifecycles : the Incrementdifecycle

There are other safety lifecycle which were notregped earlier like incremental lifecycle which
primarily concerns those projects which have neinbe&ccurately defined.

The exploratory lifecycle concerned projects thealdvith the development of a product concept
that relies on innovative technologies or on tedbgies which have not yet been totally mastered.

More details can be found in Annexes 1 to 5.

3.1.4. Lifecycle Requirements

The goal of the following lifecycle requiremehtis to obtain a formalised description of the
organisation of the development and, in particulafr,the different technical tasks that the
development is composed of. This description presomproved planning of the development
activities, and more thought going into the optitnaleline for this development.

The software development lifecycle should be spatifind documented (e.g in a Software
Quality Plan). The lifecycle should include all tteehnical activities and phases necessary
and sufficient for software development.

Each phase of the lifecycle should be divided ite@lementary tasks and should include a
description of :

> inputs (documents, standards etc.),
» outputs (documents produced, analytical reports), et
> activities to be carried out,

> Vverifications to be performed (analyses, tests).etc

The necessary documentation should be establishexhch phase of the lifecycle to
facilitate verification and validation, and the tsadre safety requirements should be
traceable and capable of being verified at eaalesth the process (traceability matrix for
each definition document).

This will avoid a situation where the only avaikbdocumentation is the source code
because the documents that should have been pileper® not (deadlines too tight,
project manager transferred to another contraci, et

The analyst should be able to carry out the evialaif software conformity to the present
requirements by conducting any audits or expertdmmmed useful during the different
software development phases.

2 These requirements are not unique to the softlifareycle and can therefore be applied to thegtesf the different sub-assemblies of an CES.

25

All technical aspects of the software lifecycle ggsses are subject to evaluation by the
analyst.

The analyst must be allowed to consult all vertfma reports (tests, analyses, etc.) and all
technical documents used during software developmen

The intervention of the analyst at the specificatphase is preferable to an a posteriori
intervention since it should limit the impact ofyadecisions made. On the other hand,
financial and human aspects of the project aresubject to evaluation.

It is in the interest of the applicant to provideg@ of all activities carried out during
software development.

The analyst should have all the necessary elemantss or her disposal in order to
formulate an opinion. Subcontracted software shadd be left out of the evaluation
procedure and should comply with the same docurtientsirequirements.

26

3.2. Specification

3.2.1. Specification procedure for safety software

Today, software programs are characterised by ttwmplexity and size which are such that it
seems overly optimistic to strive to avoid all tauhey contain, by means of their construction and
by testing at the end of development. In order @mster software development, it is absolutely
necessary that a procedure adapted to this teapnbestablished.

During the life span of a software program, on¢hef most delicate steps to be accomplished is the
translation of needs into specifications. The dngftof specifications and the possibility of
evaluating these specifications are very imporéaviantages, in particular for safety software. This
is confirmed by a study run by HSE concerning tmenary causes of failures, based on 34
incidents, which shows the primordial proportiod.@%o) caused by poor specifications (Figure 3).

It is estimated that repairing an error in speaifens requires approximately 20 times more effort
it is only detected when used, and sometimes evere.nin fact, the consequences of software
failures are not limited to repairs. In certainegshuman lives may be involved.

Developing systems is often accompanied by quadiquirements, which are certainly necessary,
but insufficient in the case of safety systems. l[Queequirements must be considered along with
safety requirements.

Primary cause of control system failure[based on
34 incidents]

Design &
14.70% @oesign _
44.10% implementation

5.90% .
‘ m Installation &

commissioning
O Operation&maintenance
14.7|
O Changes after
20.60% commissioning

m Specification

Figure 3 : Major portion attributed to specifications in the causes of failures

27

Safety software specifications procedures lie wittie framework of a system operation safety
approach which makes it possible to master thesrigkthe system in its environment. It is a
complete methodological approach which must be nddnand systematic in order to identify,
analyse and control the risks throughout the f@esof the system, in particular throughout ttie li
cycle of the software, with the intention to armatie and reduce incidents.

While traditional quality procedures implement meavhich aim towards a system exempt from
faults, the operation safety procedure implemetiteromeans in order to aim towards a system
exempt from failures (Figure 4).

The zero fault objective is a lure which must beptetely abandoned when faced with strict safety
requirements. It is unrealistic to strive to eliati@ all faults, which leads to tremendous effoats f
above ordinary economic rules and beyond the ptéisaits of software production technology and
the state of the art.

FAULT FAULT FAULT FAULT
PREVENTION TOLERANCE ELIMINATION FORECAST
Strive for a system Grant the system the aptitude Obtain confidence in the aptitude

exempt from faults to provide services of the system to provide
which fulfil its function services which fulfil its function
\ % N% N7
AVOID
FAULTS ATTAINMENT VALIDATION

OPERATION SAFETY

Figure 4 : Operation safety means

3.2.2. Specification methods

In the 1980’s, Mr. Gérald WEINBERG, a specialistpirogramming and in software engineering,
declared that “if buildings were built like progranare written, the first flight of birds would
destroy everything”.

28

The situation has evolved since then. Methods aftiv@re Engineering Workshop (SEW) tools
are offered to developers, in order to help theshastompany them in their work. The table below
provides a non-exhaustive list of a few specifmatnethods and their main characteristics.

These methods may be used for all types of softwHne safety requirements at the software
specification level are taken into account by theration safety methods.

Name Place in the life Observations
cycle and purpose
of the method
PN Specification Method based on transition systems, using tokens
Pétri Network Development and spaces. It makes it possible to demonstrate
properties such as non-blocking, vivacity or equity
of a set of co-operating processes. It is ofterd usq
to specify parallelism and synchronisation.
Statecharts Specification Specification method based on transition systems
Development
SADT Specification, Graphic specification method. It uses boxes to
(Structured design represent data or activities and arrows to reptesen
Analysis Design Development flows between data or these activities. It is
Technique) sometimes designated as a semi-formal design
method and is often used in industry.
SART Specification Real time extension proposed for the structured
(Structured Development S.A. method of E. Yourdon and T. de Marco. One
Analysis Real of the most widely used structured softwarg
Time) analysis methods for real time applications.
4 Specification, Formal specification language based on the
design Zermelo theory of sets. It makes it possible tg
Development express functional conditions of the problem to bé¢
translated into set notation.
LDS Specification Specification and functional description language,
Development It is subject to a CCITT standard.
CCS Specification Formalism used to describe parallelism semantics.
Development It is based on process algebra and remains very
abstract and impossible to be used to make useful
conclusions.
CSP Specification Presents the same characteristics as CCS.
Development

Table 1 : Specification methods

29

3.2.3. Case tools for safety software specifications

To our knowledge, no SEW combines specificatiorst@nd operation safety tools for software
specification, while taking into account safetyuiggments. Nevertheless, there is a whole store of
software specification software programs on theketawhich implement formal methods (VDM
methods, B methods, etc.) and semi-formal meth8ART methods, SADT methods, etc.), as well
as software programs which make it possible toterERIEA and arborescent failure charts.

Tool Designer Platform Method

ATELIER B STERIA, GEC-ALTHOM | UNIX (HP-UX-LINUX-| Formal B method
SOLARIS)

AXIOM/SYS STG Microsoft (Windows 3.x§,SART
Windows 95, Windows NT)

DESIGN IDEF METASOFTWARE Microsoft (Windows 3.xxIDEFO and IDEFIX
Windows 95, Windows NT)

ENVISION FUTURE TECH.SYSTEMS Microsoft (Windows 3.xx| SART, SADT, UML
Windows 95, Windows NT)

OBJECT GEODE VERILOG UNIX (AIX, HP, UX,|OMT, SDL, MSC
SOLARIS, SUN/OS)

ORCHIS TNI Microsoft and UNIX IDEFO

STP-SE AONIX Microsoft and UNIX SART

SYNCCHARTS SIMILOG UNIX Esterel

TEAMWORK CAYENNE Microsoft, UNIX SART

Table 2 : Casetools for safety software specifications

Formal methods are more than a tool for repregentatthey are also a technique for drafting
specifications which restrains the designer to nadstractions and finally results in a better aslys
and an enhanced degree of modelisation of thefgaimn problems. It is sometimes even possible
to make simulations.

Use of a formal method requires considerable imeests in time and training. Formal methods are
a significant step forward for the development andluation of critical software.

30

Software Specifications

Software specifications should take the followirgnps into account : O |0

- safety functions with a quantitative description tbe performanc
criteria (precision, exactness) and temporal camgs (response timg
all with tolerances or margins when possible,

« non safety functions with a quantitative descriptad the performanc]
criteria (precision, exactness) and temporal camgs (response timg
all with tolerances or margins when possible,

- system configuration or architecture,

 instructions relevant to hardware safety integr{fyrogrammable
electronic systems, sensors, actuators, etc.),

« instructions relevant to software integrity and tbafety of safety
functions,

- constraints related to memory capacity and syséspanse time,

- operator and equipment interfaces,

 instructions for software self-monitoring and fartware monitoring
carried out by the software,

 instructions that allow all the safety functionshi® checked while the
system is working (on-line testing).

D

~—~

~ (D

The instructions for monitoring, developed taking safety objectives and operating constraints
(duration of continuous operation ,etc.) into account, can include devices such as watch dogs,
CPU load monitoring, feedback of output to input for software self-monitoring. For hardware
monitoring, CPU and memory monitoring, etc.

Instructions for safety function verification: for example, the possibility of periodically verifying
the correct operation of safety devices should be included in the specifications.

Functional requirements should be specified forheaAmctional mode. TheO | O
transition from one mode to the other should beifipe

Functional modes can include:
e nominal modes,

* oneor more degraded modes.

The objective is to specify the behaviour in all situations in order to avoid unexpected behaviours
in non-nominal contexts.

Table 3 : Software specifications
Notation :

The requirements discussed in the present docuanerdrganised into two software requirement le{g[8) according
to the criticity of the functions ensured by théware. Level 2 corresponds to the highest requaremsfor the software
considered in this document. The level associafddangiven function depends on a risk analysithefentire system.

31

The level can be used to establish a list of eléamgmequirements for the software under considmraihree degrees
of importance can be defined to help decisions kdrebr not it is necessary to consider a givenireqent as a
function of the level of criticity:

> "O" (Obligatory quality requirement) : this requiremertosld be applied systematically to the
software in question.

> "R" (Recommended quality requirement) : the applicatibthis requirement is recommended but not
automatically imposed.

> "I" (norequirement) : the application of this reqoient is left to the user's discretion.

32

3.3. Architecture

The architecture of a safety-related Complex Ebettr System (CES) is one of the key elements in
achieving the required Category (CAT) or Safetedmity Level (SIL). This is the reason why the
architectures play a prominent role in connectiaiggories and safety integrity levels.

Requirements on architecture are related to haehaad software. In the first paragraph of this
chapter hardware architectures which are commosBdun machinery (so-called “designated
architectures”) are described and an overview efNarkov simulations of these architectures is
given. More detailed information on the results banfound in Annex 6. In the second chapter the
influence of software architecture is analysed.uamgification of this influence can only partially
be considered by using the common cause factoreXABrgives more information on the influence
of software fault avoidance through architecture.

3.3.1. Designated CES Architectures for Machinery

3.3.1.1.The Role of Architectures for Safety RelateSystems

Studying EN 954-1 one can interpret the requireséot the different categories as architectural
constraints for the design of safety-related paftgontrol systems. In the categories B and 1 a
single channel architecture without monitoring lities is described while category 2 specifies a
single channel architecture with monitoring andurethnt switch off path and categories 3 and 4
normally need redundant signal processing andiozata fulfil the requirements. Transferring the
requirements of EN 954-1 into complex electronitetsarelated systems will lead to different
system architectures that are in use in the maghseetor.

With these common architectures brought into difféer Markov models the probability of a
dangerous failure per hour (PDF) or the probabdityailure on demand (PFD) can be calculated
for different diagnostic coverages, mean timesaituffe and common cause factors. The results of
these calculations can be used to establish re#dtips between commonly used architectures in the
machinery sector and different safety integrityelevas defined in IEC 61508-1.

33

The following paragraph will describe commonly usaghitectures for CES in the machinery

sector. Several assumptions are made which areatyfor these architectures. A proof test is not
standard in the machinery sector for CES. Therdfmgroof test interval was set to 10 years which
is the average time a safety-related CES is intoday (called the “mission time”). Chapter 3 of

Annex 6 will describe how the PFD and the PDF hbgen calculated taking into account the
demand on the CES and determining the averagetlozenission time.

3.3.2. Common Architectures for Machinery

3.3.2.1. Single channel system without fault detection in aordance
with category B or 1 of EN 954-1

The categories B or 1 according to EN 954-1 impbt the system does not provide any capability
of detecting internal faults. For category 1 notyobasic but well-tried safety principles and
components must be used, which means that a higfiability is achieved and therefore the
probability of a system failure is lower than ineggory B (see EN 954-1, 6.22).

If we assume the system comprising a sensor (Blpgrammable electronic device (PED) with
integrated power supply for signal evaluation artitige (D) that is controlled by the PED it can be
represented in a block diagram by a simple sey&®e®. This is shown in Figure 5.

S Sensor Signal , PED Control Signal , D
S: Sensor
PED: Programmable Electronic Device
D: Drive

Figure 5 : Block diagram of a single channel system without fault detection

Normally a single electronic device is not regardede a well-tried component. Thus, it is not
possible to realise a category 1 single channelgafstem using a PED.

Three assumptions have been made in order to detethe SIL :

[1] Switching off the drive is the appropriate actiangenerate a safe state of the
machine (in IEC 61508 called “equipment under cadht(EUC)) the drive is
belonging to.

34

[2] The safety system is not able to induce a hazardibustion by itself. The worst
case which can occur is a dangerous failure, he.siystem cannot perform it's
intended safety function.

[3] Failures are only revealed by a demand on theyséfetction. This leads to a
hazardous situation which will be followed by aa&p

3.3.2.2.Single channel system with implemented testn accordance
with category 2 of EN 954-1

Category 2 of EN 954-1 requires self checks toxexated by the safety related system "at suitable
intervals". The tests may be initiated either mélguar automatically. If a fault is detected an
output signal shall be generated in order to it@tian "appropriate control action". Whenever
possible a safe state shall be induced.

These requirements imply "that the occurrence fafuét can lead to the loss of the safety function
between the checking intervals”. Additionally it shdoe remarked that many of the typical testing
techniques do not provide a diagnostic coverage06fo. Therefore there may exist faults within
the safety device which cannot be detected bylibelks.

A representative system architecture for categasy@zesented by the block diagram of Figure 6.

Test Stimulus Monitoring

A
Sensor Signal Control Signal
S /> PED ——»* D
Iw
A
K] o
5 £
o 5
= \
y [a}
=
WD 2nd Switchoff Path
S: Sensor
PED: Programmable Electronic Device
D: Drive

WD: Watchdog

Figure 6 : Block diagram of a single channel system with implemented tests

35

Compared with the simple system of Figure 5 a waigh(WD) has been added in order to monitor
the operation of the programmable electronic deifeD) which is thought to be represented by a
microcontroller system. In the PED a power supplyniegrated. The drive (D) has two separate
inputs, the first (Ip) - as usual - for the PED anskecond one (Iw) for the watchdog, each providing
full switch-off capability. The system is also pmrhing periodic tests of the sensor, the switch-off
path(s) of the drive and the watchdog.

Several assumptions have been made in order tdteaseeation of a suitable Markov model :

[1] Switching off the drive is the appropriate actiengenerate a safe state of the
equipment under control (EUC) the drive is beloggim

[2] The safety system is not able to induce a hazardibustion by itself. The worst
case which can occur is a dangerous failure, he.siystem cannot perform it's
intended safety function.

[3] The programmable electronic device (PED) is pecalty performing a self test.
The detection of a dangerous fault in the PED knhawledged by the absence of
trigger pulses within the watchdog (WD) time outripg. This online test is
characterised by the test rate and the diagnostierageCpe Which is assigned a
value between zero and or@: is the conditional probability that a dangerous
failure of PED will be detected, given that it l=curred. In this case the PED is
no longer able to cut off the drive via input Iphalugh this might be necessary. If
the fault is detectable the drive will be cut off the watchdog via input Iw
(presumed that WD and Iw both are operational).

[4] The sensor and the drive-internal switch-off patigibning with input Ip of the
drive are tested periodically by the PED. The damgic coverages are assumed to
be equal to one as long as the tests are carrted ou

[5] The watchdog is also tested by the PED. The didgnogverage is supposed to
be equal to one. There are two ways to monitoofiexation of the watchdog. It's
output signal can either be directly reread byRE® or the drive-internal switch-
off path beginning with input Iw of the drive cae Included in the test loop. In
the latter case the switch-off path is includedthe test loop. This can be
expressed by the diagnostic coverage which isithetréo zero or to one.

[6] Any failure which has been detected successfulllydvive the system to a non-
volatile safe state with the drive cut off. Thetsys is assumed to be disconnected
from the power manually until it has been repamedeplaced by a new one.

[7] If the PED has failed it will no longer perform artgsts of PED-external
components, i.e. S, Ip, WD and Iw are not testezhse of a failure of PED.

36

[8] In order to describe the drive by a single dangefaudure rate this rate is equally
distributed to both inputs Ip and Iw respectively.

3.3.2.3. Dual channel system with comparison in accordanceitk
category 3 or 4 of EN 954-1

EN 954-1 requires a category 3 device to remaimatipmal if a single fault is present in any pétrt o
the system. Besides, "whenever reasonably pratgithe single fault shall be detected at or before
the next demand upon the safety function.” Thisuishes that not all faults should be detected and
that "the accumulation of undetected faults mayl l&m an unintended output and a hazardous
situation at the machine.” Common mode failuredl sleetaken into account.

In addition to above-mentioned demands there areemgid requirements to be fulfilled by a
system that claims for category 4. The single fahkll be detected "whenever possible" and, "if
this detection is not possible, then an accumuiatid faults shall not lead to a loss of safety
functions.”

The problem of providing the safety functions aftez occurrence of a fault is often solved by the
implementation of redundancy. A typical exampleliomogeneous redundancy is given by the dual
channel system depicted by Figure 7. Whether cagefjor 4 can be met depends on the extent to
which faults can be detected or tolerated.

The system comprises two sensors (S1, S2) of sgmeeand two programmable electronic devices
(PED1, PED2) of identical type with integrated powapply in each PED combined with a single
drive (D). Either of the PEDs is connected to ahvidual input (IN1, IN2) of the drive. In reality
the PEDs will usually be given by microcontrolleiie cross link between them is intended for
data interchange.

S 1 Sensor Signal ’ PED 1 Control Signal
P Monitoring
o Y
g IN1
D
,_‘E IN 2
a
4
Monitoring
S 2 Sensor Signal , PED 2 Control Signal
S1,S2: Sensor
PED 1, PED 2: Programmable Electronic Device
D: Drive

Figure 7 : Block diagram of a dual channel system with comparison

37

Again, there is a number of reasonable assumptimneh have been made in order to derive a
suitable Markov model :

« Assumptionl : Switching off the drive is the appropriatei@ctto generate a safe state of
the equipment under control (EUC) the drive is bgiog to.

« Assumption2 : The safety system is not able to induce ardazs situation by itself. The
worst case which can occur is a dangerous failuee,the system cannot perform it's
intended safety function.

+ Assumption3 : Periodic online tests are carried out by the programmable electronic
devices (PEDs). The complete set of tests includes

+ a self-test of PED1 controlled and monitored by RED
- a self-test of PED2 controlled and monitored by RED

« a test of the drive-internal switch-off path begngwith input IN1 of the
drive, performed by PED1,

+ a test of the drive-internal switch-off path begngwith input IN2 of the
drive, performed by PED2,

« a comparison of the output signals of the two seng®l, S2), performed by
PED1 and PED2 together.

Each of the tests is checking subfunctions whieh garformed by the different
components. Performing all subfunctions properlg @e-condition for the safety
system to provide it's intended safety function(s).

« Assumption 4 : The mutually contolled and monitored selfgesif the PEDs are
characterised by a diagnostic coverage, which eaadsigned a value between zero and
one.

« Assumption5 : The diagnostic coverage related to the sensoegual to one. In some
cases the feature will be implemented, in othemsat’t. This can be expressed by the
diagnostic coverage which is set either to zerm ane.

« Assumption6 : The diagnostic coverage related to the dmernal switch-off paths
beginning with inputs IN1 and IN2 of the drive igual to one. In some cases the feature
will be implemented, in others it won’t. This caa bxpressed by the diagnostic coverage
which is set either to zero or to ohe.

% For machinery normally only a few digital senstike switches are used. Monitoring of the drivealso done by digital signals. Thus a 100%
diagnostic coverage is possible.

38

Assumption? : Any failure which has been detected succegsiuill lead the system to a
non-volatile safe state with the drive cut off. Téstem is assumed to be disconnected
from the power manually until it has been repamedeplaced by a new one.

Assumption8 : If one PED has failed dangerous it will noden perform the test of it's
related drive input. The comparison of the outpghals of the sensors is also inhibited.

Assumption9 : The same dangerous failure of both sensorheatsame time is not
detectable because they deliver identical (wrongpwt signals. This can not be revealed
by a comparison.

Assumption10 : The failure rate of each input channel ofdhee is given by:/]I =05/,

Assumptionll : Common cause effects do not hit complete mélarbut the two sensors,
the two PEDs and the two switch-off inputs of thivel separately.

3.3.2.4. Dual channel system in mixed technology in accordae with
category 3 of EN 954-1

In many applications a mixed technology is usedner to implement a safety function. A first
channel is given by a standard programmable logidroller (PLC) with integrated power supply
and no specific online tests, while the second cbbkis formed by electromechanical means.
Online tests are carried out by the PLC to cheeketements of the electromechanical signal path.

As an example the simplified schematic of Figurde®icts the implementation of an emergency
stop function employing a PLC and a relay circuit.

Monitoring

ES
a
~+
|
| }
ES: Emergency Stop I" LS b 7\
PLC: Programmable > PLC RC
Logic Controller >
CC: Current Converter n
RC: Relay Circuit Control Signal N
S: Rotation Sensor g
M: Motor Speed Control _ _ e

Monitoring

S

Figure 8 : Implementation of an emergency stop function using mixed technology

39

We assume a machine where a current converterigantrolled by a standard PLC. The rotation
sensor (S) is part of the speed or position comtfdhe current converter and can be used by the
PLC to monitor the motor movements.

The safety function to be implemented is the enmergstop of the dangerous movement as soon as
the emergency stop device (ES) is actuated. Thma@mctcontains two mechanically forced contacts,
either of them providing a separate output sigBale of which is processed by the PLC while the
other is led to a relay circuit (RC) consisting2felays (or contactors respectively) with forced
contacts. The emergency stop function is execugdabth the PLC via the current converter and the
relay circuit. A failure of the opening of the caats of the emergency stop actuator device is
excluded. Independent random failures are supptséadppen to the PLC, the current converter,
the relay circuit and the sensor while the emergetap actuator ES is imputed not to fail to open
it's contacts if the button is pressed.

The PLC software is designed so that the openirtheotontact of ES immediately leads to a stop
signal for the current converter. Four online tests be modelled by our Markov model. If one of
the tests is not implemented in reality the pertirtest rate may be set to zero.

For the online tests the following assumptionsraaele :

« PLC diagnostic test : as said before a standard BL@ed. Therefore we assume only
simple online tests like a watchdog and paritytést of the memory which are common
today also for standard electronics. This will tegu a low diagnostic coverage of 30%.
We assume that the PLC after failure detection pasntly switches off the outputs
connected with CC and RC.

« CC diagnostic test : in suitable time intervals ewgce per day or during maintenance the
PLC switches off the motor movement using the curmnverter (CC). In parallel the
PLC monitors the output signal of the rotation ser($) so that it can detect the reaction
of CC. If the movement is not stopped by CC the Pe@nanently stops the motor via the
relay circuit (RC).

+ Rotation sensor diagnostic test : the diagnostt ¢¢ CC can only be effective if the
rotation sensor (S) is able to detect the motiorthef motor. To check this the PLC is
reading the sensor signal after switching on théomdf the motion is not detected the
PLC permanently stops the motor using the relaygsiiti(RC).

+ Relay circuit diagnostic test : after a normal stdhe motor using CC and after executing
the CC diagnostic test the PLC switches off thetrobrsignal for RC. Simultaneously the
PLC monitors the corresponding contact(s) of thayreircuit (RC). If RC does not react
properly the PLC permanently stops the motor veadurrent converter (CC). Because of
the test’s simplicity the diagnostic coverage azach 100%.

40

3.3.2.5. Triple channel system with comparison in accordancwith
category 4 of EN 954-1

In few (rare)cases the problem of providing the safety functiafier the occurrence of a fault is
solved by the implementation of triple redundaryypical example for homogeneous redundancy
is given by the triple channel system depicted lguie 9. Whether category 3 or 4 can be met
depends on the extent to which faults can be detemttolerated.

S 1 Sensor Signal , PED 1 Control Signal
Monitoring
Data ¢ Interchange
- IN 1
. Monitoring
S S | <
S 2 M> PED 2 Control Signal, N2 D

Data ¢ Interchange

Monitoring

S 3 Sensor Signal , PED 3 Control Signal
___Data Interchange
$1,82,S3: Sensor
PED 1, PED 2, PED 3: Programmable Electronic Device
D: Drive

Figure 9 : Block diagram of a triple channel system with comparison

The system comprises three sensors (S1, S2 andfS8ame type and three programmable
electronic devices (PED1, PED2 and PED3) of idahtigpe (with integrated power supply) in
connection with a single drive (D). Each PED ismerted to an individual input (IN1, IN2 and
IN3) of the drive. In reality the PEDs will usualbe given by microcontrollers. The three cross
links between them are intended for data interckardgore or less the same or equivalent
assumptions are made as for the dual channel ectimé in chapter 3.3.2.3 in order to derive a
Markov model which can deliver comparable results.

3.3.3. Designated architectures of CES for the machineryestor

It could be shown in Annex 6 that typical architees used in machinery which fulfil the
requirements of EN 954-1 can be linked to the SiLEEC 61508. Figure 10 compiles some results
obtained by the Markov models presented in Annex 6.

In order to make different architectures compardbke input parameters for identical or similar
functional units have been set to the same valmesther cases reasonable values have been
chosen.

Unless otherwise noted, the following input dataehbeen assumed :

Probability of a dangerous failure per hour

1.0E-04

1.0E-05

SIL 1

1.0E-06

SIL 2

1.0E-07
™

SIL

=
o
o
o)
®

SIL

1.0E-09

41

> MTTF of sensors, PEDs and PLCs : 15 years
> MTTF of switch-off paths of the drive : 30 years
> MTTF of a watchdog : 100 years
> MTTF of a relay circuit (two contactors) : 50 years
> Mission time (life time) : 10 years
> Repair rate (after failure detection or hazardouen® : 1/(8 hours)
> All test rates of single channel systems : 1/(16)mi
> All test rates of dual or triple channel systems : 1/(10 s)
> All demand rates of single channel systems : 1N@4s)
> All demand rates of dual or triple channel systems 10/hour
52 o
°2 82 oS3 o
_ 5 g g_ nononon
1 B %- E’ g S o é §
2a 8 a £of g3 “ “
53 o] o3 228 g5 e g8l g1
il e oo A b
. 2 e £ © 1l ca— [o
E go 8 M "~ ; 3 —
3 — s =
g3 | ga i
— 1l [a!
&
] a o] —
S| 1l
1l B
- o ol | a
1 1
o [aa
28 - 52 g .t i3 s ELTI £8
GE 285 BEE SIE R og Sak oy e
g %) g= sg °8 g g= g g
aF 7
E :

Figure 10 : Comparison of different architectures used in machinery

42

All evaluations have been executed applying thé ligmand procedure. As shown in Figure 10,
SILs 1 to 3 can be achieved by system architectoe&snging to different categories. For category
B no link to a SIL is possible. With category 2 andtable tests running in a time interval which is
about 100 times smaller than the mean time betwsnands SIL 1 is achievable (for more
information see Annex 6). Redundancy without anggdostic tests running is comparable to
category B systems and cannot be used even fofl.SRedundancy in mixed technology may
achieve SIL 2 if online testing of the peripheryimsplemented. To achieve SIL 3 a redundant
system needs to have 99% diagnostic coverage arca tetter MTTF of the subsystems than we
presumed for our reference systems. Given apptepc@nditions SIL 3 is possible with a triple

redundant system.

Figure 10 demonstrates that simple doubling ofaignocessing paths and implementing no online
tests (“simple redundancy”) does not provide aifigant gain if the mission time has a similar
order of magnitude as the MTTF of a single chan@éher investigations have shown that “simple
redundancy” can only have a positive effect if thission time is one order of magnitude smaller
than the MTTF. For simple systems (e.g. contaciorsalves) which can be proof tested once a year
(i.e. 100% diagnostic coverage for all subsystesimaple doubling of the hardware may be useful.
For complex subsystems like ASICs or PEDs simplegbtiog is only useful if the MTTF is one
order of magnitude bigger (possible e.g. for son®35) than the mission time (life time) of the
safety system. In all other cases online diagn®siie essential also in redundant safety-related
systems.

These results compiled in Figure 10 could be hélfdu standardisation. A link may be drawn
between SILs and the categories for so called daggd architectures. The architectures introduced
in this chapter are proposed to be considered sigraded architectures for the machinery sector. A
manufacturer who can prove that his architectureeduivalent to one of the designated
architectures, has to determine the M§hferousOf his subsystems, the diagnostic coverage of the
online tests and, in case of redundant systemsnagst the common cause factor. Then he may
derive the SIL out of a table. As an example, &etalb this kind is presented in the following. This
table is the compilation of results achieved by adiiog particularinput data. New Markov
modelling will be necessary only if system architees and/or parameters for the subsystems are
used, which are not listed in the table.

43

There are several data banks which could be emgployedetermine the MTTF of hardware
components, for example FARADIP.THREEMIL HDBK 217 or the Siemens Standard
SN 29508°. The results obtained are sensitive to the datek hesed and therefore to attain
comparable results one should preferably use oné/ af them. The diagnostic coverage can be
determined using the failure model in annex A at gaof IEC 61508Part 6 of IEC 61508 may be
helpful to estimate the common cause fagtotandardisation could specify one methodology for
estimating the CCF. With this proposal a link bedwehe two standards IEC 61508 and EN 954-1
Is possible, but it is not a fixed lifdetween categories and SILs.

3.3.4. Conclusions for designated CES Architectures for mzhinery

Markov models turned out to be a very appropriatést for determining the Safety Integrity Level
(SIL) of safety related systems. Enriched by a igefeature allowing for the online test rate and
the demand rate on the safety function the proibyalof a failure on demand (PFD) and the
probability of a dangerous failure per hour (PDé&) be calculated. Thus the method is covering the
"low demand mode of operation” as well as the "fdginand or continuous mode of operation” as
defined in IEC 61508.

Applying the developed technique to a number ofchlpsystem architectures commonly used in
machinery systematic investigations could be cdroet. Hence a lot of information could be
obtained about the influence of fundamental sygtamameters such as the component's mean time
to failure (MTTF), the diagnostic coverage (DC) dhd repetition rate of automatic online tests, the
demand rate on the safety function and the commewmse factor f{) in multiple channel
architectures. This information is useful not ofdy the validator but may also help the system
designer to chose an appropriate system struchaeafix basic design parameters for a given
application.

Some of the results obtained by Markov modellireylested in the following :

« Assuming reasonable failure rates of the componemisl be hard to achieve even SIL 1
with an untested single channel system. Theorgtitié situation may be improved by
introducing regular proof tests but this is neithealistic for complex electronics nor are
proof tests standard for electronic devices in rimearly.

44

+ Online testing is essential not only for single ria structures but also for multiple
channel architectures. Using components with aicseifit (not unrealistic) MTTF SIL 3
can be achieved with a diagnostic coverage of 90%ae. The simple watchdog of a
typical single channel system will usually provaléower diagnostic coverage so that only
SIL 2 may be attainable.

« The influence of the online test interval dependghe system architecture. Considering a
single channel system for maximum test efficieniog test interval should be chosen
smaller by a factor of at least 100 than the méae between demands on the safety
function. In a dual channel system the test infemay be much smaller since it is related
to the MTTF of one of the channels.

« Common cause failures can substantially reduce She of especially homogenous
redundant structures. The benefit of a dual oterghannel system may be completely lost
due to a common cause factor of a few percent only.

The system architectures having been made subje¢betinvestigations of this report are proposed
to be considered as "designated architectures'thfermachinery sector. Exemplary evaluation
results listed in a table provide a helpful ovewien the performance of different technical

solutions. Involving additional input parameteleliMTTF of system components and diagnostic
coverage, the table is able to draw a link betwbercategories of EN 954-1 and the SIL according
to IEC 61508. Furthermore, in some cases evenataia concerning the Safety Integrity Level to

be achieved by a particular safety related systawylme simplified by application of this table.

45

Mean Time to Diagnostic Coverage)
dangerous Failure | ccg
) MTTE (each Channel)
SIL System Architecture d B 0 Cat.
(years) 0 (%)
(%)
In/Processing/Out In/Processing/Out
- Single PE, Single I/O 15/15/30 - 0/0/0 B
Single PE, Single I, Ext. WD(u/t) 15/15/30 - 0/60/0 B
Dual PE, Dual I/O, 1002 15/15/30 5 0/0/0 B
1 Single PE, Single I, Ext. WD(u/t) 15/15/30 - 100/B10 2
Single PE, Single I, Ext. WD(u/t) 7.5/15/10 - 100/800 2
Dual PE, IPC, Dual I/O, 1002 15/15/30 5 100/60/100 3
Dual PE, IPC, Dual I/O, 1002 15/15/30 10 100/90/100 3
Dual PE, IPC, Dual I/O, 1002 45/15/60 10 100/90/100 3
Triple PE, IPC, Triple 1/0, 1003 15/15/30 5 100/600 3
Triple PE, IPC, Triple 1/0, 1003 15/15/30 10 100410 4
2 Single PE, Single I, Ext. WD(t) 15/15/30 - 100/A®0 2
Dual PE, IPC, Dual I/0, 1002 15/15/30 1 100/90/100 3
Dual PE, IPC, Dual I/0, 1002 30/30/60 5 100/90/100 3
Dual PE, IPC, Dual I/0, 1002 7.5/15/10 1 100/99/100 4
Mixed Dual Processing, Dual O, 100R «/(15/100)/(15/100) - 0/(30/100)/(100/100) 3
Triple PE, IPC, Triple 1/0, 1003 15/15/30 1 100/B00 3
Triple PE, IPC, Triple 1/0, 1003 100/100/200 10 MAmI100 4
3 Single PE, Single I, Ext. WD(t) 30/30/60 - 100/A90 2
Dual PE, IPC, Dual I/O, 1002 45/45/90 100/99/100 4
Triple PE, IPC, Triple 1/0, 1003 100/100/200 1GwA00 4
Conditions for single channel systems : Conditionor dual or triple channel systems :
All test rates : 1/(15 min) All test rates: 1/(24h)
Demand rate : 1/(24 h) Demand rate: 10/h
Repair rate : 1/(8h) Repair rate: 1/(8h)
Mission time (life time) : 10 years Mission timé¢ltime): 10 years

MTTF,4 of watchdog:

100 years

MTTF, of switch-off path for watchdog:
WD(u/t): Watchdog and pertinent switch-off pathesied or tested

WD(t):

Watchdog and pertinent switch-off path teste

(* not achievable by simple watchdog)

MTTef output sensor of mixed system: 15 years

equal to normaitsh-off path (output sensor not testeq)

IPC:

Inter-processor communication

Table 4 : Possible designated architectures for machinery

46

3.3.5. Influence of Software Architecture

3.3.5.1.Software Architecture and Common Cause

Partial or full redundancy is a powerful tool tcheve higher CATs and if used in connection with
on-line tests also higher SILs. Hardware redundancZES is often connected with software
redundancy. In parallel to hardware architectuee itifluence of software architecture has to be
analysed as a part of design.

The question of common mode faults, inherent to dbiecept of redundancy, then arises. The
example of compilation is very revealing. Two ideak source software products can produce
erroneous executable codes if these codes areagetieoy the same erroneous compiler. The
common source of faults is therefore the compilaictv systematically introduces errors into the
programmes. These errors, if no precaution is tagerduce common mode failures that, in certain
cases, can diminish the safety of the application.

Standardisation bodies have therefore taken cadraw the attention of designers and of those
responsible for the evaluation to the problemsdako these types of failures. Hence, a note
associated with category 4 of EN 954-1 lays dovat. th

If further faults occur as a result of the firstgle fault, the fault and all consequent faultslisha
considered as a single fault. Common mode failshedl be taken into account, for example by
using diversity or special procedures to identifgrsfaults.

Common mode failures (the result of a single ihfi@alt) are equivalent to single faults, and must
therefore not affect the safety of the applicatidihis is a very strong obligation as, strictly
speaking, only recourse to a diversifead validatedtructure satisfies the requirements of category
4 for such failures.

In the preceding example, the designer would bedadge two distinct and validated compilers if it
turns out that errors can be introduced on conipilat

The standard proposes two ways of taking theseréalinto account : diversity or the use of
procedures to identify common mode failures. Thietais not open to question and must be
followed as soon as a redundant structure hasdrmeioyed, otherwise the benefits stemming from
it may be lost. In contrast, recourse to diversityst be studied carefully so as not to lead dessgne
to these complex means as, in certain cases, #reyaensist of two distinct developments and
products. In addition, the efficiency with respdgot common mode faults can sometimes be
questionable if no precautions have been taken.

47

Going back to the example of software, it can pepténg to design two different software to carry
out the same function. The limitations of this teicue, a priori attractive, nevertheless quickly
become apparent. It is indeed very difficult toggia final guarantee of the absence of common
points between two such programmes. The same gaicih is often used which, if erroneous, will
lead to two programmes with similar failures foe ttame input data ; both programmes may have
been designed and coded by two people or two tedthsa similar culture, generating software
errors with identical consequences, etc.

This example quickly demonstrates that the diversitd down in EN 954 cannot be imposed
without precautions to deal with common mode phegrtan

3.3.5.2.Common Mode Failures (CMF) and their appeance
mechanism

Defining common mode failures avoids any confusiomisunderstanding relative to the problems

posed and their possible solutions. Indeed, maayheterms common mode faults, common mode
failures, and common cause failures indifferentlyew referring to common phenomena affecting
several distinct entities. This paragraph is ineghtb clarify the concept of Common Mode Failure

by explaining the sequence of phenomena involvedaread up to these failures.

Fault / Error / Failure

A reminder should first be given of what a failuse The failure are the transition from correct
service to incorrect servite® *2. The failure occurs when the service providedargér conforms
to the specification. The deemed or supposed cafise failure is a fault, a definition that
constitutes a shortcut who introduces the interatedioncept of error.

This terminology is in everyday usage within theestific community. It is more accurate than that
found in the EN 954 standard which does not disiistg between failures and faults. A fault is thus
defined as the state of an entity unable to acasimpl required task but not including incapacity
due to preventive maintenance or other pre-progragnactions.

Failure mode / Failure mechanism

With failure defined, the mode of failure can thendefined, something that should not be confused
with failure mechanism, which is the physical psxée.g. corrosion) that has led to the faiftre
To all intents and purposes, the failure mode asgbihe observable manifestation of the failure
(e.g. short circuit, transistor output stuck, eugicircuit). This definition is of course relatitethe
level of observation of phenomena; the failure dfamsistor can be considered as global system
fault.

48

Common Mode Failure

With this clarification made, the definition of Camon Mode Failure$ clearly synthesises the
different wordings found in the bibliograp]ﬁy Common mode failures are failures affecting
multiple entities, simultaneous and multiple, degert on a single initial cause. This definition has
the advantage of applying to all types of archiest without involving the nature of the
redundancy.

Simultaneity is an important point that should le¢ed when talking about common mode failures.
states that failures can take place at identicadlistinct times but, that at a given moment, the
failure states coincide. The length of the timeiiwél is crucial as it indeed allows discrimination
between correlated failures and multiple indepentiglures.

Common mode failure appearance mechanism

The definition given by J.C. LAPRIE clearly showe tsequence of phenomena leading to common
mode failure. At the outset is a common cause dapaflgenerating correlated faults. These faults
should be distinguished from independent faultaclviare attributed to different causes. Correlated
faults are at the root of similar errors that, wlaativated or revealed, provoke a common mode
failure. The following diagram (Figure 11) is thines obtained.

Common cause (sing

S

Correlated faults | Independent faults

Similar errors

.

Common Mode

Figure 11 : Phenomena leading to a common mode failure

Common mode failures usually originate from a comngause. In certain cases, it may be that
independent faults lead to similar errors. On antatf their low probability of appearance, these
faults will not be considered in the remainderha$ document.

3.3.5.3.Software Diversity

Diversity is a technique which consists in creatmygersions of an entity (hardware or software)
whilst introducing one or several differences iach entity or its development process in order to
avoid common mode failures.

49

Functional diversity is often quoted to overcomenomon mode failuréd. It consists in acquiring
different parameters, using different technolog@erent logic or algorithms, or different means
of activating outputs to provide several ways dedeort’.

It is, however, difficult to justify diversity thrgghout the processing chain, except for very high
safety applications. The most important advantaafediversity are at CPU, interface memory,
programme, and data format level.

Diversity is seen as a solution to common modeurfed that cannot be predicted. It is
complementary to the concepts of independence et ation.

Software diversity is in fact a subset of desigmedsity, which is isolated on account of its
importance. It's the development and the executiogifferent but functionally equivalent versions
(or variants) in order to detect eventual errorgtyparing in real time the results attained.

Following the identification of a state of errocogery is undertaken by :

« Backwards recovery in which the system returnfi¢ostate previously saved.

« Forwards recovery in which the system branchesnava state (usually in degraded mode)
in which the system is able to operate.

« Error compensation, based on an algorithm usingetdandancy built into the system to
furnish the right reply.

Error detection by verification of the results argsfrom the different variants can be undertakgn b

« Acceptance (internal) test to check the resultghef execution of a programme. The
calculation of the checksum represents a typicaigte of an acceptation test.

« External coherence, in which results are checkeahégns of external intervention.

+ Automatic checking of numerical results. This ie tlerification of the numerical accuracy
of algorithmic results, for example for floatingl@aations for which a minor error in a
result could propagate to take on ever increasmgprtance.

More often than not, versions are designed by diffeteams, to achieve the same safety objective.
As for design diversity, it is assumed that différelesigners will not make the same mistakes.
Neither the bibliography nor the field experien@grpit to know the conditions of optimal software
diversity (it may be enough to produce two différdasigns from the same specificati]ﬁn)n fact,

the software must have sufficiently diversified dgmic and logic parameters to be considered as
diversified.

50

Nevertheless, UCRL proposes classifying the fadtwreeasing software diversity in the following
decreasing order of importance :

- different algorithms, logic, and programme archiiee,
- different sequences and order of execution,
- different programming languages,

+ different programming environment.

Two basic techniques are used for fault tolerarde.L

3.3.5.4. Recovery Blocks

M1 execution

Acceptancdest Al oK
Correc
Output
M2 execution END
Acceptancdest A2 OK
Correc
Output
M3 execution END
Acceptance test A3 oK
Correc

Output
END

Figure 12 : Example for Recovery Blocks

Several blocks functionally equivalent (M1, M2, M&¢.) are created and executed sequentially as
long as an error is detected by the modules urdegahe acceptance tests (Al, A2, A3, etc.)
assigned to each block Mi (Figure 12).

Proper application of this principle means that #lceeptance tests (Al, A2, A3, etc.) should be

distinct but in practice a single test common fale blocks is often developed. An extreme case
consists in adopting an acceptance test that idasito the blocks and then comparing the output

from the monitored blocks with the results of tleeeptance test. One of the problems posed by this
method in a monoprocessor environment is foundénsequential nature of the execution of the

versions.

51

3.3.5.5. N-version programming

N-version programming has been the subject of amadexperiments intended primarily to
ascertain the efficiency limits with respect to eoon mode failures. This technique consists in
running multiple versions (N) of a software productparallel, and taking a majority vote to
determine the final result. The number of versidepends on the number of faults that are to be
tolerated (3 versions will be able to tolerate tltfa The assumption on which its efficiency is
established is based on the following diagram (fedLB).

Assumption: Independence of the versions

\

» No correlation (or relations) between the softwiardts

\

+ Failures appear independently

N\

| Possibility of detection by a voter

Figure 13 : Principle of N-version programming

In order to be fully efficient, this technique mib& carried out in line with the following rules :
+ Requirements must be specified and analysed withgbmethods.

« The specification documents must be debugged afmlised before the development of
any components (for example by developing finalecpobtotypes).

« A protocol must exist in order to know and solve fbroblems. This protocol should
contain measures ensuring independence in devetdpyed should not introduce
correlated faults such as, for example, commurinagirors, common lack of knowledge ,
or exchanges of erroneous information between ¢hreldpment teams.

- Verification, validation and the test must all b@nhalised and must show absence of
correlated faults.

« The specifications, design and the code must aikted.

The advantages of N-versions programming are :

« Simplification of the test as it is enough to runpfgrammes with the same inputs and
compare the outputs obtained.

52

The reliability of each version can be lower, thatcibution at the global level provided by
the comparison. It must, however, be sufficienttimodegrade the reliability level of all N
versions.

The higher development costs can be compensataddnjuction in validation costs, these
advantages being linked to the assumption of noreleion of the N versions.

These advantages are minimised by the conclusiorarious experiments :

The increases in reliability provided by N-versiopgpogramming depend on the non
correlation of the failures of the different versid & ?°. Experience and probabilistic
calculations have shown that there is no true iaddpnce between the different versions
developeal. The rate of appearance of correlatidlures obtained following the
experimentation is much higher than that calculdigdnaking the assumption of fault
independence. Strictly independent developmentstremeefore not enough to guarantee
significant benefits in terms of reliability.

Even if, on average, substantial benefits are ptessising N-versions programming, these
benefits are so variable that it is still possitllecombine several versions to obtain a poor
result.

The results are relative to the experiments cawigd Extension to any type of application
is therefore difficult.

The use of different languages to create diffek@msions of a software product does not
have a major impact on reducing the causes of leteefailures.

In addition to these conclusions, various less@amshe drawn from the experiments carried out :

The different experiments were conducted on reditigsimple modules of reduced size.
When large programmes composed of numerous inteecded modules are involved,
identifying and separating the critical parts amtly@applying N-versions programming to
these parts.

A general rule applies to the development of difies programmes ; the earlier the
development teams come into contact, the greagechthnce of introducing common mode
faults?.

At the outset of the software life cycle there iscessarily a common specification.
However, there must be a minimum of different degigocesses, to avoid errors at this
level being propagated throughout the softwarechide.

Diversity creates a dilemma that is difficult tolso ; not stating the algorithm in a
specification does promote diversity but may geteefaults due, for instance, to level of
understanding of the programmers.

53

3.3.6. Key Questions for Software Fault Avoidance throughArchitecture

There are checklists developed in WP1.2d which tiee following key questions during the
development of the software architecture in ordetdal with software common mode failures. The
key questions are structured along the safetylitde for software development.

3.3.6.1. Software specifications

Have the software specifications been developediitigrent people ? If no, what are the links
between these people ?

The specifications can be written in different farm
It is very difficult, if not impossible, to introde real diversity, at software level, links oftegiriy
necessary between two teams responsible for drawin¢he specifications. Have the common
mode faults likely to affect the software been datred ? What are the potential sources of CMF
at the system level ?

CMF determination is vital to take these phenomat@maccount correctly.

In particular, the possibility of introducing systatic faults over the course of every stage of the

software life cycle is to be analysed.

Does the software redundancy chosen take accowonaion modes ?
Taking CMF into account can / must influence theich of structure : temporal, structural,
functional diversity, etc.

What type of diversity has been specified for tbiveare :

+ Human diversity
« Functional diversity

« Signal diversity? If so, Input signal diversity ? Output signaleafisity ? Signal processing
diversity ?

« Equipment diversit®

The types of diversity chosen are determined byGNg-s likely to affect the software. Of course,
software and hardware diversity are linked.
Homogeneous diversity does not guard against désigts.

Has the software been developed in accordanceawgthality plan or quality requirements ?
Following a quality plan for the development of aftware product contributes to fault avoidance
(whether common mode or not). It is vital, in pewtar when the software architecture is
homogeneous.

54

A minimum software quality must be ensured, evethin case of a diversified structure. Quality
avoids the introduction of software faults, in parar at the maintenance stage.

3.3.6.2. Software Design

In the case of diversity, have the different sofemMaroducts been designed by different people ?
Be attentive to possible links between teams resiptanfor designing different software versions.

Skills of the designers ?
A lack of designer skill can lead to the introdoatiof similar faults in the different versions of a
software product.

Are the algorithms identical from one channel totaer ?

Are the development tools employed identical frame channel to another ?

What logic separation is there between redundaantrotis ?
Separation is a constructive technique that doeprmpagate the failures of one function to angther
thereby limiting the analyses to sensitive points.

Are there shared memories that could propagatgiafault from one channel to another ?
Is software execution desynchronised ?

Desynchronisation of the execution of two programmeates an offset favourable to reducing faults
stemming from common external perturbation, fomepke electromagnetic perturbation.

3.3.6.3. Software coding

In the case of diversity, have the different sofemMaroducts been coded by different people ?
Be attentive to possible links between teams resiptn for coding the different versions of a
software product.

Have different programming languages been useddohn channel ?

Have different compilers or assemblers been emgl@ye

55

3.4. Design and development

There is no simple answer to know how software laadiware of safety-related parts of machine
control systems should be designed. Several aspaéttse important to reach the objective of a
control system safe enough for its intended apiidina Safety considerations all through the life
cycle will be important.

This Chapter describes some aspects of softwampoomputer hardware and complex integrated
circuits which have to be addressed during the ldpweent phase of the life cycle :

« How should safety-related software be developealtnd faults ?

+ What measures can be implemented to detect faultsdroprocessor circuits before they
manifest themselves as failures of the machine ?

« How should complex integrated circuits be desighed

The requirements are intended to guide the desadymang the development work.

3.4.1. Software

The software of the control system is the spedifcafor most of the functionality of the machine.
Both safety-related and non safety-related funsti@an be software controlled. Even if the
specification used as input to the software devakt is fault-free, mistakes in the design process
may introduce software faults. Software failured ather unexpected behaviour might lead to the
creation of dangerous faults in the machine cordgystem. A set of requirements for all technical
activities associated with software developmentukhdoe followed in order to avoid faults in
software.

To obtain a software package of satisfactorily hmymlity, a number of activities, a certain
organisation and a number of principles must babéished. Software product requirements for
design and development should cover :

« Interface with system architecture.

+ Software that can be parametrized by the user.
+ Pre-existent software.

+ Software design.

« Development languages.

+ Software coding.

56

3.4.1.1.Interface with system architecture

Interface with system architecture Level

Software safety requirements as well as the debation of expected /
events should arise from safety analyses at systemstional and
hardware level, etc.

9%
O
o

The list of constraints imposed by hardware archite on softwar
should be defined and documented.

)

Consequences of any hardware/software interactiothe safety o
the machine or system being monitored should batifikd and
evaluated by the designer, and taken into accaurthe software
design.

Constraints such as :
« protocols and formats,
« input/output frequencies,
» by rising and falling edge or by level,
« input data using reverse logic etc.

Listing these constraints allows them to be tak&io iaccount at the start of the
development activity, and reduces the risk of inpatibilities between software and
hardware when the former is installed in the talgetiware.

The consequences of any software errors shouldtiidied at system level in
particular.

Table 5 : Interface with system architecture

3.4.1.2.Software that can be parametrized by the as

The following requirements concern the developna&nsoftware products that are designed to
allow end-users to set their own parameters. Tldeuser may be either the person responsible for
integrating the product into the system or elseuses.

Such software can have different degrees of contplea table of messages or a system option. In
keeping with the spirit of the present documerg, difinition of software parameters is limited and
defined precisely in the specification documentssIexcludes any modifications that might cause
doubt about the exact version of the software,esitiis type of modification should always be

undertaken by the software designer.

57

Certain systems can also include optional functibias are selected through the use of parameter-
setting options in the software.

Software that can be parametrized by the user Level

The parameters should be formally specified (typ&tions, ...) i R R
the form of memory arrays. Moreover, the softwaned athe
parameters should be possible to modify withowaiihg each other

Software specifications should define mechanisras¢hn be used {o R o
prevent the possibility of any parameters set leyuber can affect the
system safety. In so far as modifiable parametergancerned, these
mechanisms should provide protection against :

- undefined or invalid initial values,
- values falling outside functional limits,
- data alteration.

The definition of software parameters by users khba kept withir]
the limits established by the system specificatiapproved by th
analyst.

14

In particular, test procedures should include edéht paramete
values and different types of software behaviote @esigner should
ensure that only those parameters which can be fieddare
accessible to the user.

=

Table 6 : Software that can be parametrized by the user

3.4.1.3.Pre-existent software

The term "pre-existent” software refers to the seumodules that have not been developed
specifically for the system at hand, and are iratgt into the rest of the software. These include
software products developed by the designer foripus projects, or commercially available
software (e.g. modules for scientific calculatiossguencers, etc.). Such software components are
called COTS (Commercial Off-The-Shelf) Software.

When dealing with this type of software, and esg@ciin the case of commercial software
products, the designer does not always have atzedisthe elements needed to satisfy the previous
requirements (e.g. what tests have been carriedsotlte design documentation available). Specific
co-ordination with the analyst is therefore necssatthe earliegbossible moment.

Level

Pre-existent Software

The designer should indicate the use of pre-existefiware to thg
analyst, and it is the designer's responsibilitgeononstrate that pr
existent software has the same level as the presguirements.

Such a demonstration should be done :

- either by using the same verification activitms the pret

existent software as on the rest of the software,
- or through practical experience where the preateri

software has functioned on a similar system in a

comparable executable environment (e.g. it is regggo
evaluate the consequences of a change of the amopiof
a different software architecture format).

The goal of indicating the use of pre-existentwafe is to open u
consultations with the analyst as early as possibtaut any eventu
difficulties that this type of software might cause

The integration of pre-existent source modules loarthe cause of certg

anomalies or unsafe behaviour if they were not kbgesl with the sam
rigour as the rest of the software.

=2

in

D ‘D
]

O |lr
O

Pre-existent software should be identified usinge tlsamg
configuration management principles that were &pgptbd the rest @
the software.

Perfect configuration control should be exerciseerall the softwar
components, regardless of their origin.

="

1%

Table 7 : Pre-existent Software

58

59

3.4.1.4.Software design

Software Design Level

Description of the software design should inclutitha very least :

- a description of the software architecture thafirs the
structure decided on to satisfy specifications,

a description of inputs and outputs (e.g. in than of an
internal and external data dictionary), for all theodules
making up the software architecture,

- sequencers and interruptions,
- global data,

- a description of each software module (inputgots,
algorithm, design particularities, etc.),
- libraries used

- pre-existent software used.

Software should be modular in order to facilitatennaintenance : O O

« each module or group of modules should correspahd
possible, to a function in the specifications

« interfaces between modules should be as simplessipe

The general characteristic of correct software itgcture can be summed lp
in the following way : a module should possess ghHevel of functiona
cohesion and a simple interface with its environimen

Software should be designed to limit those parsocated with O | O
safety:
- data/functional architecture: strict limitatiohglobal variables
implementation of operators on state variablesk\ity),

- control of the layout of arrays in memory (risk array
overflows).

Table 8 : Software Design

3.4.1.5.Development languages

The goal of these requirements is to ensure tretd#signer uses a programming language and
development tools that are well adapted to thenswé being developed, and that these tools do not
lead to the introduction of errors in the execwtabbde on the target machine. The following
requirements can be applied to any language uset(e than one language is used simultaneously
on the same system). Generally, the most widelgl issgguages include :

« an assembly language, specific to the microprocessmicrocontroller employed,

an advanced programming language such as C.

Development Languages Level
1 2
The selected programming language should correspondhe| R
characteristics of the application, and should bky fand clearly
defined or at least limited by clearly defined cweristics.
The characteristics of the application refer tohsfectors as size,
type (industrial or scientific software, managemestt.), and any
performance constraints. For example, COBOL dodssatisfy the
development requirements of a monitoring/contrgli@ation on ar
industrial machine.
Any deficiencies in the language can be avoidedgusippropriate
coding rules.
Table 9 : Development Languages
3.4.1.6.Software coding
Coding Level
1 2

The source code should: @)

a) be readable, understandable, and subject &) test

b) satisfy design specifications of the softwaradaie,

¢) obey the coding manual instructions.
The coding rules applicable to a given softwaredpod should b¢ R | O

outlined in detail in a coding manual and used &vetbp the
software. The coding manual should :

- indicate what programming principles should be igpland
prohibit any uncertain language aspects

« describe rules for source code presentation andndeatation

« include conventions used in naming components,csuines
variables and constants.

A set of rules are provided in Appendix A of thiscdment. For examplé

indented presentation of different blocks of instians, use of blank lines

contents of the source file header (author's nanmyt and output data
modified data, etc.).

These conventions help to improve software ledibdind maintenance.

Table 10 : Coding

60

61

3.4.2. Fault detection in microcomputer hardware

Programmable electronic systems (PES) have thityaioildetect faults within themselves before a
fault is manifested as a failure of the system. THubniques and measures used focus on different
parts of the electronic hardware and may requiiferént amount of system effort. It is regarded as
state-of-the-art to implement techniques for fadktection in PES used in safety-critical
applications.

3.4.2.1.Diagnostic coverage

It is easy to imagine some possible faults which cause unexpected behaviour of the machine
which is controlled. A bit in a memory cell may sieick at "0” or "1”. The output circuits may be
stuck at "ON”. A software fault may cause a taskember an "eternal loop”. Perhaps interruptions in
the supply power, or variations in the voltage leweay influence the execution of the software.
Data transferred on serial communication lines imaydistorted by interference. An internal CPU
fault might cause incorrect execution. There achrigues and measures to detect such faults
before the machine gets out of control.

When numerical values are needed in calculatiodis & used for “low” coverage, 90% is used for
“medium” coverage and 99% is used for “high” cogera

The quantification of the diagnostic coverage fifliedent methods of fault detection in memory and
I/O units is based on values extracted from the 68608 standard. Those values are the results of
theoretical studies based on a simplified probstiiliapproach. The lack of data concerning the
various types of memory chips, and the assumptiahthe potential faults are equally distributed
introduce a number of uncertainties.

Simple tests will not detect all hardware faultialdérate tests will detect many hardware faults at
the cost of much processing effort spent. The diatin coverage, DC, is defined as the fractional
decrease in the probability of dangerous hardwarerré resulting from the operation of the
automatic diagnostic tests. [IEC 61508-4, clauSe6B3.See formula 1. If the test detects all faults,
the coverage is 100%. If no faults are detectab&ecoverage is 0%.

theprobabilityof detecteddangerous failures
the probabiltyof total dangerous failures

diagnostic coverage DC

[1]

Another definition of diagnostic coverage, PC(see formula 2) relates to the fraction of total
number of different failures that is detected dgranparticular test. There can be large differences
between the two ways to define the diagnostic @mer The probability based approach
distinguishes between faults which occur with ddfe probability, while the number based
approach does not.

62

A testing technique which detects faults occursiitlh high probability is very well likely to have a
high DC, but may have a low RGf there is a large number of low probability fesvhich are not

detected.
the number of dangerous failures detected

the total number of dangerous failures

[2]

diagnostic coverage RG=

It may be hard to find numerical values for the ljadoilities of different faults. Sometimes the
assumption is made, that all faults have the samleapility. This is always an approximation of
reality.

It is possible to make a numerical calculationh&f toverage of some methods. While the coverage
of some other methods may have to be expressedaiitajive ways such as "high/medium/low”.
An estimation of the diagnostic coverage will bedwd to be able to compare two diagnostic test
methods.

A translation from the qualitative definition “lomedium/high”, to a quantitative measure
expressed as a percentage will be needed. Thigt legge chosen to follow the definitions suggested
by the IEC 61508 standard. (see Figure 14). Higlekame is used for techniques and measures with
a probability higher than 99% to detect a fault.dlen coverage means a probability less than
99%, but higher than 90%.

Low coverage will correspond to a diagnostic cogergreater than 60%, but lower than 90%.
Techniques and measures offering less than 60%abildlp to detect faults are to be avoided in
safety-related parts of control systems.

Medium

<+“—>
Low High
4+ —> <>
1 | | | |
I | | — >
0 60 90 99 100

Figure 14 : Diagnostic coverage defined aslow, medium and high

Similar uncertainties are introduced for other paiftthe PES. The probability of different faults i
the processing unit will depend on the type of pssor, the manufacturer, the production process,
the design etc. It is hardly possible to state abability that will be valid in all cases. Assuming
equal probabilities of all possible faults, the yioes expressions [1] and [2] for the diagnostic
coverage become equivalent.

63

Faults in the programme sequence will have diffepgababilities depending on the programming
language, the experience of the programmer, thengesffort etc. It will not be easy to state a
probability-based diagnostic coverage for the pgogne sequence monitor.

The most valid estimation of diagnostic coverageaftault detecting method should at this stage be
limited to one of the three levels referred earirethis section: low, medium or high. The level
chosen may be different if probability, or numbefsrrors, is used for the definition of diagnostic
coverage. However, the level will be the samelifallts are equally probable.

Diagnostic test interval

Methods for fault detection can be used at poweteupstablish if the electronic system is fit to

start operating. Faults should be detected at, stad operation must not be allowed to start when
faults are detected. Such a power-up test willdedéct faults, which occur during operation. Thus
it will not be suitable for systems of high safétyegrity with strict requirements for behaviour at

fault.

Power-up testing is sometimes used in systemsmiattierated moderating safety requirements, and
short operating time between power-ups.

Fault detection may also be performed at run-tionentd faults occurring during operation. The will
be of great importance to decide for which appiwet the system can be used. The test interval
will be the maximum time during which an undetediat may exist.

The is defined as the interval between on-linestéstdetect faults in a safety-related system that
have a specified diagnostic coverage [IEC61508adise 3.8.7].

The application will decide the requirement for,iegthdepends on the application of the safety
system and its architecture. Normally within a givene interval, the occurrence of a component
failure is much less probable than the executioarobnline test. For a single channel system, the
depends on the mean time between operation denfseelshapters 5.3 & 6.3 of Annex 6).

64

3.4.2.2 . Methods to detect faults

Processing units

The processing unit of the PES may suffer fromtfawhich may cause malfunction. Examples of
such faults could be bit errors in one of its in&rregisters, or malfunctioning of the instruction

decoder. Self-testing is employed by designingwsie routines, which test the functionality of the

processing unit. Certain operations are perforraad,there will be only one correct result of such a
test. The principle of letting a processor, whiclgimh be to check defect itself, relies on the

assumption that a fault will corrupt the resultlé self-check. The self-test has to be designed in

such way that the risk for a fault corrupting tasttitself is negligible.

Invariable memory ranges

Semiconductor memories may fail to work as intend&dault in the invariable memory will
corrupt the source code and constants stored thBeeinstructions to the processing unit may be
distorted, and important constants and parametells b& incorrect. This will result in an
unpredictable behaviour of the machine controlesystlt is important to try to detect such faults
before disturbing of the execution.

The methods for checking of invariable memory aly ron reading the memory cells and compare
the read values to what originally stored thereisTrhay be done by direct comparison with a
duplicate area, or by calculating a checksum (@mature). The checksum will be compared then to
the sum, which was originally calculated and staneshemory.

Memory tests can be quite time consuming. It mayh®spossible to cover the complete address
range at one time. Run time checking is often peréal by checking only a limited address range
each time the memory test task is started. Affarge number of calls to the memory test task, the
complete memory will have been tested.

Variable memory ranges

Semiconductor memories may fail to work as intendethult in the variable memory will corrupt
all variables stored in memory. This X will resuit an unpredictable behaviour of the machine
control system.

The methods for checking variable memory rely difetént ways to stimulate the memory cells,
and check that the function (works ?) correctlystTmatterns of different complexity can be written
and then read back. A complex test pattern willehawhigher diagnostic coverage than a simple test
pattern.

Also testing of variable memory can be time consugras described above for invariable memory.

65

I/O Units and Interface

Interfaces to external units are present on mafgpyseelated machine control systems. They can be
analogue, digital, serial or parallel. The exterc@inmunication through these interfaces can be of
great importance for the safety. The status of/fhaunits and interfaces may be critical, and stoul
therefore be monitored.

Data paths

Even a physically small PES may consist of sevatatnal units, which communicate. Examples of
such data paths are electrical parallel busesaldmrses and optical fibres. The data paths between
the internal units may fail, and should be checked.

Important signals, such as alarm signals, orignggfiom one unit should be detected and processed
by the appropriate receiving unit.

Power supply

All safety-related programmable electronic systeinguld have some kinds of circuitry to ensure
that operation will not be started before. The beha of the processor and other electronic ciguit
is only specified for a specific voltage range.

Monitoring of the supply voltage level will also loaportant during run-time. Interruptions of the
power supply will cause the electronic hardwareeter an undefined range where the exact
behaviour cannot be foreseen. The monitoring dincuist give an alarm in time before than the
voltage reaches a threshold value. The PES shawe & "graceful death” bringing the controlled
machinery to a safe state.

The programmable electronic system should have tines to take proper action to enter a safe
state. It may also be necessary to save machimesssmd calculatedalues in a non-volatile
memory.

The output signal from the hardware circuit monitgrthe power supply can be either static or
dynamic. The output from a static monitor will indie proper power supply with a constant high or
low output signal. A change of the output will gige alarm to the processor. A monitor built on a
dynamic principle will have a dynamic output sigrbwer failure will be indicated by a constant
signal. The most common way to implement a suppmwgy monitoring is to use a standard
commercial supply power monitor circuit. Such 10® available from several semiconductor
manufactures. A disadvantage with this type ofwiris that it is normally not testable, i.e. alfau
in the circuit will not be noticed before the PEShut down in an uncontrolled way.

66

Also over-voltage may create unwanted behaviouthef control system. Checking facilities can
also be implemented to react on over-voltage bdf@epecified operating voltage is exceeded, and
the behaviour cannot be guaranteed. One example oter-voltage detection is needed may be a
dual-channel system using a single power supply.

Programme sequence

The execution sequence of the software may berthstty either software faults, hardware faults
or environmental disturbances. This will with gr@abbability lead to incorrect behaviour of the
programmable electronic system. The consequencgscbfa fault are not possible to foresee since
"anything may happen”. However, there are wellHgisthed techniques to monitor the programme
sequence.

The monitoring of programme sequence may be rehls#h in hardware and in software. A
combination of a hardware unit ("watchdog”) withogical monitoring realised in software will be
the most powerful. But also less sophisticated riegles built on simple hardware or software
solutions will certainly be able to detect som@exin the programme sequence.

There are several hardware solutions for watchdogtionality. Many microcontrollers offer a
watchdog circuit on-chip. The watchdog is then paogmed, activated and controlled through
internal registers of the controller. There areoalspecial circuits available to supervise
microcontrollers. Such circuits often offer theiliag of a watchdog. Another solution is to design
separate hardware circuitry based on a monostdipléldp, which has to be retriggered at a
specified interval.

The watchdog circuit is preferred to be hardwadependent from the processor itself. The same
error, which causes the fault in programme sequestoauld not cause also the watchdog to stop
functioning. There is an increased risk for thighé# watchdog is integrated on the same chip as the
processor. Special caution must be paid if the tiage used by the processor and the watchdog is
the same. A clock fault might then affect both thierocontroller and the watchdog.

A good watchdog should be tested or fail-safe.Systwith high requirements for functional safety
may let the processor fake a watchdog alarm atyepewer-up, or at a periodic interval. The
processor will then detect if the watchdog is nperational. Otherwise there is a risk for a fanlt i
the watchdog to pass unnoticed, until it reallyl vt needed. Another possibility is to design a
watchdog circuitry where single hardware faultd séluse an alarm.

67

A detected fault in the program sequence will regjdgiifferent kinds of actions depending of the
type of system. It is important that the corredicacis taken. It will not be enough to design a
watchdog into the system, and not specify propeitych action shall be taken at fault. Most
machines have a safe state, which shall be entdnred a fault is detected. A watchdog circuit may
force the processor and the outputs to the satke stzere signals are inactive. Another possibiity
that a watchdog alarm will cut the power to thepoig and leave the machine in safe state.) This
safe state must not be possible to exit withowtdichted action of reset.

For applications with requirements for high avaliah the watchdog alarm may be used to isolate
one of the processors and let a redundant unitdsake without affecting the normal operation of
the system.

3.4.2.3.Requirements

The requirements listed in this report are combiteetbrm adequate safety principles for a certain
category (B, 1, 2, 3 or 4). Different safety prpples are listed for the different architectures in
category 3 and 4. A dual-channel system employiafgtg principles of medium diagnostic
coverage may provide the same probability for failof the safety function, as a single channel
system using safety principles with high diagnosticerage.

Some of the checking principles may be appliedeeitit power-up, or continuously during run-
time. This will be much depending on the applicatamd no specific requirements are given for
when (or how often) the checking must take place.

Processing unit Category
B 2 3 3 4 4
Single Dual Dual Triple

4.1.a The CPU shall be checked for styck- X X X X
at failures of registers and internal RAM.
4.1.b The decoding and execution |of X X
instructions shall be checked.
4.1.c All registers must be checked. X X
4.1.d Faults in the processing unit shall be X X X X
indicated by the PES.
Minimum diagnostic coverage - - Highh Mediym High | Medium

Table 11: Safety principles for monitoring of the processing unit

68

Invariable memory ranges Category
2 3 3 4 4
Single Dual Dual Triple
4.2.a The PES shall be able to detect X X X X X
faults in the invariable memory.
4.2.b The complete address range must be X X
checked.
4.2.c Memory failures shall be indicated X X X X X
by the PES.
Minimum diagnostic coverage Low Highi Mediym High | Medium
Table 12: Safety principles for monitoring of invariable memory
Variable memory ranges Category
2 3 3 4 4
Single Dual Dual Triple
4.3.a The PES shall be able to detect X X X X X
faults in the variable memory.
4.3.b The complete address range must be X X X
covered.
4.3.c Memory failures shall be indicated X X X X X
by the PES.
Minimum diagnostic coverage Low Highh Mediym High | Medium
Table 13: Safety principles for monitoring of variable memory
I/O Units and Interface Category
2 3 3 4 4
Single Dual Dual Triple
4.4.a The PES shall automatically check X X X X
the input and output units (digital,
analogue, serial or parallel).
4.4.b Faults detected in the interpal X X X X
communication shall be indicated.
Minimum diagnostic coverage - Highi Mediym High | Medium

Table 14 : Safety principles for monitoring of 1/0O units and interface

Data paths Category
B 3 3 4 4
Single Dual Dual Triple
4.5.a The PES shall automatically check X X X X
the internal communication.
4.5.b Faults detected in the internal X X X X
communication shall be indicated.
Minimum diagnostic coverage - - Highi Mediym High | Medium
Table 15: Safety principles for monitoring of data paths
Power supply Category
B 2 3 3 4 4
Single Dual Dual Triple
4.6.a The PES shall be able to detect x X X X X X
decreases in the supply voltage, and|the
execution of the processor must be hajted
in a controlled way.
4.6.b The supply voltage monitoring X X
circuit must be dynamic, i.e. corrgct or 46¢ or 46¢
supply voltage is indicated by a dynaric
signal.
4.6.c The supply voltage monitor circpit X X
must be fail-safe, i.e. a fault in the or46b or46b
circuitry shall lead to a power fail alarm
4.6.d Power supply failures shall pe X X X X
indicated by the PES.
Minimum diagnostic coverage Low Low Highh Mediym High | Medium

Table 16: Safety principles for monitoring of supply power

69

70

Programme sequence Category
B 2 3 3 4 4
Single Dual Dual Triple

4.7.a The PES shall have a watch@og x X X X X X
implemented in hardware to monitor the
program sequence

4.7.b The hardware (especially the time X X
base) used for the watchdog shall|be
independent of the processor it |is
supposed to supervise.

4.7.c There shall be software meang of X X X X
monitoring the program sequence.

4.7.d The watchdog must be automatically X X

tested by the software at power-up or a or 47e or 47e
periodic intervals.

4.7.e The watchdog must be fail-safe, |i.e. X X

a fault in the watchdog circuitry will legd or 47d or 47d

to a watchdog alarm.

4.7.f A watchdog alarm shall be indicated X X X X
by the PES

Minimum diagnostic coverage Low Low Highi Mediym High | Medium

Table 17: Safety principles for monitoring of program execution

3.4.2.3.1.Complex Integrated Circuits

Application-Specific Integrated Circuits (ASICs)eaused in electronic systems dedicated to the
management of safety functions. These complex iated circuits may incorporate several million
transistors, and so cause problems for the evaluati the functional safety of the systems that
include them.

For discrete components (relays, transistors, tagsiscapacitors, etc.) the analyst can evaluae th
safety level by simulating virtually all the devigdault situations, using a practically exhaustigé

of possible failures. For complex electronic citsusuch as ASICs, this exhaustive approach is
impossible. To evaluate the operational safety adtaristics it is necessary to know the failure
modes of the components used, and this is notldedsir these circuits. The traditional methods of
testing performance in the presence of faults madequate. It is therefore necessary to tackle the
evaluation not only by updating subsequent testtherfinished products but also by extending the
field of investigation from the origin of the fasliconsidered: errors of specification, design or
production, internal faults, or external effects.

71

The validation test scheme results in the sum aependent verification steps during the
implementations process. The complete, uninterdupagjuence of verification steps provides the
objective evidence (,validation”) that the finakrét (e. g. the programmed FPGA) fulfils the iditia
requirements for the intended use and the reqgaésty category.

3.4.2.3.2.Technology

The term "complex component” may be applied to dewariety of devices. The range spans
different process technologies, different designl amplementation methodologies as well as
different levels of complexity. A number of typica@lroducts and design methodologies for
integrated circuits are described below. The nunobgarties involved in the design and validation
process varies as well as the responsibility ferwiork packages within the design flow. CICs may
be divided into three main families: programmabteuits, prediffused arrays, and precharacterised

arrays.

Complex Intergrated Circuit

-
Microprocessor / * \ ~a Full custom
Programmable Prediffused Precharacterisec
circuits arrays arrays

PAL
PLA
CPLD
HCPLD
EPLD
EEPLD

/

/

gate-arrays

silicon compiler

seas of arrays

embedded-arrays

standard-cells

Figure 15: The families of CICs

Programmable circuits are components made up ofigeat of gates, connecting tracks and
complex cells such as registers, bistable deviaed,so on. The user makes the interconnections
between the cells according to his application psgs using a programming tool. The different
arrangements of cells, the complexity available thednterconnection technologies used determine
the different sub-families of programmable logizides (PLDs) :

+ Programmable Array Logic (PAL) circuits consistealety of one programmable AND
matrix and another fixed OR matrix.

+ Programmable Logic Array (PLA) circuits consistetl pgogrammable AND and OR
matrices.

72

These circuits can very easily incorporate morepdercells, but are now obsolete.

+ Complex Programmable Logic Device (CPLD) and Higipérity PLD (HCPLD) circuits
are a development of PLDs containing a large nurabeery complex basic cells.

In all these PLD circuits, the cells are intercasted in arrays and the user removes the unwanted
connection points by breaking the track. This paogming is not reversible.

« The Erasable Programmable Logic Device (EPLD) iBL® that can be programmed
electrically and erased using UV light using theREM memory technique.

+ The Electrically Erasable Programmable Logic DeEEPLD) is a PLD that can be
programmed and erased electrically using the EEPR@&hory technique.

These two sub-families encompass erasable andgrapnmable PLDs, techniques that are very
useful in prototyping.

+ Field Programmable Gates Array (FPGA) circuits empplvo interconnection techniques :
the non-melt technique for which the user sets amection points by breaking down a
dielectric (an irreversible configuration) and SRAfBY which the configuration of the
connections, stored in a ROM memory, is automadyidabded into a solid-state RAM
each time the circuit is switched on. The intercations are made by MOS transistors
turned on by commands from the RAM (reconfigurablédjey include complex cells such
as registers, multiplexers, etc., and represemmgtcompetition for the pre-diffused family.

A prediffused circuit is an incomplete circuit. Thieep layers of the component are made
beforehand by the constructor. The user designsirttegconnections of his circuit in tracks
provided for this purpose using a CAD method. Tineud will then be finished by the constructor
who creates these connections on a final layedurhiaium. This family is subdivided into three
sub-groups :

« Gate Arrays are organised into rows of basic @il interconnection tracks that are fixed
in location and size.

« Seas of Gates or "silicon seas” are circuits withigh density of transistors but no tracks.
The interconnections are made on top of theseistans by a special metal layer, giving
the user considerable flexibility for defining furmns and connections.

+ Embedded Arrays offer composite solutions that emnphe best features of the various
families : the complexity and optimisation of pracdhcterised circuits, the short
development time of prediffused circuits, the higimsity of seas of gates, and so on.

With precharacterised arrays, the user has a satil@ary of standard cells that are defined and
characterised by the constructor. He chooses tleermxessary for producing the functions required
and can design all the interconnection masks. €@t is more optimised than a prediffused
circuit.

73

The most evolved form of precharacterised circaitthe silicon compilation. This circuit is
optimised as regards the parametrisable cells, RR@M, multiplexers, connection of logic
functions, and so on, using a description of themonent in a high level language.

PLD FPGA |gate array| cell based|core basedfull custom| standard
CPLD ASIC ASIC ASIC IC
functional specification C C C C C C \%
implementation C C D D D, M D \%
place & route, layout \% C \% D D, M D \%
wafer production V \% V Vv \% \% \%
packaging \% V \% V Y V V
test Vv, C Vv, C V,D V,D V,D Y Vv
responsibilities Y, IC / ASIC vendor (manufacturer)
C end customer, system and application developmen
D ASIC design centre
M macro core (pre-designed functional blocks)dan

Table 18: Overview of Integrated Circuits

Standard IC are manufactured in large quantities applied for different applications.
Functionality, validation, production and productidests are solely in the hand of the
semiconductor vendor. Manual manipulations andnaiptitions at layout level are frequently used
to reduce required area. Not designed for safdétye@ systems, fault avoidance during the design
process is only adequate for standard productgjuErg changes in production process, process
technology and layout are likely for cost and yiedgitimisation. Number of components
manufactured using a certain process or mask ogvigs not publicly known. Design and
production of full custom ASIC is similar to stamdalC, with functionality defined by end
customer.

Core Based ASIC is based on pre-layouted or gesteraticro cores, connected by additional logic.
Examples for pre-layouted macros are standard pricoessor cores, peripheral components,
communication interfaces, analogue blocks, spdaacttion 1/0O cells. Examples for generated
macros include embedded RAM, ROM, EEPROM or FLASIdnerated blocks are assumed to be
»correct by construction”, based on design rulese-IByouted or generated macros are process
specific but may be ported to different technolsgia most cases, the macro cores are not identical
to the original discrete off-the-shelf componemti§f¢rent process, provided by a third party).

Cell Based ASIC are based on logic primitives (IidD, OR, Flip-Flop, Latch) taken from a cell
library. The gate-level netlist containing the logirimitives and the interconnections is usually
created from a high level hardware description lagg (VHDL, Verilog) using synthesis tools.
The functional and timing characteristics of thgi¢oprimitives is characterised in the cell library

74

these parameters are used to drive the synthedisnid are also used for simulation. In addition,
layout tools are used to place the cells and tterthe interconnects.

Multi Chip Module (MCM) are multiple chips (dies) and passiwmponents mounted on a
common substrate and assembled into a single packagmost cases, package and outline is
similar a standard IC. The chips (dies) use for M@iMduction are usually pre-validated, but not
finally characterised. Thus, testing under envirental conditions needs to be done at MCM level.
MCM is primarily a different packaging technoloddyesign methodology for the individual parts of
the MCM is mostly identical to the design methodgidor system build on conventional printed
circuit boards. Therefore, MCM are not further disged in this report.

Chip On Board. (COB) has a die which is bonded directly ba printed circuit board and
hermetically sealed afterwards, instead of usinpsclidies) in conventional packages. COB is
primarily a different packaging technology, thusfadher discussed in this report.

3.4.2.3.3.Faults in ASICs

For safety-related integrated circuits, the différgroduct types require different validation
concepts. For example, the layout and placemetiteotells of a gate array or a FPGA is fixed,;
components based on these predefined structuremamnefactured in larger numbers, thus the
structure itself might be considered as ,provense” after some time. For the other product types
listed in the previous paragraphs, the structuidefsne during the layout process. Thus, especially
for deep sub-micron processes, interference betwegghbouring cells or interconnections are
possible, with actual influence on the chips fummality. It is obvious that this situation has ® b
considered during validation testing and fault ¢tign.

Generally speaking an application developed usmg\&IC will be more reliable than one with
standard circuits. First of all, reliability is iaxsely proportional to the number of connections
between units and, secondly, low power also meatisrtreliability.

However, for these complex components :

« Knowledge of faults, and any cause/fault correlgtere no more than partial.
+ Reducing the physical size of the basic componaetstes new faults.
« The growing complexity increases the probabiligtttiesign faults will appear.

« The more limited spread of ASICs compared with déad circuits means that interpreting
the feedback of experience is more difficult.

75

3.4.2.3.4.Phase model

It is useful to identify the major steps that lemda production-ready component. This "phase
model” is intended to be more general than thedesign flows given in chapter 3.4.3.3. Based on
the phase model from the IEC 61508, the followihgges are identified :

[1] Specification: Textual or formal description of tthevice’s functionality.

[1] Design Description: Formal description (e. g. BaoleEquations, Schematic,
(V)HDL) that may be automatically translated intdusemap / bitstream (PLD,
FPGA) or gate level netlist (Gate Array, ASIC).

[2] Implementation: Transformation of the design dedmn into a netlist / fusemap /
bitstream that may be used to produce or prograrctimponent. This phase is
subdivided into two phases: "Implementation I” maips design description into
the primitives of the target device (logic bloclgates), "Implementation II”
produces the final information required for the qmment production or
programming (fusemap or bitstream file, layout batse).

[3] Production: Production (programming) of the companbased on the output of
the implementation phase.

[4] Post Production : The component is available fandard system integration and
validation tests.

3.4.2.3.5.Design Flow

The description of the development work can alsonbee as a flow chart of activities. Simplified
design flows for Application Specific Integrated r€liits (ASICs) and Programmable Logic
Devices/Field Programmable Gate Arrays (PLD/FPGAQvs the different methodologies, design
steps and tools typically used for the developnoérntomplex components (for further details on
safety issues see Annex WP 3.3).

76

High Level /
Graphical Entr:
v
and block diagram
@ Code Generator

v N /
‘ (V)HDL ‘ ‘ Soft Cores ‘
' v /
v
v v
v v
‘ Netlist ‘ ‘ Hard Cores ‘ ‘ Generated Core ‘

Design ' “//
'

Mask Generation

Production

Mask Set

Wafer Production

Packaging

Production Test

tested
Component

v

Figure 16 : ASIC Smplified Design Flow

It is possible to identify several potential safegzards in all the activities during the desighe T
design of complex components for safety-relatedhim&ccontrol systems will require attention to
hazards such as :

« Vendor-dependent quality of the soft core or mdibmaries. Correctness is not guaranteed.
+ Faults during the synthesis process (caused bsyttitbesis tool).

« Only faults covered by the test pattern set ofghauction are revealed. Thus, high fault
coverage is mandatory.

77

« For PLD type devices, timing is assumed to be &ariby construction”, so the actual
timing is not verified.

> Only the successful programming may be checkedelaging out the programmed
pattern in the production. This does not guaram@eect behaviour of the device
(same reasoning as for volatile devices).

Conflgurable
Macro Blocks

High Level /
rap hlcal Entn

¢ g

Schematic (V)HDL ‘ ﬂowchart state
v
Boolean Entr State Transition
y Equatlons etc
Configuration Data design database
Place & Route

b

Production / \

‘ programmed ‘ ‘ configuration ‘
device PROM

Design

Figure 17 : PLD/FPGA Simplified Design Flow

3.4.2.3.6.Field experience

The definitions of IEC 61508 (part 2) for class AdaB components implies that ,field experience
should be based on at least 100.000 hours opetatiegover a period of two years with 10 systems
in different applications.” Especially for completandard components, it is not known to the end
user whether the devices that are actually usedhencircuit board are manufactured for the

required period of time with the current mask rmrisand on the current process line. Even if the
standard component is available for many years,ifimations during that period of time are most

likely, contradicting the requirements laid downBC 61508.

78

For complex application specific integrated cirsUl(ASICs), the terms ,experience” or ,proven in
use”“ should be clarified and related to the difféiaputs for the design process :

Process technology.

Design rules for cell placement, interconnect ayat.

+ Pre-layouted or generated macro cores.

+ Cell libraries, including layout information andrgilation models.
+ Soft macros.

« Design tools: layout, synthesis, simulation.

In addition, rules for fault-avoidance during thesmjn process and for the validation tests after
migration to another process technology have tawbteked out. Equal strategies must be used for
both standard integrated circuits and applicatipecsic circuits, because, for example, it is not
acceptable that changes in standard IC are silaitgpted while the same modification of an
application specific device requires additionaldation tests.

79

3.5. Validation

3.5.1. Introduction

In general, validation process is made to confirpnexamination and provision of objective

evidence that the particular requirements for aifipeintended use are fulfilled [IEC 61508-4,

clause 3.8.2]. When validation is related to safetsgted parts of a control system the purpose is t
determine the level of conformity to their speafion within the overall safety requirements
specification of the machinery [pr EN 954-2 1999].

Carrying out a validation process can be a labsriask especially for complicated systems, which
have got high safety demands. However, althouglptbeess can be laborious it is also necessary.
Validation is often needed for the following purpss

» to prove customers that the product is applicametfe intended purpose,

+ to prove authorities that the product is safe ahidlle enough for the intended purpose,
+ to prove the manufacturer that the product is rédadthe market,

+ to prove the reasons for specific solutions,

+ to have documentation to help future alterationthefproduct,

+ to prove the quality of the product.

The validation process has been growing to meetcttramon needs as the technology has
developed. Simple systems can be analysed (FME&A)tested (fault injection) quite thoroughly.
Systems with moderate complexity can be analysd&e thoroughly, but the tests cannot cover the
whole system. Very complex systems cannot be ag@lictally in details and also thorough tests
are not possible. A number of different methodsregeded in the process. Analyses are needed at
least in the system level and the detailed compdegel, but also requirements related to different
lifecycle phases have to be fulfilled. This meahat tattributes such as quality control, correct
design methods and management become more impasrten® most of the failures or errors are
related to these kind of issues.

Confidence is a very important factor related te #alidation process. The user of the validation
documents has to trust the validation quality, ofiee the validation has no meaning. The
validation activities are actually carried out tongince someone that the product is properly
designed and manufactured. One way to increaseotifedence is to perform the validation process
according to existing requirements and guides, tndhave objective experts involved in the
validation process.

80

3.5.2. Validation process

Safety validation process consists of planning antlial validation. The same process can be
applied also for subsystems. A checklist or otheidg is needed in the process to include all
necessary actions to the safety validation plan.

The phases of the validation process are presant&igure 18. First, validation plan is made
according to known validation principles. Then #ystem is analysed according to the validation
plan and the known criteria and design considanatid’esting is carried out according to the
validation plan and the results of the analysis.tiié phases have to be recorded in order to have a
reliable proof of the validation process and theuwoents to help future modifications.

START

Fault list Design Validation |, |Validation
considerations plan principles

l

DocumentSJ Analysis
Criteria for

fault exclusions
Is analysis —NO
ufficien No

Testing

Yes
Yes
Validation record s testing complete
END

Figure 18 : Overview of the validation process [prEN 954-2 1999]

Validation planning

The purpose of safety validation planning is tonptaut that the safety requirements (e.g. standards
EN 954 or IEC 61508) are tested or analysed. Safdiglation planning is performed to facilitate
and to enhance the quality of safety validatione Tglanning states the organisation and, in
chronological order, the tests and verificationwdioés needed in the validation process. A chetkli

is needed in the planning process in order to delall essential analyses and the tests into the
safety validation plan. Such checklist can be gathérom IEC 61508-1, prEN 954-2 or Nordtest
Method. Large control systems may include sepaalsystems, which are convenient to validate
separately.

81

The main input for safety validation planning are safety requirements. Each requirement shall be
tested in the validation process and the passiitgrier shall be declared in the plan. It is also
important to declare the person(s) that makes #uesins if something unexpected happens, or
who has the competence to do the validation. A®salt, safety validation planning gives a
guideline how to perform safety validation.

Validation

The purpose of safety validation is to inspect thlhatsafety related parts of the system meet the
specification for safety requirements. Safety \aioh is carried out according to the safety
validation plan. As a result of the safety validatiit is possible to see that the safety relaystem
meets the safety requirements since all the saéefyirements are validated. When discrepancies
occur between expected and actual results it hbs tecided whether to issue a request to change
the system or the specifications and possible egiodns. Also, it has to be decided whether to
continue and make the needed changes later orke amanges immediately and start the validation
process in an earlier phase.

3.5.2.1.Validation by analysis

Different analysing techniques are needed in differphases of the design. At first, hazard
identification and risk analysis techniques arefulseSuch techniques are e.g. “hazard and
operability study (HAZOP)”, “preliminary hazard dysis (PHA)”, and techniques, which use
hazard lists. There are many techniques for soéwarification and for probabilistic approach to
determine safety integrity. In software verificatithe software errors are searched systematically b
using e.g. data flow analysis, control flow anaysioftware FMEA, or sneak circuit analysis (see
IEC 61508-7). In probabilistic approach, it is esfgel that the verification process is already edirri
out and statistical values are used to calculafgodabilistic value for executing the program
correctly. There are also methods for verifying poment, such as ASIC, designs. This chapter,
however, is concentrating on analysis techniqués;iware used in analysing control systems.

There are two basic type of techniques for anadysystems :
+ Top-down methods (deductive), which begin with dedl system level top event(s) and the
initiating factors are concluded.

+ Bottom-up methods, which begin with single failuegsd the system level consequences
are concluded.

82

Both analysing techniques have their advantagesdaadivantages, but after all the value of the
results depend on the analyst. The techniqueshmamever, make the analyst more observant to
detect certain type of failures or events. Bottgmruethods tend to help the analyst to detect all
single failures and events, since all basic evaréxonsidered. Top-down methods tend to help the
analyst to detect how combined effects or failwas cause a certain top event. Top-down methods
are good if only the critical events have to belys®al. Bottom-up methods are good if the whole
system has to be analysed systematically. The Hasiand is that the analysing technique has to be
chosen so that all critical events are to be detewaith the minimum duty. Top-down methods give
an overview of the system, show the critical paystematic failures and human factors. Bottom-up
methods consider the system systematically antdda failures are found.

Combined bottom-up and top-down approach is oftaxy to be an efficient technique. The top-
down analysis provides the global picture and cacug the analysis to areas that are most
significant from the overall performance point aéw. Bottom-up methods can then be focused on
the most critical parts. Bottom-up analysis aimBrating "the devil that hides in the details”.

The most important point after choosing the anatysnethod is to concentrate on the weak points
of the method. This can be done by using strictiplise.

EMEA

When the safety and performance of a control systemssessed, the failure mode and effect
analysis (FMEA) is the most common tool used. Them@n international standard (IEC 812. 1985)
which defines the method. FMEA is a bottom-up (ictdee) method which begins with single
failures, and then the causes and the consequehties failure are considered. In the FMEA, all
components, elements or subsystems of the systder gontrol are listed. FMEA can be done on
different levels and in different phases of theiglesvhich affects the depth of the analysis. In an
early phase of the design, a detailed analysisatdm done. Also some parts of the system can be
considered so clear and harmless that deep an&ysat seen necessary. However, in the critical
parts, the analysis needs to be deep and it shmulchade on component level. If safety of the
system depends very much on a certain complex coemdhe analysis may include even some
inner parts of the component. This can mean efjwae analysis or consideration of typical
failures related to a certain logical function.

In prEN 954-2 there are useful lists for FMEA oiluiges of common components in different types
of control systems. The standard gives probablepom@nt failures and the analyst decides if the
failures are valid in the system considered onéfré are other possible failures. If functionalchs
hybrid circuits or integrated circuits are analygbeé list in prEN 954-2 is not enough. Also
systematic failures and failures typical to the htedogy (microprocessors, memories,
communication circuits, etc.) have to be consideside those failures are more common than
basic random hardware failures.

83

FMEA is intended mainly for single random failuga®d so it has some weak points :

« Does not support detection of common cause failamed design failures (systematic
failures).

« Human errors are usually left out; the method cotrates on components and not the
process events. Series of actions causing a cérazerd are difficult to detect.

« Sequential failures causing a hazard can also flieutli to detect, since the basic idea of
the method is to consider one failure at a timé¢hdfanalysis is made with strict discipline
it is possible to detect also sequential failutés failure is not detected by the control
system other failures (or events) are studied asguthe undetected failure has happened.

« Systems with a lot of redundancy can be difficalconsider since sequential failures can
be important.

« The method treats failures equally, and so evelnrés with very low probability are
considered carefully. This may increase the work @use a lot of paper.

« In a large analysis documentation it can be diffituidentify the critical failures. It can be
difficult to see which failures have to be consatkfirst and which means are the best to
take care of the critical failures.

However, FMEA is probably the best method to detantiom hardware failures, since it considers
all components (individually or as blocks) systepnaly. Some critical parts can be analysed on
detailed level and some on system level. If thehagkiseems to become too laborious, the analysis
can be done on higher level, which may increaseiskehat some failure effects are not detected.

The FMEA table includes always the failure modessath component and the effects of each
failure mode. Since the analysis is carried outrtprove the system or to show that the system is
safe or reliable enough, some remarks and fututenscare also always needed in the table.
Severity ranking is needed to ease the comparisbmeen failure modes and therefore it helps to
rank the improvement actions. When the analysitud®s criticality ranking it is called failure
mode, effects, and criticality analysis (FMECA).€Thriticality and probability factor can be a
general category, like impossible, improbable, smrzal, probable, frequent, or e.g. exact failure
probability values can be used. In many cases exdaes are not available, they are difficult to, ge
or they are difficult to estimate. The circumstanaéect very much the probability of a failure.

84

FTA

Fault tree analysis (FTA) is a deductive technithet focuses on one particular accident or top
event at a time and provides a method for detengicauses of that accident. The purpose of the
method is to identify combinations of componenluigs and human errors that can result in the top
event. The fault tree is expressed as a graphicehtbat displays combinations of component
failures and other events that can result in thedeent. FTA can begin once the top events of
interest have been determined. This may mean pregede of preliminary hazards analysis (PHA)
or some other analysis method.

The advantages of FTA are typically :

« It can reveal single point failures, common cauwskifes, and multiple failure sequences
leading to a common consequence.

- |t can reveal when safe state becomes unsafe.
« The method is well-known and standardised.

« The method is suitable for analysing the entirdesgsincluding hardware, software, any
other technologies, events and human actions.

« The method provides a clear linkage between quaktaanalysis and the probabilistic
assessment.

« It shows clearly the reasons for a hazardous event.

The disadvantages of FTA are typically :

+ It may be difficult to identify all hazards, failes and events of a large system.

« The method is not practical on systems with lang@lper of safety critical failures.
« ltis difficult to introduce timing information intfault trees.

« The method can become large and complex.

« The method gives a static view to system behaviour.

+ The method typically assumes independence of evatitsough dependencies can be
present; this affects the probability calculatiohise dependencies also increase the work.

« It is difficult to invent new hazards that the pegdants of the analysis do not already
know.

- Different analysts typically end up with differempresentations, which can be difficult to
compare.

85

Quite often probability calculations are includedtihe FTA. FTA can be performed with special
computer programs, which give easily proper docuatem. There are also programs, which can
switch the method. You only feed the analysis oaoé,the program shows information in the form
of FTA or FMEA.

Analysing strategy

The traditional way to analyse an electronic cdnggstem is to apply a bottom-up approach by
using failure mode and effect analysis. The metbaeffective and it reveals random failures well.
The method is good for systems, which can be aedlftsoroughly. Systems are, however, getting
more complex and so the top-down approach is gettiore and more applicable. A top-down
approach like fault tree analysis helps to undatsthe system better and systematic failures can
also be better revealed. The top-down approachalewsell also other failures than random
failures, which are better revealed by the bottgrapproach.

Another development due to increasing system caxitpleas been analysis on module by module
basis rather than on component by component bisis-programmable electronic systems with
moderate complexity can and should be analysedoorponent by component basis and, in some
cases (large systems), also on module by moduis ttagsover complicated module/system level
errors. To analyse complex programmable systerttseatomponent by component basis by using
bottom-up analysis (FMEA) would require a lot o$oarces and yet the method is not the best way
to find certain failures. The system functions tenbetter understood at module or system level
than at component level and so the quality of tredysis can be improved in that part.

The system analysis can be started from the bastwihat first each small subsystems are analysed
and finally the system as a whole. In the so calledodel, the system is designed from the top to
the bottom (finest details) and then validated frbma bottom to the top. The analysis should,
however, be made during the design process asaopossible to minimise possible corrections.
Thereby the system should be analysed by startiommp the top at system/module level. Then
detailed component level analysis can be made idules which were found critical at module
level analysis. This method reduces the resoureeded in the analysis.

More and more often the bottom-up analysis tendbeltome too massive and laborious. Some
tactics are needed to minimise the work and amof@idocumentation. One strategy can be to
document only critical failures. Another tacticsidze to start the analysis on the most questionable
(likely to be critical) structure and then firstalonent the items and effects. The failure modes and
other information are added only to critical fadar The FMEA table may look then rather empty,
but it saves work.

86

Complex modules and systems

Many complex components are at the present timecéoaplex to be validated thoroughly (with
reasonable resources) and programmable componengeting even more complex and specially
tailored (e.g. ASIC, FPGA). This means that, fdiesapurposes, the systems including complex
components have to cope with faults by being feal#rant or by activating automatically safety
functions. This can be achieved by concentratingthen architecture. Architecture can be best
understood on system/module level and, thereftge,the analysis carried out on system or module
level reveals best the architectural weaknessescdbiplex systems there are nearly always also
some design errors (hardware or software), whiah loa hard to find at component level. At
module level the analysis can be made thoroughhe factor supporting module level analysis is
the quality of the analysis. An increasing numbé&rcomponents in a unit to be validated
corresponds to a reduction in the efficiency of #malysis. Although module level analysis is
becoming more and more important one cannot negiectinalysis at component level because
certain failures can be better seen at the compolemel. A resource saving strategy is to
concentrate on critical failures at all analysiegdls. The category (according to EN 954) or the Sl
(according to IEC 61508) affects how detailed thalgsis should be performed.

Usually both system/module level and componentllanalyses are needed in validating complex
systems. Analyses on system/module level are peédrin order to determine the critical parts of
the system, and component level analyses are damiefor those parts of the system.

For module level analysis there are some referemdash give hints for failure modes of modules.

For some standardised systems some advise forsealgn be found. For system/module level
analysis failure modes resemble failures at compolevel, but the analyser has to consider the
relevant failure modes.

Complex components

Complex components hold more than 1000 gates anadoe than 24 pins [EN 954-2 1999]. The
definition gives just a rough estimate which comgrncould be complex. The amount of possible
different random failures in such a component rgda Only the combinations two out of 24 are
276. This is just the amount of simple short citxin a small (according to the definition) complex
component. Complex components have got severalréainodes. If one analyses blindly all
combinations the result would be a lot of irrelaviilures. Failure exclusions are needed in order
to focus the resources on the critical failures.

the basic failures to be considered in the anabymmsbe simple compared to the actual failures that
can happen inside the component. Such componentfispiilures can be e.g. a failure in the
microprocessor register or a failure in a certaenmary location.

87

In the draft IEC 61508-2 failures typical to cemt@aomponent technology (e.g. CPU, memory, bus)
are considered instead of the pins (input, outpe) ef the component. A single component can
include several technologies.

3.5.2.2.Testing methods

Black box (BB) and white box (WB) strategies

BB and WB are two basic approaches used for mode#liystems, which can be applied in any
phase of the design process. They are charactetegsehding on the aspect the analyst, designer or
tester focus his attention, that is, in the operatf the external functioning of the system, othe
details of internal operation.

In general, it is said thatfanctional approach (or BB) is used referring a system, when the syste
is considered as a whole, emphasizing its extera@eived behaviour. That is, when the system is
viewed as dlack-box that interacts with other entities or systems tgtoits inputs and outputs. It

is the definition of a system from the user pointiew.

On the other hand, undstructural approach (or WB) a system is defined as a set of components
bound together in order to interact; every compoimgem turn another system. The recursion stops
when a system is considered as being atomic: attyefuinternal structure can not be discerned, or
Is not of interest and can be ignored. In this cse system is transparent to the person handling
and this is why structural viewpoint is callethite box, though it would be more appropriate to use

the term glass box.

This way, for example, a Galpat test applied toAdVRmemory may be seen like a structural test
among others within an analysis of system architegtor like a functional test from the RAM
memory point of view. Although at first glance thegem two separate approaches, in practice the
boundary between function and structure is fuzzy.

BB testing versus WB testing

In the testing field, functional and structural eggrhes are used to create models which describe
specific aspects of the system. The aim of the iee$0 check whether those aspects fulfil the
requirements or not, this means, to cover as maghoasible the model. To do that the tester use
different coverage criteria which represent acjusdliection criteria for test input data.

This way we find, for SW testing, structural modite the control flow graph (in addition with the
source code listing) and coverage criterions agersi@ant testing or decision and branch testing, for
unit/component level testing mainly. And in the e&as HW, structural models like a topological
gate diagram and coverage criterions like singkgpaensitization, for component level testing.

88

In functional testing test data are derived solely from the specificetidi.e. without taking
advantage of knowledge of the internal structurthefsystem).

If one wishes using this approach to find all taelfs in a system, the criterion is exhaustive inpu
testing (i.e. the use of every possible input cbowlias a test case).

Hence, to test a system, one would have to produnege number of test cases, and this without
taking into account the additional test cases dubé special requirements of safety systems on the
behaviour in case of fault (category).

This reflection shows that in general, exhaustieut testing is impossible in big systems. Two
implications of this are that :

« The test of a complex system can not guaranteattisdiault-free ; and

« A fundamental consideration in testing is one arggnics.

In Structural testing the tester derives test data from an examinatfahe system internal logic
(often at the neglect of the specification).

Structural tests are inherently finites. Unlike tluactional testing, it is assumed that structural
testing can not make a complete test of the sydWmneover, a structural test in no way guarantees
that a system matches its specification (due t@onmiseptions, missing parts, etc).

Then, since exhausted testing is out of the questi® objective should be to maximise the yield
on the testing investment (i.e. maximise the nunabéaults found by a finite number of test cases).
Doing so will involve, among other things, beindeato peer inside the system and making certain
reasonable assumptions about the system. Thigonnti part of the test case design strategy.

For a specific selection criteria, the test inpatadmay be generated according with two different
procedures deterministic choice or probabilistic choice In the first case which defines the
deterministic test, the test input data are deteethby a selective choice whenever they satisfy the
criteria considered. In the second case which dsfihe statistical test (or random test), the test
input data are generated randomly according wighoaabilistic distribution of the input domain in
relation to the criteria considered.

Both data generation procedures may be combindd thwt two type of system models producing
the following test approaches: functional deterstinior functional statistical tests and structural
deterministic or structural statistical tests.

89

In general, statistical tests use a large numbempiit data and require that the probabilistic
distribution to be representative of the input domar use environment. On the other hand, the
results have direct applicability and statisticahfidence intervals can be developed for reliapilit

parameters. Deterministic tests improve the efficye concentrating in faults, and the main
disadvantages are the effort required to estalthshmost probable faults and the conditions to
expose them.

For safety related electronic control systems, @oabplied in the machinery field, seems that a
deterministic test provide enough testing, withioeihg necessary to apply statistical testing.

A test strategy has to consider other essential aspects like lithecycle phase, the level of
abstraction and the test objectives (verificationl @valuation), in addition to the type of system
model (functional or structural), test data setattcriteria and the procedure for generating the
inputs.

The abstraction level refers to the different domeatio represent a system (analytical, simulation
and physical) and also to the depth within a domi&or instance, in validation phase the tests are
usually applied at different levels of the protaysystem level, board level and component). & thi
phase, components usually are treated as blaclsboxe

Functional approach will be predominant during dation stage, where it is necessary to handle
large objects and abstract from the details in rore verify high level functions (system
requirements). Nevertheless, many times the lim@chber of functional tests carried out need to
be complemented by a structural strategy concetrabove all on checking critical components
(for instance, a comparison and synchronisatiotines in a program of a redundant system, error
detection mechanismes, ...).

In general, the highest structural coverage vatresassigned to the early design phases (e.g., unit
or component testing) and requirements are redasege go up in the design process (e.g., in SW
testing, 100% statement and decision coverage rdatary for unit testing but this goal result
unreachable when testing larger size items).

Some researches in the field of SW testing havergtheoretical results on the relative structural
techniques effectiveness considering only inclugielations. However, in practicéhe relative
effectiveness of a testing technigueill depend on the number of test cases necessaatisfy its
corresponding criterion (testing cost) and the pholity that there exist a type of fault detected b
this test criteria and not by others.

The inclusion relation is not valid to order alfusttural coverage criteria. And it does not sernve t
establish a relationship between structural andtfanal criteria.

90

Analysing these approaches from the involved persmint of view, in particular the designer and
tester, it is find that designer when act as aetesire by nature biased toward structural
considerations while independent tester due tagmerance of structure (no preconceptions) are
bias-free and can better deal with functional tests

In conclusion, neither functional nor structuradtteprove to be absolutely useful strategies: both
have limitations and both target different faultéhat is proposed is to combine elements of both
BB and WB testing to derive a reasonable, but ieight, testing strategy. Reasonable in the sense
of an acceptable relation between the number ¢fd@ses and sought guaranties (risk reduction
requirements).

Fault injection testing

According to EN 954 standard, one of the test nasHor validating the safety of control systems is
fault injection.

In general, fault injection is a privileged techmgqfor validating a relevant feature of safety
systems: the behaviour in case of fault. Moreoaarpng the different fault injection techniques,
there are a group of techniques that allow thectiga of faults on a prototype (see fig. 5 in the
Annex 9). These particular methods (grouped into branches: physical fault injection and SW
implemented fault injection methods) provide actadata on the performances achieved by a real
system close to the final (the whole system, HWW) Sstill within the development process, i.e.
before launching a system. Accurate, in the sehdgrmamical behaviour of a system near the final,
and without the precision problems of simulatiortimoels.

On the other hand, the value of the test resullisdepend on how the methods are apply, that is
what are the selected FARM attributes for the test.

Fault injection is an indispensable complement dtiter validation methods currently available
(analytical techniques, functional and structuredosh testing, symbolic tests). This
complementarity, for instance can come to the poinestablishing a close relationship with
analytical models (e.g., Markov models), providiagsistance in the characterisation of the initial
analytical model (a better understanding of failprecesses, usually described by macroscopic
models, assigning values to coverage parametdeslofe control mechanisms, ...) and validating
or even refining the analytical model.

Validation can be understood as a process dealitly @moving residual design faults and
evaluating the performances achieved even beyandpécified hypothesis.

91

When fault injection is applied to remove the rasidfaults (systematic faults) in the system, teste
uses principally a structural approach. Testemiscerned with checking whether every particular
measure fulfil or not the detailed design spediftoes. To do that, he concentrates on designing a
small number of test input data that explore thennfiatures. This kind of testing will demand a
rather deep knowledge of the system. It is convergeuse also stress workloads.

In contrast, when fault injection deals with estiimg the influence of the occurrence, presence and
consequences of faults in the system during itsatie®al phase, the strategy turns more functional
or black box. That is, tester is interested in gingl a large number of faults so that they repreaen
significant part of all potential fault of the sgst, and achieving in that way a sufficient guarante
to state that the system fulfils its behaviour ase of fault requirements. In this case the systéim

be charged with real workload (a profile of thehatt of the system-environment in operational
phase).

For either systems validation or the validatiortted application of components, the study carried
out on the different injection techniques showg tharently the most popular ones for applying at
the validation stage are the physical fault inmctat pin level and the software implemented fault
injection.

A fault injection test may be characterised by FARtibutes. The definition of these attributes for
an injection campaign will depend mainly on thetsys the safety requirements and the injection
method used.

Set of faults (F).It characterises the faults by the type, locaéiod duration.

Fault type : EN 954-2 and IEC 61508 standards both of thenudws fault lists for electronic
components which indicate the type of faults tddden into account for every kind of component.
Additionally, the standard IEC 61508 relates theetgf faults for each component to be detected by
measures to control HW failures and the diagnasiierage levels required from these measures.
The above mentioned two methods allow inject plasicor emulate the most of faults
corresponding to low and medium diagnostic covefagg, stuck-at and DC model) in the fault list
of IEC 61508.

Location : It depends on the injection method. Physicaltfanjection at pin level allows inject
faults in the pins of components, board conneatoesven at external input/output level. While SW
implemented fault injection corrupts memory cehsl processor registers to emulate faults.

Duration : The timing feature of a fault may be classifiad permanent, transient (external faults)
and intermittent (internal faults). Transient faulare considered as the more aggressive in
perturbing the system operation, and also the rdiffieult to inject and control; specially in terms
of reproducibility. The fault duration influence the safety performances and so transient faults
should be taken into account at least in the higbguirement levels (categories 3 and 4).

92

Set of activation input data (A). It characterises the input domain through two paters:
activation inputs (or activation trigger) and war&dl.

Activation trigger : There exist two possibilities depending on thiedtion time: a) pre-runtime,
fault injection before the system start up, (itkee system will not be interfered any more whes it
running); b) runtime, faults are injected duringteyn operation.

When injecting during runtime, the trigger signat fault activation may be controlled by time or
spatial (state) parameters. Selection of thesarmeas will depend on the system features.

Workload : It refers to the application program charactersstWhen validating a general purpose
system, tester uses special workloads (applicgrograms) and input data to exercise as much as
possible the different parts or functions of thetegn in order to sensitise the injected faults.
Obviously, in the case of an embedded system is@etied a workload, and tester only must select
an appropriate set of input data from the input dionfuse environment should be considered).

In the case of testing auto-test routines (e.g.R®M memories), the set of input data is impliait
the routine.

Set of read output data (R) :It is derived from the tests and will include sfiecsystem outputs
and intermediate states, selected to show the ssiarefail of a control measure in detecting the
injected fault. In order to calibrate the systemgtiostic parameters like coverage and latency times
in error detection and/or recovering, it is reqdite obtain the number of errors detected, errors
isolated and errors recovered, as well as the mystinsic tolerance and the effectiveness of the
injection campaign.

Set of measures (M) It is obtained from the readings and it will beeated to the validation
objective, that is to fault removal or to fault éoasting. The typical parameters measured in a test
campaign are the coverage factor and the latenmy ti

Coverage factor is referred to the coverage of the system to bieai@d in presence of faults, which
depends strictly on the orientation given to theation campaign.

The effect of a fault in a system depends on tiexiad fault as well as the system activity at the
time the injection is effective. So the parameteend A have to be considered. Coverage factor of
fault detection mechanisms is formally definedtes space represented by the product of both sets
of parameters.

93

Latency times : These times can refer to the detection as welh dise identification and isolation of
the error and system recovery. The negative impiagthigh latency in some of these actions makes
necessary their estimation when working with caitiitmes.

Another factor to take into account when evaluathegsafety performances is the length of testing.
In general it is not possible to inject all potahtvents from the domain formed by the sets F and
A, and the coverage factor will be estimated usirgubset of the domain. Thus, we will use the
Confidence Interval to estimate if the sample is representative.

For complex systems, to make an equilibrated sargpl¢he system can be unfeasible. In these
cases it is used the Stratification, an statistigdion that reduces the complexity of the sampld a
offers the possibility of being oriented to conergbals in the validation.

3.5.3. Verification and validation of software

3.5.3.1.Presentation

3.5.3.1.1.Specific characteristics of safety softne

Software is an intellectual creating including paogs, procedures, rules and all associated
documents, related to implementation of the prognach system. Software is materialised by
specifications, a code (program) and documentation.

Software development is often difficult to contribloreover, software is rarely a finished product;
it evolves from one version to another, within vehprt periods of time. It is a paradoxical product
which may become obsolete, but is not subject tarw®n the contrary, it is best when used
frequently. Finally, software development is essdigtdevoted to product design and testing and
little emphasis is placed on series production.

One of the most important characteristics of saféwa that it is a product with countless inputd an
which processes combinations far greater than then ltapacity. As a consequence, software
behaviour cannot be fully apprehended by man. thé&sefore separated into different modules.
Nevertheless, it remains difficult to fully contrible complexity of the product.

3.5.3.1.2.Evaluating safety software

The problem raised by software evaluation is toawbfustified confidence in the software
behaviour. The software is often analysed accortinthe method used for its development. The
evaluation is then based on a wide variety of gatsuch as its structure, its development process,
or the manner in which it was written, even thoughfact, only its behaviour should be evaluated.
This is why it is rather difficult to distinguishebween development methods and evaluation
methods. These two types of methods increasingdylay one another.

94

Finally, it is interesting to note that there acespecific methods for critical software. The metho
used for critical software and those used for trawal software differ by the requirements of the
standards. The major difference, in fact, residdbe budget and the time devoted.

Evaluating software may have highly varied sigmifions. In general, two levels of evaluation are
frequently distinguished : validation and verificat

3.5.3.1.3.Software verification and validation reqirements

The requirements for software verification and dation include that the analyst should be able to
carry out the evaluation of software conformitytie present requirements by conducting any audits
or expertises deemed useful during the differefiveme development phases. All technical aspects
of software lifecycle processes are subject touatain by the analyst. The analyst must be allowed
to consult all verification reports (tests, anaysetc.) and all technical documents used during
software development. Evaluation of software camity to the present requirements is performed
for a specific, referenced software version. Anydification of previously evaluated software
which has received a final opinion from the anagfsbuld be pointed out to the latter in order that
any additional evaluation activities can be carpatito update this opinion.

3.5.3.2.Verification of software

3.5.3.2.1.Presentation

The purpose of verification activities is to demwate that software products stemming from a
given phase of the development cycle conform tosfiexifications established during the previous
phases and to any applicable standards or rulesy @lso serve as a means of detecting and
accounting for any errors that might have beemciced during software development.

Software verification activities contain serieste$ts and analyses. In addition to tests, veriGoat
activities can rely on techniques such as reviemgpections, checkings, cross-readings and code
verification. In some cases reviews and analysege@alace some tests (e.g. in the event that a test
cannot be carried out because it would cause ttexideation of a hardware component). Internal
reviews permit the designer to ensure at key pomthe development progress, that the product
will reach its objectives.

It is important to note the rapidly increasing cokicorrecting an error in relation to the phase at
which it is discovered. The optimal cost of cormegtan error corresponds to the earliest possible
moment in the lifecycle. For example, an error ov®red in the specification stage by means of
verification of the coherence between the softwgrecification and the system specification costs
significantly less than if this same error is digeed at the end of the development cycle (through
software or system validation). A discovery made la the process requires that all development
phases influenced by this error, and already coiegjenust be undertaken anew.

95

Software tests can be carried out at different @has the lifecycle :

module tests at the level of each individualThesetests focus on software modules and their

conformity with the detailed design. This activisyindispensable for large and complex software

products, but is only recommended for the relagiwhall software products dealt with here. This

conformity can also be demonstrated using staticriigues (e.g. re-reading the code). This phase of
the verification procedure allows detection of thiowing type of errors :

+ inability of an algorithm to satisfy software sdemtions,

+ incorrect loop operations,

« incorrect logical decisions,

« inability to compute valid combinations of inputtaaorrectly,
+ incorrect responses to missed or altered input data

« violation of array boundaries,

« incorrect calculation sequences,

inadequate precision, accuracy or performance algorithm.

software integration tests These tests (equivalent to teeftware design verificatigrfocuse on
the correct assembly of software modules and onntimual relationships between software
components. Software integration tests form theggal component of this verification. It can be
used to reveal errors of the following kind :

« incorrect initialisation of variables and constants
« errors in the transfer of parameters,

+ any data alteration, especially global data,

+ inadequate end to end numerical resolution,

+ incorrect sequencing of events and operations.

validation tests The purpose of these tests (equivalent to thisvaoé specification verification) is
to detect errors associated with the software éentéinget system environment. Validation tests are
the principal component of software specificatiogrification. Errors detected by this type of
verification include :

+ any incorrect mechanism to treat interruptions,

96

+ insufficient respect of running time requirements,

+ incorrect response from the software operatingramsient mode (start-up, input flow,
switching in a degraded mode, etc.),

+ conflicts of access to different resources or oiggional problems in the memory,

+ inability of integrated tests to detect faults,

. software/hardware interface errors,

- stack overflows.

3.5.3.2.2.Software verification requirements

The general verification requirements include tiving items :

[1]

2]
[3]

The software verification strategy used at theedéht software development steps
and the techniques and tools used for this vetifinashould be described in a
Test Plan before being used. This description sh@d a minimum, include :

identification of the software and its safety-rethtcomponents that will be
submitted to validation procedure before use,

organisation of the verification activities (intagjon, validation, etc.) and any
interfaces with other development activities,

independence of the verification (if applicablde werification strategy should be
developed and implemented, and the test resultsuldéhde evaluated

independently (by an individual, department, oramigation) in relation to the
size of the development team,

verification methods and tools useygpgés of tests, etc.),
environment of the verificatiortgst equipment, emulators, etc.),
manner in which test results were verified,

a traceability matrix demonstrating the correspocdabetween the tests to be
undertaken and the objectives of the tests defined.

Verification of a new software version should irddunon-regression tests.

Directives for drawing up test procedures shoutduide a description of the input
data to be used (value), a description of the expleautput (value) and criteria on
which test results will be judged acceptable (thee).

97

[4] The tests formalised in reports should be ableetadried out again (e.g., in the
presence of the analyst).

A verification report should be produced for eadhrification activity, and should identify and
document all distortions (non-conformities) witlspect to the corresponding specifications,rules or
standards (design, coding) and any quality assaranocedures that may exist. Therification
requirements also include requirements for reviews and codefigation. Internal reviews at key
points in the development process allow the desigmeensure that the product will achieve the
objectives set. An external specification reviewtlfvthe analyst) should be held at the end of the
software specification phase, and, respectivelyexternal validation at the end of the validation
phase. The result of each review should be docledesrtd archived. It should include a list of all
actions decided on in the review process, anddhew conclusion (decision on whether or not to
move on to the next activity). The activities definn the review should be monitored and treated.

Activities involving analysis and software spedtion verification should verify the
exhaustiveness and adequacy of the software spE@ins with respect to the system specifications
as well as the traceability with respect to thdesysspecifications. Analysis activities and softsvar
design verification should verify the conformitygpecifications.

Code verification corresponds to the first stephia verification of the actual code once it hasnbee
written. This is a "static" verification in so fas it is based on cross-readings, inspectionsitasc.
only after this point that dynamic verification pemlures (module tests, integration, validation) wil
make up the principal verification methods. The ea@rifications include source code and data
verifications. Code verification (static analysishould ensure that the code conforms to the
software design documents and coding rules.

3.5.3.2.3.Software test requirements

The software test requirements include general verification requirements for w@ite
specification (validation tests), software desigofifvare integration tests) and detailed design
(module tests). The test objectives must be addptdide safety integrity level of the software, to
the type of software, and to the specific factara@rk in adopting a given software product. These
criteria determine the types of test to be undertafunctional tests, limit tests, out of limit tgs
performance tests, load tests, external equipneehiré tests, configuration tests) as well as the
range of objects to be covered by the tests (fanatimode tests, safety function tests, tests di ea
element in the specification, etc.).

Thevalidation testsshould be carried out in conditions representativilne operational conditions
of the system The test coverage of these testddsheumade explicit in a traceability matrix and
should demonstrate that each element of the spatdi, including safety mechanisms, is covered
by a validation test, and that it is possible tofyehe real-time behaviour of the software in any
operational mode.

98

Validation results should be recorded in a valmlatieport - available for each delivered software
version - that should cover at least: the versiohsoftware and system that were validated, a
description of the validation tests performed (ispwutputs, testing procedures), the tools and
equipments used to validate or evaluate the resbksresults showing whether each validation test
was a success or failure, and a validation assedgsnoentified non-conformities, impact on safety,
decision as to whether or not to accept the vadida

Integration tests should be able to verify the correct sequencinghef software execution, the
exchange of data between modules, the respece gfeitiormance criteria, and the non-alteration of
global data. The test coverage should be givelio#thpin a traceability matrix demonstrating the
correspondence between the tests to be undertaicbrtha objectives of the tests defined. The
integration test results should be recorded infawaoe integration test report, which should, as a
minimum, contain the version of the integrated wafe, a description of the tests performed
(inputs, outputs, procedures) and the integragsistresults and their evaluation.

Module testsshould verify, using input data, that the moduldél the functions specified at the
detailed design stage. The test coverage shouldivem explicitly in a traceability matrix that
demonstrates the correspondence between the adsésindertaken and the objectives of the tests
defined. Module test results should be recordea raport that contains at least the version of the
module tested, the input data used, the expectddobserved results, and an evaluation of the
results (positive or otherwise).

3.5.3.3.Validation of critical software
3.5.3.3.1.Methods of validation

Three types of specification language may be djsished: specification in ordinary language,
semi-formal specification and formal specificatidnformal specifications written in ordinary
language are generally incomplete, incoherent, gathis, contradictory and erroneous. As a
consequence, it seems reasonable that they shotldenused for safety software. Contrary to
ordinary language, specifications implementeddrgnal methods are precise and the semantics of
notations is clearly defined. If one is familiartiwithe representation used, formal methods are a
good means of communication and documentatioradt) formal methods are more than a tool for
representation; they are also a technique foridafipecifications which restrains the designer to
make abstractions and finally results in a bettemgrehension and modelisation of the
specifications. It is sometimes even possible taar@amulations. Use of a formal method requires
considerable investments in time and training. Heweformal methods are a significant step
forward for the development and evaluation of caitisoftware.

99

There are six level method for the evaluation pseaef critical software: The first step is to make
certain that software specifications are in conma@awith user needs. This verification is relatvel
difficult to make since the user often expressasnigieds in an informal, incomplete, imprecise or
yet incoherent manner. This activity therefore ryarests on the experience and the know-how of
experts in the field.

The second level of evaluation corresponds to ngp¥iom specifications to the final code ; the
final code must be in compliance with the softwgpecifications. This evaluation is in fact devoted
to the software development process. Its succgssnds on the methods and tools issued from the
software engineering.

The third level of evaluation, corresponding to ingvfrom the final code to the software
behaviour, consists in executing the final codecheck the software behaviour. This level of
evaluation is based on dynamic methods and is aitocatly controlled for the most part.

The fourth level of evaluation consists in makirggtain that the final code is in compliance with
the user needs. For the same reasons as thosessegfer the first level of evaluation, which are
inherent to the nature of the user needs, this tange is very difficult to demonstrate.

The fifth level of evaluation, corresponding to rmay from specifications to software behaviour,
consists in checking that the software behaviounisompliance with what is described in the
specifications. This activity was previously reégtrto asveERIFICATION. It is also mentioned in
documentation as the answer to the question, “kavéuilt the software correctly”. To date, this
evaluation may be done by tests for which the a@hisets have been elaborated based on
specifications.

Over a longer period of time and by the intermediair more elaborate methods, this evaluation
may be done by program synthesis techniques oifg¢ion simulation techniques.

Finally, the sixth level represents the total ea#ibn activity (see V-cycle in chapter 3.1.3.1).

3.5.3.3.2.Specification and validation procedure

The role played by specification for operating sais to explicit “what to do ?”, resulting from
refining the specifications after functional an@ysnd preliminary risk analysis. It forms the
interface between the analyst and the softwaregdesi specifying the safety restrictions, such as
execution time, inputs and outputs, he behaviosiree in case of failure, etc.

Seven French companies were contacted in ordezportr on the methods and tools used in the
software development process, notably for critisaftware. Very few companies use specific
methods. Among the companies which systematicalplement software engineering methods and
tools are companies involved in the automobile munclear industries.

100

Therefore it was very difficult to establish a pedare based on industrial practices concerning
critical software specification. The interviews aioed with specialists from different horizons,
enabled us to synthesise the following procedurspecification.

The specification phase is often based on the expsr of the person in charge of drafting the
specification. It is necessary to :

Provide a precise definition of the composition aok® of the analysis and specification
team.

> have final users intervene early ?
> plan project reviews and their contents ?

> have the client express his needs as extensivglgssble ?

Facilitate “client”-developer” communication.

For specification, in so far as possible, use atadte method and possibly an adequate
tool.

> (CASE tools ensure the unity of the dictionary amake it easier to avoid systematic
transcription faults),

» agood drawing is worth 1000 words.

Imagine being in the client’s position and ado® kigic and his manner of expressing
himself.

Use neutral vocabulary for both parties, cliemédafication person or team.

Incite the client to enter into the developer logic order that he may formalise his need
better.

> the client will thus express the needs he consitstisent” and therefore not necessary
to be stated.

Begin by making a functional analysis and a spesiion of the overall system.

Make as complete a description as possible of tmare@ment-operator-application
interactions.

Define the role of the operator.

Take into account the application ergonomics : estse alarm control, diagnostic,
interventions for maintenance, etc.

Divide to rule better.

101

> wait for the right moment in the system descripti@iore dividing specification tasks
among the members of a team,

» decrease the complexity by carefully chosen divisjo
> minimise the information exchange flows,

» do not decompose the system into more than thres, Isince complexity increases
quickly and overall control may be lost,

> decompose critical functions into primitive funct® Impasses may thus be
highlighted.

« In parallel, during specification, specify the mannin which to check objective
expectations (acceptance files) and the means saydas complete the verification.

« Take the referential into full consideration : stards, guides, technical documents, etc.,
before referring to them in the specifications.

> select elements which may be realised and measareslation with the size of the
application, the structure and culture of the comypahich develops the software.

« Validate the specifications by an internal audgetyaction done by a person / team other
than that concerned by specification and developmen

+ Include the final user of the application.

3.5.4. Validation of hardware

3.5.4.1.Validation of fault detection principles

Programmable electronic systems (PES) have thiyaioildetect faults within themselves before a
fault is manifested as a failure of the system. Tuhiniques and measures used focus on different
parts of the electronic hardware and may requiiferént amount of system effort. It is regarded as
state-of-the-art to implement techniques for faditection in PES used in safety-critical
applications.

All safety critical systems should undertake baseasures to detect the faults, and possibly control
the failures which might occur. The standard EN-2=%pecifies 5 categories for system behaviour
at fault. Basic safety principles should be implated for categories B, 1, 2, 3 and 4. For categorie

1, 2, 3 and 4 also well-tried safety principles ¢naw be implemented. The presence and
performance of the safety principles must be védida

Methods for fault detection

There are several aspects in a programmable ebkctsystem which can be automatically self-
checked. The following table gives examples ofaidht techniques.

102

Component Technique

Prosessing unit self test of the execution of the instruction set.

self test of registers by patterns or walking-t#J61508-7, clause A.3.1, A.3.2]
reciprocal comparison by software between two Esiog units [IEC61508-7,
clause A.3.5]

Invariable memory ranges| checksum [IEC61508-7, clause A.4.2]

8-bit signature [IEC61508-7, clause A.4.3]
16-bit signature [IEC61508-7, clause A.4.4]
replication [IEC61508-7, clause A.4.5]

Variable memory ranges | . RAM test "checkerboard” or "march” [IEC61508-7, ke A.5.1]
* RAM test "walkpath” [IEC61508-7, clause A.5.2]

+ RAM test "galpat” [[EC61508-7, clause A.5.3]

I/O Units and Interface multi-channel parallel output [IEC61508-7, clausé A]
monitored outputs [IEC61508-7, clause A.6.4]
input comparison/voting [IEC61508-7, clause A.6.5]

Data paths + inspection using test patterns [IEC61508-7, clauge4]

 transmission redundancy [IEC61508-7, clause A.7.5]
« information redundancy [IEC61508-7, clause A.7.6]

Power supply over-voltage protection with safety shut-off [[EGRB-7, clause A.8.1]
monitoring of secondary voltages [IEC61508-7, odaAs8.2].
power-down with safety shut-off [IEC61508-7, claus8.3].
Program sequence an on-chip watchdog with separate time base wittimg-window, e.g. Motorola
microcontroller 68HC11 [IEC61508-7, clause A.9.1]

a watchdog with separate time base without timedoin e.g. a Maxim

microprocessor supervisor IC [IEC61508-7, clause 4.
logical monitoring of programme sequence implemgritesoftware[|[EC61508-7,,
clause A.9.3]
combination of temporal and logical monitoring offogramme sequenge
[IEC61508-7, clause A.9.4]

Table 19 : Methods for fault detection

3.5.4.2.HW validation tests

Nowadays, complex components, like microprocessongmories (RAM, EPROM, Flash),
programmable logic (PLD, FPGA), ASICs and otherhhigtegrated circuits may be used as
building blocks for safety related electronics. Dladarge scale integration, it is possible today t
integrate a whole system — that required a boama assembly of boards some years ago — onto a
single chip.

103

Well known state of the art validation test maydpplied on system (component) level. These
.Safety validation tests for electronic systemsé assigned to the safety categories (CAT 1-4)
introduced in EN 954-1.

Technigue/measure Cat?2 Cat3 Cat4
Functional testing HR HR HR
high high high
Functional testing under environmental conditions HR HR HR
high high high
Interference immunity testing HR HR HR
high high high
Fault injection testing HR HR HR
high high high
Expanded functional testing - HR HR
low low high
Surge immunity testing - - -
low low medium
Black box testing R R R
low low medium
Statistical testing - - R
low low medium
“Worst case” testing - - R
low low medium

Table 20 : Safety validation tests for electronic systems

Notation :

qualitative rating for this method HR method is highly recommended for this safetggaty
(first line) R method is recommended for this safety category

- method is not required, but may be used

required test coverage of this high' |a high degree test coverage is required
method

medium | a medium degree of test coverage is required

(second line) low a acceptable degree of test coverage is redjuire

The detailed analysis of these existing methodgalsva number of potential limitations when
confronted with the validation of a complex compaine

« Complexity : the component might be far to compiexan adequate validation; it is not
possible to reach the coverage figures for thergoategory.

« Controllability : interconnections and logic insiddhe component is not directly
controllable.

« Observability : the reaction to input stimuli mighdt be observable; attaching probes is
either not possible (internal signals) or affebts tiest results.

4 “high” replaces the misleading “mandatory” usedahles in existing standards, e. g. in the staht&E 61508.

104

Moreover, an additional drawback of the listed datlion tests is the fact that they are applicable
only very late in the development process, becauseal” hardware is required to run most of the
tests. The system that is used during the valida#gst has to be as close as possible to the anhe th
will be used in the field, otherwise the resultitd validation test is not expressive at all.

For complex components, validation testing hasot6bgyond the surface” of the component and is
advised much earlier in the development process.ekample, functional testing has to start at
module level — using modules with very limited cdaxity — and has to accompany the hierarchical
(bottom up) integration of the modules to more claxpuilding blocks, step by step, until the

complete functionality of a “complex component” isached and all application and safety
requirements are met.

Table 21 gives an example of the phases that magei¢ified as major steps in the design process
of a complex component (PLD, FPGA, Gate Array ot@S

textual or semformal, e. g. usin
block and state diagrams, pseu
code)

Phase Output Output (Gate level of detalil usability for verification
(PLD/FPGA) | Array, ASIC) (formal or simulation)
Specification Specification Documents (py“high level” descriptiorpartial (only for those parn

with low level of detail
do-

described semi-formal)

Design Descriptior

Formal description of th
functionality of the device, usal
for automatic translation.

(virtual) components,

blocks, processes
RTL (“register
level”)

transfe

functional aspects (RTL level)

no explicit information abo
timing behaviour

Implementation | | primitives gate level netlist [FPGA primitives, ASI{a|| functional aspects
netlist, gates; interconnections
. (Gate Level)
(propriety) Gate Level - .
database estimated timing
Implementation Il | Fusemap / layout databagphysical placement aiga| functional aspects
bitstream (e. g. GDS-II) interconnection
(Gate Level)
actual timing
Production programmed |packaged an Component device characteristics (over
devie (ortested device functionality, timing)
configuration
PROM
Post Production Board / System “black box” black besting only
Table 21 : Phase Model

105

The linkage between the phase model (Table 21) saidty validation testing (Table 20) is
described in detail in the technical annex for W®. Jhis includes a general overview and details
about individual test sets for different technoksgi

To help to decide what level of validation testisgequired during the design and implementation
process, the following classification that is basadtestability” is proposed :

A component is ofow test complexity if it is adequate to run the stddvalidation tests
on the final component and to reach the requiredl ¢teverage. For those “simple”
components, no modification of the standard valwhaapproach is required; nevertheless
it might be advised to run some validation testsnduthe design process.

A component is omedium test complexity if running the standard validatiests on the
final component achieves a test coverage for at leae test that is one level less than
required (e. g. “medium” coverage of functionaltiteg instead of the required “high”
coverage). For these components, running parteoétidation tests during the design and
implementation process is required, to improve deserage. This is shown in Table 22.

A component is ohigh test complexity if running the standard validattests on the final
component achieves a test coverage for at leasteshé¢hat is two or more level less than
required (e. g. “low” coverage of functional testinnstead of the required “high”
coverage). For this level of complexity, a detaikedwledge about the component and its
intended use is required to find an adequate tesitegy. Thus, no general
recommendations are given.

106

. Cat 1,2 Cat 3 Cat4
Technique / measure
During Design Flow Post D_uring Post D_uring Post
Production | Design Flow| Production | Design Flow| Production
Functional testing HR HR HR
high high high
high | medium high | medium high | mediun]
Functional testing und HR HR HR
environmental conditions high high high
high | medium high | medium high | mediun]
Interference immunit HR HR HR
testing medium high high
- | medium — | high - high
Fault injection testing HR HR HR
high high high
high | medium high | medium high | mediun]
Expanded function - HR HR
testing low low high
low | low low | low high | medium
Surge immunity testing - - -
low low medium
— | low — | low medium | low
Black box testing R R R
low low medium
— | low — | low medium | low
Statistical testing - - R
low low medium
low | low low | low medium | low
“Worst case” testing - - R
low low medium
low | low low | low medium | low

Table 22 : Validation Tests for Components with Medium Test Complexity

Note : For the interpretation of this table seaniébns below.

When the validation testing is moved to an eapheint in the design flow, the subsequent steps

need to be more thorough verified, to ensure thatésults of the validation are still valid foeth

final component. The technical annex (final regortWP 3.3) lists the verification steps that need
to be carried out, starting at the validation testthe design process and ending at the final

component.

The coverage for each step needs to be at ledsglasgs the coverage for the validation test itself

(Table 22).

107

4. APPLICABILITY OF EN 954 AND IEC 61508 TO THE MACHIN ERY SECTOR

4.1. Introduction

Work-package 4 (WP4) had as its objective a coraparof the methodologies and requirements of
two standards, namely, IEC 61508 ‘Functional safety electrical/electronic/programmable
electronic safety-related systems’ and EN 954 ‘§afé machinery - Safety related parts of control
systems’. This study was performed in order toldista whether these two standards are likely to
set the same or differing requirements when apptiedachinery control systems.

Both standards propose a structured approach tewheddesign of safety-related control systems
but differ in that EN 954 is designed to addredstygdes of control system technologies whilst
IEC 61508 has been primarily (but not exclusivelyllesigned to apply to
electrical/electronic/programmable electronic (BPE) based control systems. The standards require
that the safety-related functions of the contrdtesn are classified ; IEC 61508 requires that the
control system be allocated a safety integrity lg®3L) whilst EN 954 uses a concept of safety
performance and places the system into one ofdategories. There is a significant difference in
the way that SILs and categories are derived affidetk It is the problems that this difference
causes that were the basis for the tasks perform@dP4, especially when the two classifications
are compared with a view to developing a stratednk them.

IEC 61508 uses a safety lifecycle approach to ensat the design of an CES safety-related
control system is systematically carried out. Tiecycle, as a technical framework, was examined
to assess its suitability for the design of madhyimentrol systems.

WP4 comprised three principal tasks that were feedsipon an examination of the IEC 61508 and
EN 954 standards from the perspective of their tmacimplementation at a machines safety-
related control system. This work included idemtifythe common requirements and differences,
mapping schemes to link SILs and categories, amtbrp@ng a machine validation exercise to

consider the application (albeit retrospectivelfjjleese standards to an existing machine in relatio
to specific hazardous events.

Additionally, Annex 3, Annex 4, Annex 5, Annex 6dannex 7 provided information on this
subject.

4.2. Common requirements & differences between EN 954-dnd IEC 61508

The following are considered to be factors in tomparison of EN 954-1 and IEC 61508 using the
safety lifecycle model as a technical framework.

General

Scope

108

EN 954-1 does not take the hierarchical systemrmtgteview that is a strong feature of IEC
61508.

IEC 61508 refers to safety-related systems, whrehsaen as being wrapped around the
“equipment under control” (EUC) to provide a “le\adIsafety”. EN 954-1 refers to “safety
related parts of control systems”.

IEC 61508 requires the production of documentasibeach phase of the Safety Lifecycle.
The only specific documents required by EN 954€ the validation plan and validation
report.

IEC 61508 has a strong formal structure with cleddfined objectives and requirements
specified for each phase of the safety lifecyclsl #4-1 is much less structured and
careful examination is necessary to extract ther&ggyirements.

EN 954-1 applies to safety related parts of consydtems, regardless of the type of
technology used. IEC 61508 is primarily concerndth WES systems.

IEC 61508 addresses the entire lifecycle from thencept phase through to
decommissioning. EN 954 is restricted to the depiugse.

IEC 61508 takes account of the entire system ca@imgriEUC, safety-related system(s)
and external risk reduction facilities. EN 954-1oidy concerned with the “safety related
parts of control systems”.

Competence of persons

Addressed by IEC 61508, not by EN 954-1.

Safety management

Addressed by IEC 61508, not by EN 954-1.

Concept

Addressed by IEC 61508, not by EN 954-1.

109

Hazard & risk analysis

Both standards require :

carry out a hazard and risk analysis ;

consider elimination of hazards ;

include fault conditions, reasonably foreseeableus® and human factors ;
identify events leading to hazards ;

assess frequencies (or probabilities) of hazardstsy

identify potential consequences ;

assess risk associated with each hazardous eaedt ;

identify the necessary risk reduction, for eachaeindz

Differences

IEC 61508 refers to “hazardous events of the EUEIN.954-1 refers to time/frequency of
exposure to hazard.

IEC 61508 allows quantitative or qualitative teciues. EN 954-1 emphasis is on
gualitative/empirical techniques.

IEC 61508 requires a “level of safety” (based omtihierable risk) to be identified for each
hazard. EN 954-1 simply refers to the “appropriék reduction”.

IEC 61508 requires the information and results frii@ hazard and risk analysis to be
documented. EN 954-1 has no documentation requiteme

Specification of safety functions

IEC 61508 requires specification of all safety fiimes included in the “total combination
of safety-related systems and external risk redaoctacilities”. EN 954-1 only requires
specification of the safety functions “to be praldn the control system”.

IEC 61508 requires both a functional descriptiod apecification of SIL. EN 954-1 only
requires a functional description.

EN 954-1 lists common safety functions and assediatharacteristics applicable to
machinery.

110

IEC 61508 allows for safety functions to be allechbetween the safety-related systems
and external risk reduction facilities. EN 954-1lyoaddresses those safety functions
implemented by the “safety-related parts”.

Derivation and specification of performance requirénents for control systems

IEC 61508 specifies a formal process whereby, fachehazard, the necessary risk
reduction is derived from the EUC risk and the lesksafety. It is then necessary to
specify how the level of safety (and associatekl resluction) will be achieved. This is
done by describing what the safety-related systeiido (i.e. the safety functions) and
with what probability they will do it as requiredg(the safety integrity). At this stage the
safety-related systems can take the form of extdaudlities or control systems (of any
technology). Then the individual safety-relatedteys should be specified, both in terms
of functionality and effectiveness (as relatingatspecific technology) so that all the safety
functions are implemented with the required levietafety integrity (taking into account
the total effect of all the designated safety-etlagystems). It should be noted that the level
of effectiveness of the individual safety-relatgdtems is also measured by the parameter
“safety integrity”. IEC 61508 requires that the dmhation and results of the safety
requirements allocation process shall be documented

EN 954-1 requires that the measures for risk reolicby control means should be
“decided” and specified in terms of functionalityda category. The methodology to
translate risk reduction (associated with partidylhazards) to performance requirements
of safety related parts of control systems is pec#ied.

IEC 61508 requires that the “effectiveness” of tefety-related control systems be
classified according to “safety integrity”. Safatyegrity is a quantified measure of the
effectiveness of a safety-related control systemh @mcompasses hardware reliability as
well as control/avoidance of failures due to systeorfaults.

EN 954-1 requires that safety related parts ofrobstystems be categorised according to
resistance to faults. The performance measuresciagst with the categories are a
description of measures taken to avoid or conatlifes and are not quantified.

IEC 61508 requires that overall safety functionsl aafety integrity requirements are
documented in an “Overall Safety Requirements Sigaton”. The corresponding
requirements for individual CES safety-related eyyst are documented in the “CES Safety
Requirements Specifications”.

111

Design

+ Both standards require that the design meets theifsgal safety requirements, but IEC
61508 requires that the design documentation shioi@idtify and justify the techniques
and measures chosen to achieve the SIL. With IEGO&1 extensive tables of
recommended techniques and measures (for both heedmd software) are provided. EN
954-1 simply requires a “list of the design feasuvehich provide the design rationale for
the category achieved”.

+ |EC 61508 recommends architectural constraints, 9581 does not address architecture
(other than as may be necessary to achieve thebielihviour according to category).

Behaviour under fault conditions

« Both standards require consideration of behaviawteu fault conditions. In IEC 61508,
fault requirements depend on SIL, the extent ofgmistic coverage, knowledge of
component failure modes, testability of componeatsl knowledge of component
reliability. In EN 954-1, fault requirements aretdited solely by choice of category.

Diagnostic coverage

+ |EC 61508 makes recommendations regarding the twihgnostic coverage provided by
the techniques and measures used to control failuEN 954-1 similarly accepts that not
all faults may be detected. In category 3, thauiredq measures for fault detection are
required to be graded according to consequenceiaimhbility of failure and technology
used. In category 4, the inability to detect garfaults leads to the requirement to show
that an accumulation of faults does not lead te tdshe safety function.

Proof checking

« |EC 61508 requires that proof checks be undertaicethat the probability of failure on
demand remains within the specified safety intgdevel. Proof checking is not addressed
by EN 954-1.

Integration

« Integration (software, hardware, modules, sensmtsiators) of CES systems is addressed
by IEC 61508, not by EN 954-1.

Operation & maintenance

« Both standards require information for operatiod araintenance.

112

Validation

« Both standards require validation to demonstratg the safety functions have been
implemented according to specification.

Modification
+ Addressed by IEC 61508, not by EN954-1.

Verification
+ Required by IEC 61508, not by EN 954-1.

Functional safety assessment
« Required by IEC 61508, not by EN 954-1.

Decommissioning
« Addressed by IEC 61508, not by EN 954-1.

4.3. Practical difficulties encountered during machine alidation using the
EN 954-1 & IEC 61508 standards

Task 2 of WP 4 was to examine the retrospectivdicgion of the EN 954-1 and IEC 61508
standards to existing machinery as part of a maatamtrol system validation exercise.

The fundamental aim of this exercise was neithesgess, nor test, the machine, but to identify the
differences between the approaches taken by thestarmmdards. Therefore, the exercise was not
carried out in unnecessary detail where this waowgdhave been beneficial towards the aims of the
STSARCES Project. For example, where EN 954-1 & 61508 make normative reference to
other standards, the requirements of each referergce only considered in the context of the
validation exercise. Consequently, the validaticgthmdology described in the WP4 Task 2 report
should not be used as the basis for other assetsmen

Useful hints arising are given in the following stlhuses.

113

4.3.1. Selection of the machine and safety-related contralystem to be validated

The requirements for the safety-related contralesysvere :

it has sufficient technical complexity in the capfration of its control system(s) to allow
sufficient application of either standard ;

it should include a programmable electronic system
it is a practical application within an existing chane ;

the manufacturer, or its designer, should be rgamihtactable, if necessary, to elucidate
design criteria or details of its operation ; and

the manufacturer should be willing to co-operatehwhe project and to provide the
necessary technical material to allow validatiobeceffected.

It was decided that a suitable machine for thig@ge would be a hydraulic press manufactured in

the UK.

Technical details of the machine under eration were as follows :

Multi-axis direct numerical control (DNC) contratle

Hydraulic operation with individual servo contrdl the position of each end of the beam
together with hydraulic pressure control ;

Sizes from 30 to 3000 tonnes, specifically 100 &non the machine examined ; and

Photoelectric curtain allowing normal photoelecigigarding or guarding in association
with single- or double-break stroke initiation.

4.3.2. Hazardous events considered

A full examination of the control system of the mime would neither have been cost-effective or
capable of yielding results additional to thoseaot®#d by a limited analysis. Therefore :

to avoid repetition in the analysis, the operatodrthe machine was considered only in
manual mode (i.e., neither single- nor double-bmakies of initiation were considered.) ;
and

the most important hazards associated with the maatere determined in order to define
the scope of the assessment.

® A photoelectric system is colloquially referredas a photoelectric guard, despite the fact thdoés not prevent access to the danger area, and
sometimes as an intangible guard. A more accueate is an Active Opto-electronic Protective De8®PD). However, as the term photoelectric
guard is more commonly used and understood thiswell be used throughout this document.

114

The hazardous events identified as being withirsttuge of the examination were :

[1] Aberrant stroke : An uninitiated stroke occurs, ebhicannot be prevented by
obscuring the photoelectric guard (referred toresraguarded stroke).

[2] Incorrect mute : The muting position aberrantly rdies so that muting of the
photoelectric guard occurs with the tool more tbamm above the workpiece or
the guard fails in a dangerous mode.

[3] Failure of the rear-gate interlock : If this inteek were to fail, access could be
obtained to the rear of the working parts of theinize.

The validation exercise was carried out separatety each standard with the intention of
minimizing the "cross-talk" between the respecéxaminations.

In order to make the exercise as realistic as plessit was decided to adopt an approach which
would, as nearly as could be envisaged, follow thqtected to be taken by a machinery designer
faced with the use of the standards in a workingrenment (i.e. not necessarily as the designers of
the standards would have intended).

4.3.3. Matters arising from the application of EN 954-1

[1] The standard is intended to be applied during #eegeh of a control system and
not during a validation exercise. As a result, sainihe steps in the methodology
were inappropriate. To achieve adequate safetyUskO54 advice on validation
should be given.

[2] Where the standard does not give guidance for #hielation other approaches
have to be taken into account to follow the valmaprocess from start to finish.
There are a large number of minor requirements'gind aways'. For example,
the fundamental requirements of the various caiegare simple to follow and
relate to fault tolerance.

However, having established the requirements faegeay 3, one finds that it is
not necessary to detect ALL single faults but SYME (see Table 2 ‘Summary
of requirements for categories’ EN 954-1:1996). ubjsctive decision must be
taken as to which faults need, or do not needetddtected.

In addition to the standard the results of ClauSeyBse useful advice.

[3]

[4]

[5]

[6]

[7]

115

EN 954-1 has been designed as a standard withcigatameans of assessment
and implementation. Unfortunately, what appearsfirst sight to be a very
practicable method (i.e., based on a simple arsalykifault tolerance) becomes
very subjective when applied practically.

Annex B of EN 954-1 is the only way of determinitng required Category for a
system, other then by examining an existing syswehich itself may not have
been categorized correctly). Because of the subagenature of Annex B, different
assessors may come to different conclusions whé&rrdming the category as
there is no absolute means of objectively detemgirihe category required for
any particular system.

More detailed advice could have been given to uskthis annex. For example,
research could have established the probabilith@bperator avoiding hazards in
a variety of industrial applications and under wagyconditions (e.g., approach
speed) and the data tabulated in the standard.

To achieve a given risk reduction a closer consiilen should be made of
systematic failures/faults,of the MT{,FDiagnostic coverage and of Common
Cause Failures. See clause 3.3.3 for further advice

The principles of EN 954-1 are based on singlefipleltcomponent failures
leading to a hazard being realised. This, at firght, seems to be a very simple
way of defining the integrity of the safety funct®d However, the examination of
the control system indicated that there are mamgpament failures which, in
combination, could lead to the hazard. However, ymah these failures are
considered to be unlikely, highly unlikely or evercredible and could be very
different when using different technologies. Beeatlge decision to exclude such
failures from the analysis can be a subjective,téisks recommended, where
known, to consider failure rates from databasdseltt experience. This will help
minimise subjectivity in validation.

EN 954-1 gives no means of assessing or ensuriegniiegrity of software.
Clauses 3.3.4, 3.3.5 and 3.5.3 give advice on tiegiity requirements for
software.

To justify that the press has been designed usiagtinciples of EN 954-1 and
validated to its safety specification; a validati@port (as described at Clause 8.5
of EN 954-1) and the technical construction fileowld be available to the
assessor.

EN 954-1 mentions maintenance but does so very lwebkany safety-related
protection system (which may be called to operatly anfrequently), regular
manual proof testing (in the absence of automaggristics) is an important
factor in maintaining the integrity, which will waapproximately linearly with the

116

frequency of the manual proof checks. In the maatyisector at the present such
an approach is not often followed.

[8] EN 954-1 is a design standard so does not givecadui the manufacture of the
system being designed. A well-designed systemishaborly manufactured could
have a reduced integrity. For example, a multi-deasystem, whose wiring has
been segregated in order to avoid common-causadajl could have the wiring
strapped together as a single loom leading to &npat for common-cause
failures. It was noted that the validation stage, type testing, couldn’t account
for variations between manufactured items resulfirogn, for example, a poorly
specified manufacturing stage. It is essential it quality system of the
manufacture assures no deviations from the apprgdample.

[9] By assuming that subsystems are single componerdsagplying the fault
exclusion principle, it is possible to determine€ategory without the need for
complex calculation. However, the failure rate of@nplex subsystem may be
considerably higher than that of a single companéne¢refore, the Category of a
dual-channel subsystem cannot be considered equivia a dual-channel system
at the component level, e.g., an interlock base@ oelays cannot be compared
with one based on two complex programmable logittrodiers (PLCs), even if
both interlocks achieve Category 3. Hence, twoesgst each having the same
Category, may be considered to be equivalenly if they use the same
technology and a comparable number of components.

[10] A number of factors will considerably distort theefarchy of Categori@s For
example :

- the standard is based on system behaviour in thsepce of faults. Modern
technology allows the incorporation of sophistidaaeitomatic diagnostics with a
coverage approaching 100%. A single-channel sysigith sophisticated
diagnostics may have a higher integrity than a ermdulti-channel system.
Although the standard allows faults to be excludiedoes not give advice on how
this problem should be addressed.

- a highly reliable system, based on simple techno(egy., a mechanical blocking
bar) which because of its single-channel statudavioe assigned a Category of 1,
may in practice have an integrity comparable, ognewigher than, that of a
Category 4 system employing a complex and, thegefdifficult to validate
technology.

The possibility of making a misleading assessmesm t©e minimised by
considering probabilistic aspects to estimate ¢#a amount of risk reduction (see
clause 3.3.1 — 3.3.3).

¢ Although the standard clearly states otherwisapipears inconceivable that the hierarchy was eeeldped on the basis that a monotonic
relationship exists between the integrity of thielserelated parts and the Category.

[1]

2]

117

4.3.4. Matters arising from the application of IEC 61508

The first, and probably the most important, obstaclusing IEC 61508 involved
the determination of what is an acceptable levelisf. This may require an
iterative process in order to obtain an acceptablae, which will depend on a
number of factors, such as :

what may have been established as custom and adcepgjineering practice in
the industry concerned ;

the cost effectiveness of improving safety beyony particular level (e.g., the
"law of diminishing returns") ; and

what competitors and other organizations usinglamtypes of equipment have
deemed to be practicable.

Existing accident rates involving presses, (obtifrem internal HSE sources),
although not comprehensive, were used in thiglaabn exercise to establish an
acceptable level of risk. Such information will ri easy to obtain by designers
and validators in the field of machinery and otheethods may be more
appropriate.

Additionally, it may be unwise in some circumstaside quote acceptable or
tolerable rates of a particular level of injury.efefore, it may prove necessary for
target SILs to be determined by opaque means,lppsgialitative, for the various
sectors of industry. The determination of targetsSls a critical and not
necessarily easy task that would be helped coraitieby the availability of a
suitable, possibly industry-specific, methodology tlealing with it. It may be
necessary, in the first allocation of an SIL, tonsider the full bandwidth of
possible SILs.

IEC 61508 appears to have been conceived withribeeps industries in mind. As
a result, the determination of SILs depends onrisle reduction provided by
safety-related protection systems, which operagamallel with the control system
of the EUC and put the EUC into a safe state ihiufe of the control system
occurs. A safe state may therefore be the coniomaf the process, while in the
machinery sector the safe state commonly is the dbwn of the hazardous
movements.

Many machinery control systems have traditionallgeto based on relay

technology, and since machines are mostly cyclih@ir operation, it is possible

to test most, if not all, of the individual compot®in the control system at every
cycle of the machine and employ redundancy. Tladdeo a fault tolerance of 1,

or more, with a short interval between tests antsequently control systems have
a high integrity.

[3]

[6]

[7]

[8]

118

Therefore, in the case of many machinery safetgtfans, the concept of risk
reduction, as used in IEC 61508, is inappropriaigé a SIL must be calculated
from the failure rate of the control system.

Because IEC 61508 is new (not published in itslfioan at the time of this

assessment), few, if any, manufacturers have usétius, it was difficult for the

manufacturer of the pressbrake under examinatiotetiver the documentation
prepared to show compliance with IEC 61508. This wapecially true with

respect to the quality procedures used in the desigthe machine. This

documentation is necessary; otherwise it is nosiptesto determine whether the
quality requirements have been satisfied in thégdedt is important to carry out

all assessments during all stages of the lifedigee clause 3.1).

It is recommended that the formal and detailed dwmtation for installation,

commissioning, operation and maintenance is deivdny the manufacturer.
Documents relating to design procedures, e.g.,itguabsurance, should be
available to the assessor for the validation. Tikisiecessary for all systems
regardless of their origin (inside or outside af &U).

For a quantitative assessment, good failure-rati@ idarequired. Data is available
on the most frequently encountered modes of faidirsost of the components,
e.g. a relay failing to energise. However, in safetated systems, many
components are automatically tested to ensurethi®at frequently encountered
modes of failure are revealed. Therefore, the remg@imodes of failure, on which
there is likely to be insufficient data (e.g., fadure of a single relay contact or a
relay spontaneously changing from the de-enerds@mergised states as a result
of, for example, a spring breaking), are the onbghvcause difficulty. It may
help to use the experience of applications in othertors to achieve more
representative estimates of these data.

In order to determine the probability of injurytife relevant safety function were
to fail a number of assumptions had to be made.dxample, in the case of
Hazardous Event 1, it was assumed that the opegpioes his/her hands in the
press once per minute. A different assumption walldnge the target SIL and
the validation. An ideal design would be that tlpemator's hands are NEVER
placed in the press, but this is often not possible

Because the outcome of the quantitative analydisgukEC 61508 is likely to

depend on a number of highly subjective assumptibngll be possible to tailor

the outcome of the analysis to suit one's particuiaeds. Some of these
assumptions will be difficult to challenge. The usé the experience of
applications in other sectors may improve theserapsons.

[9]

[10]

[11]

[12]

[13]

[14]

119

Clause 7.4.4.3 of Part 2 of IEC 61508 requires tAaty failure-rate data used

shall have a statistical confidence level of asie&%". This level of confidence

is unlikely to be realized in practice, for the seas described in the previous
paragraph. In practice, the use of the best aVailddta is better than not carrying
out a quantitative reliability assessment; if neeeg worst-case assumptions
could be made.

The proof-test intervals used in the validation reis® were based on the
manufacturer's recommendations. This importantrimégion should always be
available, perhaps by being directly labelled anritachinery.

At first sight, the documentation requirement ofCIE61508 does appear to be
burdensome. However, this need not be the caset Waastandard is, in fact,
requiring is that the development, etc., is brokemwn into discrete stages (i.e.,
the lifecycle), careful thought is given to eachtleése stages, and the results of
this are put onto paper for use in later stagesfandemonstrating the adequacy
of the system. Looked at in this way, the IEC 61bfé®ycle is no different from
any other well-organized process.

Clearly the documentation requirements will inceeasth the complexity of the
system.

The application of quantified risk analysis to maehy is more complex
compared to its application to process controleyst due to the synchronous
interactions between the persons at risk, the abeyistem and the cyclic nature
of operation of the machine. In such situationsakeulation (e.g., of probability
of failure on demand) involving steady-state caods, as would be applicable to
the control system of a process plant, is unlikelie realistic. Instead, the timing
of the automatic tests and periods of high riskalation to the machine cycle
must be considered in detail in the calculations.

A complete understanding of the operation of thetesy is required for validation
to be meaningful. This is true of an assessmenigbearried out using either
EN 954-1 or IEC 61508 ; however, in the case ofléteer, where a quantitative
analysis is carried out, large variations in thiewated failure rate could result
from minor mistakes in determining functionality.

At first sight, the use of the architectural coasits on the hardware safety
integrity appeared to have a number of failings gicample :

the diagnostic coverage (fail-safe fraction) isduas a parameter to determine the
SIL ceiling ; however, in the case of automaticgdiastics, the rate at which the
diagnostics are carried out is ignored ;

[17]

120

the diagnostic coverage may be irrelevant in catouyj the architectural
constraint. In reality, what may be most importdot, example, is whether the
PES output used by the function is monitored ;

no account is taken of the fact that some sing@obl systems may inherently be
reliable and so perform as well as a multi-chasgstem ;

the fail-safe fraction for a single component (esgich as a mechanical scotch)
may be even more difficult to determine than thagdbstic coverage of a
computer-based system ;

all that the diagnostic coverage could lead toujssg an appropriate repetition
frequency) is an effective reduction in failureerafherefore, a system with a
failure rate of | and no diagnostics is effectivaly different to a system with a
failure rate of 1ool and a diagnostic coverage3o9however, the former would
be severely penalized by the architectural comdtraand

no account is taken of manual proof checking.

However, the architectural constraints should leved as a means of ensuring
that the quantified analysis is not abused or usedror. For example, in the case
of the calculations for this press :

a number of assumptions have been made ;

the calculations are inexorably linked to the amstture, self monitoring and
cyclic operation of the press ; and

the manual for the press indicates that a dailglclstould be carried out on the
rear-gate interlock. The frequency of this check nave a considerable impact on
the integrity of the interlock. If no checks werared out in practice, the actual
(as opposed to the calculated) integrity of theriotk would be considerably
reduced.

The architectural constraints are intended to poging on the SIL that can be
assigned to any particular system in order to prewather inadvertent (or
deliberate) misuse of the quantitative analysis. @Asesult, the architectural
constraints will ensure that the integrity levehoat be inflated significantly
beyond the actual level achievable for any paricgystem. This will prevent
inflated SILs being claimed and, as a result, enshat an appropriate level of
safety is maintained.

The use of Tables 2 and 3 of Part 2 of IEC 61508du® combine the
architectural constraints of several subsystenggiire clarification as to their use.

4.4.

[1]

2]

[3]

[4]

121

Conclusions from machine safety-related control syem validation exercise

Today machinery safety systems are not develomed $cratch using a life-cycle
approach. Instead, as a new machine is developedexperience gained from
previous machines is modified slightly in order ke improvements to the
overall design. Hence, safety requirements arekeiylito be developed for any
particular machine. Instead, the safety systemseaf machines will be designed
to be no worse than those of existing machines.ubleeof IEC 61508 will require
a radical change to the machinery design/developprexess in that safety must
be addressed using an absolute, rather than eslaiyproach.

IEC 61508 uses quantitative calculation of the alefailure rate as well as
gualitative techniques, where insufficient inforioat is available for a

guantitative determination (for systematic failjre$or determining safety

integrity. EN 954-1 attempts to avoid the need doguantitative calculation by
using a simple methodology - the risk graph. Unifioately, the application of the
methodology is not straightforward in other thae sgimplest of systems, and
requires a subjective application of engineeringvdedge.

IEC 61508 covers all stages of the lifecycle ofystam. EN 954-1 considers only
the design (and validation of the design).

The greatest problem in using a quantitative apgro@ risk assessment, as
described in IEC 61508, is the availability of abie data. Two types of data are
required :

Failure rate data for the components and subsystémmy be necessary to use
data from generic components, or for outdated corapts ; however, data can be
obtained (or estimated) for most components, afihoit is likely that some
assumptions may be necessary.

Levels of acceptable risk: The level of acceptalslk is a societal parameter and
is difficult to determine, being dependent on pemee, rather than actual, risk.
The guidance in IEC 61508 uses the ALARP value gives no help in
determining what that value should be. The authadenan assumption that
existing hazard rates were acceptable but thisngstson need not be valid in all
cases. The author considers that this problem measept the most difficulty in
using IEC 61508 until industry-specific guidanceuwdiments, based on IEC 61508,
provide guidance in this area. However, the pubboaof such guidance could
give alarm to those at risk.

[5]

[6]

[7]

[8]

[9]

[10]

122

A number of assumptions had to be made in orderatoy out the quantitative

analysis described in IEC 61508. These were subgebtd a significant effect on

the SlILs. There may be a high dependence on basit [fossibly subjective)

assumptions in the quantitative analyses of mahgrasystems. Some of these
assumptions will be difficult to challenge and abldad to failure-rate predictions
being distorted to meet the needs of other agendas.

If a methodology, that will enable target SILs ®determined without significant
subjectivity is not available, the uncertainty mmetoutcome of the quantitative
analysis used in IEC 61508 may be large. In thbalst opinion, the production
of such a methodology should be given a very higbripy otherwise it will not be
possible to fully exploit the guidance in providegl|IEC 61508.

Generally, existing safety-related electrical cohlystems at machinery have not
been designed using the guidance contained in [EBD& (of which all parts were
not published at the time of writing of this repaahd, as a consequence, suitable
documentation, required in order to verify the gas safety lifecycle stages, is not
likely to be available. Documentation, in a fornitable for assessment purposes,
will become available only when IEC 61508 gainsddriéity in machinery
manufacture. Until this time, it will be difficutb carry out assessments of safety-
related electrical control systems at machinenpeelly in relation to the
guantitative analysis.

IEC 61508 enforces the manufacturer of a SRCPEfatothe overall lifecycle in
a structured way by requiring an adequate docurtientaAt first sight, the
documentation requirements for a simple machinentrol system appear to be
excessive.

Because shortage/incompatibility of documentatioay nprevent an adequate
determination of the qualitative measures whenteospective examination is
carried out on a machine designed prior to theipatibn of IEC 61508, it will
not be possible to determine whether (or not) bletaneasures have been put in
place to deal with systematic failures. Therefcaeretrospective quantitative
assessment using IEC 61508, may prove to be inatecas the actual failure rate
may be dominated by systematic failures, which warkkely to be predictable
guantitatively. Unfortunately, this will lead to amderestimate of the failure rate,
i.e., the estimate will indicate that a system Wweélsafer than it actually is.

IEC 61508 takes a scientific approach by matchysgesn integrity to risk. Also,
wherever possible, it uses quantification, but aekedges that qualitative
measures may be followed where quantitative measimenot be used. However,
the gualitative measures have been determinedg(@sigineering judgement) to
be appropriate to the SIL. This should be compavigd the approach taken by
EN 954-1, which is based on fault tolerance.

123

[11] The principles of IEC 61508 require that a methodyl is followed which
encompasses all of the phases in the lifecycle ®fstem, e.g., concept, design,
implementation, etc. If the methodology has notnbesed by the manufacturer,
subsequent assessment using IEC 61508 will indyitad difficult because of
missing information. However, if IEC 61508 had bdeltowed from the outset,
the relevant information would have been availataleilitating validation.

4.5. Techniques & measures for machine validation

The findings and conclusions outlined above from tbsearch undertaken in Annex 3, Annex 6,
Annex 7, Annex 11, Annex 12 and Annex 13 indicaie o solve some of the practical difficulties
that may be encountered when using the EN 954EB@®bIL508 standards. These problems, derived
from the divergences that exist between EN 9541B@d61508, require that in order to establish a
sound basis for the validation of safety-relatedtim systems at machinery consideration should be
given to :

« A linear mapping of the safety integrity levelsIBC 61508 to the categories of EN954-1
could not be established. This was primarily dutheocategory definitions in EN954-1 not
placing any quantifiable requirements regardingréte of failure of the safety functions. If
the work outlined in clause 3.3.3 is further depeld and standardised it may be possible
to create some non linear mapping.

However, it can be stated that, in a given techmgloategory 1 is likely to have a higher
safety integrity level than category B and categbnyill have the highest safety integrity
level.

« The gqualitative approach of EN 954-1 is a desirale from the machinery sector point of
view and could be usefully developed and linketElG 61508.

« The principles of IEC 61508 (safety lifecycle aradety integrity levels) can be applied to
E/E/PE control systems in machinery. IEC 61508 @@amplement EN 954-1 for E/E/PE
systems but a qualitative approach leading to atywantegrity level would have to be
developed.

« The non-hierarchical structure of EN 954-1's categgois often misinterpreted into a
hierarchical one. This is because the categonnitieins have to be carefully analysed to
understand their full meaning. An informative annexerpreting the categories for
different technologies may be useful.

« Although the categories are difficult to relate risk, EN 954-1, as a document, does
provides much useful information into the desigatsggies for safety and the requirements
for safety functions.

124

IEC 61508 covers all phases of equipments life mfroconcept through to
decommissioning. In the machinery sector, verylyamuld one party have responsibility
across the entire lifecycle. It is considered thate is a need to delineate responsibilities.
This is particularly so in the case of manufactsineho are producing machines or safety
components for use in a variety of applications nehié¢ may not be practical for the
manufacturer to undertake a complete hazard akdanalysis and identify suitable safety
functions for all applications at an early stagethe safety lifecycle. In such cases the
emphasis must be on the manufacturers to supplcisat and suitable information
(including the SIL) so users can take proper actainthe equipment’s performance
characteristics in the final application.

The developer and validator should have a deepeideration of the systematic aspect of
the machinery control system (see clause 3.1,18123a}).

125

5. USER'S GUIDE

5.1. Validation methodology for SRCES

To deal with the validation of SRCES, functionaps should be processed in the recommanded
order of operations as follows :

« Obtain the allocation of safety requirements. Upddie safety planning as appropriate
during SRCES development.

« Determine the requirements for SRCES, including ghafety integrity requirements, for
each safety function. Allocate requirements tovgafe.

+ Start the phase of planning for SRCES validation.

« Access the architecture (configuration) for the SRGgic system, sensors and final
elements.

+ Review with the software supplier/developer thedare and software architecture and
the safety implications of the trade-offs betwebe hardware and software. Iterate if
required. The methodology for software validatissplit into six main levels :

> The first step is to make certain that softwarecdations are in compliance with user
needs and safety requirements. Ensure that alssageinformation for functions are
complete, precise, explicite, coherent and correct.

> The second level of evaluation corresponds to ngpviom specifications via the
software design to the final code ; the final codast be in compliance with the
software specifications.

The third level of evaluation, corresponding to mngvfrom the final code to the
software behaviour, consists in executing the finatle to check the software
behaviour.

\7%

> The fourth level of evaluation consists in makingrtain that the final code is in
compliance with the user needs. For the same reas®ithose expressed for the first
level of evaluation, which are inherent to the matof the user needs, this compliance
is very difficult to demonstrate.

> The fifth level of evaluation, corresponding to rmay from specifications to software
behaviour, consists in checking that the softwaealiour is in compliance with what
is described in the specifications. This activityasw previously referred to as
verification.

> Finally, the sixth level represents the total vaiidn activity.

126

Develop a model for the hardware architecture dadacto safety-related systems. Develop
this model by examining each safety function sdpdraand determine the subsystem
(component) that will be used to carry out thisclion. Deterministic and probabilistic
analysis are required.

For deterministic approach, two methods are gelyezaiployed to predict common mode
faults :

> Fault Tree Analysis (FTA), this deductive methodrtst out from a dangerous system
failure, determined for instance by risk analysisd looks for combinations of events
that could lead to this failure. It reveals rand@ystematic and common mode faults.
Ultimately, all the logic branches of a FTA must ¢beveloped through to the basic
events. In practice, the tree is developed to Ipalda of analysing the effect of input,
processing and output failures.

> Failure Mode and Effect Analysis (FMEA), This is imductive method that starts out
from failures of the functions or components of ystem to be analysed in order to
determine the dangerous failures that could aftedt highlights failures due to single
failure modes that affect the software or the hamew

Use FMEA and Markov models for probabilistic apmioaThese techniques have been
chosen because of their considerable capabilityaofiling many of the technical features
usually implemented in modern safety devices. Hapgcwith Markov modelling,
periodic events like online tests can be modell@tegcomfortably.

Establish the system parameters for each compone@d in the complex electronic
safety-related systems. For each of the compon@etsymine the following :

> the mean time to restoration ;
> the diagnostic coverage ; and

> the probability of failure.

Create a reliability model for each of the safatpdtions that the SRCES is required to
carry out.

Implement the design of the SRCES. Select measunesechniques to control systematic
hardware failures, failures caused by environmentalences and operational failures.

Integrate the verified software onto the targetdhare and, in parallel, develop the
procedures that users and maintenance staff vatlil b@ follow when operating the system.

127

« Together with the software developer, validate ®IRCES. The purpose of safety
validation is to check that all safety-related past the system meet the specification for
safety requirements. Safety validation is carristiaxcording to the safety validation plan.
As a result of the safety validation, it is possitd conclude that the safety related system
meets the safety requirements since all the saffuirements are validated. When
discrepancies occur between expected and actusdtseshas to be decided whether to
issue a request to change the system, or the gpéicins and the corresponding possible
fiels of applications. Also, it has to be decidedether to continue and make the needed
changes later, or to make changes immediately astrt the validation process in an
earlier phase.

Finally, SRCES should also comply with generic safequirements :

+ Electrical safety.

Electromagnetic compatibility : susceptibility anadiation is required by the European
EMC directive.

Environmental compatibility.

Climatic and mechanical stress.

Quality management in production, test field andsien handling. This is particularly
important for software based systems.

128

5.2. What we cannot answer

From the research undertaken in this project, siinm&ations, sometimes inherent to the nature of
the faced problems, need to be summarized :

A fixed mapping of the safety integrity levels &Q 61508 to the categories of EN954-1
could not be established. This is primarily dughe category definitions in EN954-1 not
placing any quantifiable requirements regardingrétie of failure of the safety functions.

The non-hierarchical structure of EN 954-1's categgois often misinterpreted into a
hierarchical one. This is because the categonnitieins have to be carefully analysed to
understand their full meaning. An informative anniexerpreting the categories for
different technologies may be useful.

IEC 61508 covers all phases of equipments life mfroconcept through to
decommissioning. In the machinery sector, verylyamuld one party have responsibility
across the entire lifecycle. It is considered thate is a need to delineate responsibilities.
This is particularly so in the case of manufactsineho are producing machines or safety
components for use in a variety of applications nehé¢ may not be practical for the
manufacturer to undertake a complete hazard akdanalysis and identify suitable safety
functions for all applications at an early stagethe safety lifecycle. In such cases the
emphasis must be on the manufacturers to supplcisat and suitable information
(including the SIL) so users can take proper actainthe equipment’s performance
characteristics in the final application.

There is a large difference between software deweémt practices and theoretical works
which treat the subject. It is difficult to elabt#an operation safety methodology for small
and average sized companies. Organisational mastri@and more particularly the lack of
operation safety culture, greatly complicate trebefation of an operation safety process.
There are no specific software safety specificatioamts for small size applications.

Complex components are indeed so compiext it is difficult to analyse them thoroughly,
and it is very difficult to predict the failure mesl of the components. Also, the inner
programs related to programmable components mayaicomritical errors. All these
reasons cause some uncertainty related to thesaalythe complex components. A single
complex component alone cannot control a safetytion safely enough, and some
redundancy, diversity and/or monitoring is needgids means that the architectwkthe
control system is of major importan@nd it can make the risks caused by complex
components to become negligible.

129

The increasing complexity of new systems (integratanction, processing speed,
components and assembling technology miniaturisagtc) is complicating largely the
execution of tests late in design (e.g., in val@3gt Structural tests will not get to go in
depth and will be applied more and more to extelagrs, what supposes a process of
functionalization or change to more functional itegst These obstacles, are forcing to apply
design techniques that make easier further tesifngircuits and programs (so called,
testability techniqugsand_direct testinfom a physical to a simulation domain.

Physical fault injection at pin level and Softwangplemented fault injection techniques
has shown to be the most interesting techniqueddalt injection into prototypes of
programmable electronic systems. Each techniquewnallto introduce a subset of all
potential faults in a system, so tester will hawechoose the technique and plan the test
properly depending the specific set of faults toukte. Software implemented fault
injection arises as a better option for emulatimagsient and precise internal faults, unlike
Physical fault injection at pin level that allowssémulate, in an easier way, stuck at faults
at data, address and control lines. However, itifScult to say in what extent one
technique cover the other because fault emulatapalility of these techniques depend
largely on the nature of the system and its load.

Generally, existing safety-related electronic conslystems for machinery have not been
designed using the guidance contained in IEC 61&@8 as a consequence, suitable
documentation, required in order to verify the gas safety lifecycle stages, is not likely to
be available. Documentation, in a form suitable #gsessment purposes, will become
available only when IEC 61508 derived standards tlkaft IEC 62061 gains credibility in
machinery manufacturers. Until this time, it coble difficult to carry out assessments of
safety-related electronic control systems at mamfkinespecially in relation to the
guantitative analysis. This report intends to emage manufacturers to fill this gap in the
near future and to issue the step-by-step neededntkentation in the course of the
development of new safety products.

130

6. CONCLUSIONS

The objectives of the project plan have been mbam ttotally answered. Not only preliminary
results were already transfered to CEN/TC114 ir0lif®rder to speed-up amendments of EN 954-
1 and improvments to EN 954-2, which was the ihigjective, but also essential tools based on
the generic IEC 61508 were adapted to the speu#dichinery sector needs.

As a direct consequence, the more recent projestanfdard IEC 62061, not yet launched at the
kick-off time of this project, has also already b#ted from it.

An important contribution of the project deals wislafety-related software development and
validation techniques.

A major contribution has introduced modelling teidues and probabilistic assessment methods of
dangerous failure rates and of suited architectir@shieve risk reduction. Markov models are one
of the evaluation techniques dealt with during 8IESARCES project. Concerning online tests
performed automatically within a safety system, ithenense influence of the diagnostic coverage
could be demonstrated. The other aspect is theoppate diagnostic test interval for a particular
system architecture and application. EN 954-1 am¢ssupply sufficient information on this topic.
For a category 2 system its clause 6.2.3 is jugtireg checks by the machine control system "at
suitable intervals" without explaining what is "&lile". The test intervals of systems claiming for
category 3 or 4 are not either specified in thesmdard.

Help can be provided by the Markov approach. Bylamgnting a new feature in the Markov
models we have been able to deliver some usefatnrdtion concerning the adequate diagnostic
test interval. It turned out that single channedtesns and multiple channel systems are behaving
quite different.

Interesting findings are described establishinglationship between sufficient online test rated an
the MTTFd of one of the redundant channels. Theyide advice for the system designer as well
as hints for the person carrying out the evaluaffon more detailed information on this topic see
chapters 5.3. and 6.3 of Annex 6).

Comprehensive links could also be established letvibe category concept (EN 954 approach)
and SILs (IEC 61508 approach) for given architextwand realistic reliability data.

131

6.1. Contribution of STSARCES to the EN954

The EN 954 standard is made of a part 1 (harmorssetiard since 1996), of a user’s guide FD CR
954-100 (harmonised in 1999), of a project of stmddor 954-2 (at the level of a CEN enquiry
procedure) and of a project of revision of the dead EN 954-1.

During the two last years, in the course of thetings of the Joint Working Group in charge of the
EN 954, the STSARCES progress reports have beemoaify used as an important input when
one is drafting a requirement or a validation pdare concerning safety functions based on PES
(Programmable Electronic Systems).

By lack of decisive knowledge, authors of the ENI-@5were led to note and to write down the
following :

+ In control systems where the provision of the safenctions incorporates PES, it is
inadequate to use only categories

> the safety function of the control system relielelyoon PES,
> or the structure of the control system is complex,

> or the contribution to the risk reduction at thectiae is high.

In which case additional factors, eg systematitisaahould also be taken into account faults (scope
of EN 954-2).

« In a note, the CEN/TC 114-CLC/TC44X-JWG6 proposeprocess this question through
the amendment to EN 954-1 (1996).

It is at the level of the amendment of Part 1, whesults of the STSARCES Project are wished
impatiently because the software aspects (systerfatits) need to be introduce in the concept of
the_categoriewhen PES are category 2, 3 or 4.

It is also indicated in the amendment that a machpplication standard derived from the published
IEC 61508 standard is under preparation by the TECA4/WG7 (here the basic concept is the
Safety Integrity Level or ‘SIL’).

STSARCES results will allow defining credible andderstandable links between categories
(EN 954) and SILs in the draft IEC 62061. This aection is indispensable during the design and
development phases of control circuits for the nrey which make use of mechanical
components as well as hydraulic or pneumatic aedtrel-mechanical ones, based on the category
concept, and also PES, better characterised yotineept of SIL.

132

A part of the WP4 results (a study of the links aivergences between IEC 61508 and EN 954,
HSE, WP4 Task 1) has already been communicatefldf fio the JWG6 and the presentation of the
WP2.1 results is also wait for (Quantitative Anadysf Complex Electronic Systems using Fault
Tree Analysis and Markov Modelling).

Experts involved in standardisation are convindeat STSARCES shall improve the validation
methods of PES in their use for safety functionh oo EN 954 andn IEC 62061.

6.2. Contribution of STSARCES to IEC 62061

Works to develop the standard IEC 62061 “SafetyatchineryFunctional Safety of Electrical,
Electronic and Programmable control systems fortMery” were initiated on March 1998 by the
working group TC 44 WGY.

A first CD version is foreseen for the second lwdlffear 2000, one year later than expected. This
delay is largely due to difficulties in the integpation of the IEC 61508 standard by persons not
familiar with its concepts, and also in the nedggsi take into account both standards at the same
time, like IEC 61508 (probabilistic approach for CES/ides) and EN 954 (deterministic approach
for all types of technologies).

The purpose of the work is to develop a sectordstahfor machines, guided by the basic safety
publication IEC 61508. This standard will definkiararchy of safety performance levels by :

« Adapting the requirements of IEC 61508 to suit ldshed principles of risk assessement
and safety integration of machinery ; and

« Defining the methodology for the implementation BN 954 within the hierarchy of
performance levels.

This standard is intended for use by :

+ The suppliers of machines, to enable the speadiicabf the relevant safety-related
performance levels of electrical, electronic andgpammable control systems used on a
machine ; and

« The designers and integrators of such systemsnable them to meet the specified
performance levels.

Until now the work is aiming at specifying a metbtmyy for the integration of components
(already certified previously) in order to devekegfe control systems for machines. Requirements
applied to components (e.g., safety light curtane)those in the IEC 61508.

Results of STSARCES are again valuable here, when aonsiders problems raised by the
integrated use of concepts derived both from IEBO8land from EN 954.

133

A part of the WP4 results (a study of the links aivergences between IEC 61508 and EN 954,
HSE, WP4 Task 1) were transferred with the agre¢mkthe STSARCES Steering Committee to
the standardisation group as soon as on Septeribérta help solving the adaptation of the safety
performance requirements of EN 954 within the olvéwactional safety philosophy of IEC 61508.

More recently on January 2000, a draft of WP reportSoftware aspects (Software quality and
safety requirements, INRS, WP1.2, Aspect 1) wassfmred to the working group with the
intention to introduce the results as an annexhefdtandard, to the attention of designers of the
embedded software used in the machinery.

6.3. Experience exchange between partners for validatioof complex electronic
systems for machinery

The management structure of the Project has désypbyired communications between laboratories
located in different countries. Some of them weagiig different levels of experience and also
their industrial culture was not exactly the sarferthermore it is well known that many
manufacturers of safety devices are located alsihase countries where are installed the major
machines suppliers, as Germany for example. Paation of at least one German partner in almost
any Task of the project was of a great benefit.

Apart from the main meetings in the course of thgdet (the periodic six monthly meetings of the
Steering Committee and the plenary yearly meetitigs)organisation based on Work-Packages -
WPs - with each of them under the responsibilita WP manager, has induced thematic technical
meetings with an in-depth investigation of speqiioblems and extensive exchange of experience
during the visits of laboratories and installations

« in BILBAO, MUNICH, TAMPERE for the WP 3 group heatldy VTT although the
distances had been a cause of important expensesug of some common points of
interest, other partners had also to visit CNVMspain, like INRS (WP1 manager).

+ in BONN in Germany and BORAS in Sweden for the W§t&up headed by BIA.
« in NANCY and PARIS for the WP 1 group headed by 8\R

« in GRENOBLE at the JAY firm with INERIS within the®/5 on innovative studies by the
manufacturers and with INRS to validate the contéWwP 1.2, aspects 1 and 2.

Due to the reduced funding possibilities for so yndravels, good use was made of other
opportunities allowing for short meetings, like tpharticipation of several partners in Technical
Committees for standardisation (CEN TC 114, IEC4AJ or attendance to conferences.

Connections between Test-Houses and manufactusses leen difficult to maintain_constant in
time during the whole duration of the project.

134

In the first year, it appeared that a SME, well wnoon the market as a designer of innovative
devices, could not allocate any availability of égpert persons to the Project because commercial
problems had occur on a leading product which lmabet re-designed. As it was an associated
partner to a main contractor, the consortium hafthtbanother solutions to validate as realisticall
as possible the analysis and testing proceduresdajmd by the Test-House.

Another difficulty arose with a second manufactunolved in the project, also due to commercial
problems, but consequences on the programme ceuledoiced and the partner could participate to
the final validation of the results.

6.4. Validation of the project by external manufacturers

A special seminar with manufacturers of safetyteglasystems, not directly involved in the project,
to inform them of the results and to improve thelimgibility of the final report presentation, was
programmed near the end of the project.

In order to ensure the largest international attend to such an event, this seminar was integrated
to the most significant international conferencgamized on late 1999 on occupational safety, the
MONTREAL International Conference on Safety of Istiial Automated Systems, 4-7 October
1999. This was made possible thanks to the Corder8gientific Committee, which included BIA,
HSE and INRS, members of the STSARCES Steering GQtiean and IRSST, the organizing
Institution.

Five papers on the STSARCES results were presdmtetheir authors in plenary sessions (an
overview by the coordinator, and four technical ot on each work-package). Since the
corresponding session chairmen were INERIS, BIAEHS8d INRS, the discussions could easily be
oriented to sense the acceptance of STSARCES sdsuthe attending manufacturers.

Finally, discussions could follow in a more infodnmanner after the sessions since a lot of them
had their own stands in the exhibition installedhet same place. It was agreed that this lifecycle
approach was well received, but a big concern wasessed on the need for a more in-depth
collaboration between certification bodies and nfacturers in the near future, from the design
stage until the final tests in vue of issuing afoamance certificateThere was a similar wish
expressed by the Test-Houses for a deeper coltamoraxtended through the whole "certification

process" cycle.

135

7. PUBLICATIONS

> -Brown, S.J. & Frost, S.Health & Safety Executive, Electrical and Contrgs@ms
Unit, Technology Division. A study of the links &iwérgences between draft IEC
61508 and EN 954. STSARCES, WP4 Taskl Report BafS-WP4-1001, Issue 02,
September 1998.

> International Conference on Safety of Industrialtgkoated Systems, Montreal, 5-7 October
1999and 2" European Project STSARCES Seminar :

> -Villeneuve de Janti, P Institut National de 'Environnement Industrieldds Risques
(INERIS), France. STSARCES : An European researghative to harmonize
validations methods on safety related complex elaat systems.

> -Reinert D. & Dorra M. Berufsgenossenschatftliches Institut fur Arbeitssiblit
(BIA), Germany. EU Project STSARCES-Hardware SafeQuantitative analysis of
complex electronic systems using Markov Modeling.

> -Charpentier P. Institut National de Recherche et de Sécurité (INRSance.
Preventing software errors through quality congnadl testing.

> -Durka J.L. & Reinert D. Institut National de I'Environnement Industriel des
Risques (INERIS), France; Berufsgenossenschafflidnstitut fiir Arbeitssicherheit
(BIA), Germany. Design and validation of innovatitechnologies : ASICs in safety
related systems for machines.

> -Frost, S & Ward G.R. Health & Safety Executive (HSE), United Kingdom.
Functional safety for machinery control : challes@r standardisation.

136

BIBLIOGRAPHY

10

11

12

13

14

DIN V VDE 0801/01.90 and A1/10.94 : Grundsatze Réchner in Systemen mit Sicherheitsaufgaben
und Anderung A1l.

EN 954-1 (1996) : Safety of machinery - Safetgted Parts of control systems (ldentical with
ISO/IEC DIS 13849-1).

IEC 61508 : Functional Safety-Related-Systemst ParGeneral Requirements; Part 2 : Requirements
for electrical, electronic, programmable electrosystems; Part 3 : Software Requirements; Part 4 :
Definitions and abbreviations of terms; Part 5 :ideélines for the application of part 1; Part 6 :
Guidelines for the application of part 2 and 3;tHarBibliography of techniques and measures.

DIN V 19250: Leittechnik. Grundlegende Sichersledttrachtungen fir MSR-Schutzein-richtungen.
Beuth-Verlag, Berlin 1994.

Reinert, D.; T. Bomer : Modern Sensors as proteatevices for the safety of machinery. Proceesling
Volume 1 : 3rd Eurolab Symposium 5-7.6.1996 Berlifesting and Analysis for Industrial
Competitiveness and sustainable Development. Wiafssverlag NW. Bremerhaven 1996, pp. 215-
224.

Reinert, D.; Schaefer, M.: Integrated safety laxible manufacturing systems. In R.D. Schraft, G.
Brandenburg, & W. Leidig, (Eds.), Tagungsband SPS/DRIVES98 (pp. 305-314). Heidelberg,
Germany: Hithig-Verlag 1998.

Reinert, D. et al : Validation of functional sgf@f programmable electronic systems accordinde©
1508. Preprints of the 5th International Workingn@wence on Dependable Computing for Critical
Applications, Sept. 27-29, 1995.

EN 1050 Sécurité des machines. Principes pouwpitéciation du risque. (Machine safety. Risk
appreciation principles). 1997-01.

FARADIP.THREE (Failure Rate and Failure Mode DB&nk and Failure Mode and Effect Analysis
Package). Technis, Tonbridge, Kent UK 1997.

SN 29500 Failure Rates of Components, Part 1 Part 9 — 10. Siemens AG, ZT TN Corporate
Functions Technical Regulation and Standardizatitumich and Erlangen 1982 — 1999.

GUIDE DE LA SURETE DE FONCTIONNEMENT. Laprie J.. @ al. CEPADUES EDITIONS -
1995.

MODE DE DEFAILLANCE DES CIRCUITS INTEGRES - Comrstdes problemes posés. GROUPE
DE TRAVAIL MDCI DE L'ISDF — 1994.

ARE COMPONENTS STILL THE MAJOR PROBLEM: A REVIEWF ELECTRONIC SYSTEM
AND DEVICE FIELD FAILURE RETURNS. Pecht M., RamappaV. IEEE transactions on
components, hybrids, ... - vol.15 - No. 6 - Ded®29pp. 1160, 1164.

A STUDY OF FAILURES BASED ON U.S. POWER REACTORBNORMAL OCCURRENCE
REPORTS. Taylor J. R. Reliability of nuclear poy&ant - IAEA-SM-195/16 — 1975.

137

15

16

17

18

19

20

21

22

DEFAILLANCES DEPENDANTES ET DE CAUSE COMMUNE. Védmeur A. Sdreté de
fonctionnement des systémes industriels. Ed. E8spll988, pp. 371, 410.

DEPENDABILITY OF CRITICAL COMPUTERS SYSTEMS EWICSC7 Ed. F.J. Redmill - 1988.

Method for performing diversity and defense-imptiheanalyses of reactor protection systems Pretksho
G.G. Fission Energy and Systems Safety Progranp®apCRL-ID-119239, Dec 1994.

HANDBOOK OF SOFTWARE RELIABILITY ENGINEERING LyuM.R. Computing Mac Graw-
Hill/IEEE Computer Society Press, 1995.

Analysis of faults in a n-version software expent: Brilliant S.S., Knight J.C., Leveson N.G. [EE
Transactions on software engineering, Vol. 16, NFgh. 1990, pp 238, 247.

An experimental evaluation of the assumptionnafependance in multiversion software: Knight J.C.,
Leveson N.G. IEEE Transactions on software enginge¥ol. 12, N°1, Jan. 1986, pp 96, 109.

A theorical basis of multiversions software sebj® coincident errors: Eckhardt D.E., Lee L.DEE
Transactions on software engineering, Vol. 11, NTl€c. 1985, pp 1511, 1517.

An experimental evaluation of software redundaasya strategy for improving reliability: Eckhardt

D.E., Caglayan A.K., McAllister D.F., Vouk M.A., Kg J.P.J. IEEE Transactions on software
engineering, Vol. 17, N°7, July 1991, pp 692, 702.

