

S T S A R C E S
Standards for Safety Related Complex Electronic Systems

A n n e x 1

Software engineering tasks - Case tools

F i n a l R e p o r t o f W P 1 . 1

Florin Sobaru & Smaïn Bouazdi

CETIM

E u r o p e a n P r o j e c t S T S AR C E S

Contract SMT 4CT97-2191

2

CONTENTS

FORWARD ___ 3

1. ELECTRONIC SYSTEMS RELATED TO SAFETY ___________ ________ 4
1.1 Dependable electronic systems ________________ _________________ 4
1.1.1 Need for a system approach _____________________________________ 5
1.1.2 Operation safety process __ 6
1.1.3 Obtaining and validating a dependable system _______________________ 8
1.1.4 Explicit operation safety for mecatronic systems ______________________ 10
1.2 Evaluating safety software ____________________ _________________ 12
1.2.1 Specific features of safety software ________________________________ 12
1.2.2 Evaluating safety software _______________________________________ 12
1.3 Requirements for safety software ______________ _________________ 12

2. SPECIFICATION AND VALIDATION OF SAFETY SOFTWARE _________ 14
2.1 Requirements for specification ___________________________________ 14
2.2 Methods of specification _______________________________________ 15
2.3 CASE Tools for specification _________________________________ 19
2.4 Specification and validation procedure _____________________________ 20

3. CONCLUSION ___ 22

4. APPENDIXES__ 23
4.1 “Specification methods” sheets ___________________________________ 23
4.2 “Specification tools” sheets ______________________________________ 32
4.3 Bibliography ___ 41

3

FORWARD

The work described in this report was done within the framework of the European
project STSARCES, acronym for “Standards for Safety Related Complex Electronic
Systems”. This project groups together the main French and European organisations
INRS, INERIS, CETIM, HSE, BIA, INSHT, SP, TÜV, and VTT, as well as the companies
JAY ELECTRONIQUE and SICK AG, directly concerned by the safety of industrial
systems. Five themes are treated by the various partners : software safety, equipment
safety, validation of the safety of complex components, the connection between the
European standard EN 954 and the project for an international standard CEI 61508,
and the taking into account of technological innovations.

An in-depth study of the development methods and techniques for systems was also
led. The contribution of the work done by CETIM concerns the drafting of safety
software specifications and their validation. They highlight the importance of the global
system approach.

Over the past years, traditional command systems have been replaced by programmed
systems at an accelerated rate. The functionalities of these programmed systems has
increased and become increasingly sophisticated, making them complex to produce.
Their complexity indirectly causes an increase in potential faults in design and therefore
failures in the systems designed.

The complexity and size of the present systems are such that it is impossible to
eliminate all faults contained by a final control. To ensure that software development is
mastered, it is necessary to established an adapted process.

Unlike mechanical systems, it is difficult to foresee the various failure modes. At the
research office level, analysis of uncertain behaviour is not exhaustive and it is difficult
to control and eliminate risks.

Since the software behaviour cannot be predicted and since potential incorrect
behaviour cannot be quantified, it is impossible to analyse failure modes as for
mechanical systems. Unlike equipment which may break down due to physical faults,
software does not age and is really only affected by faults in design of human origin.

Introducing digital technology thus demands that designers make fundamental changes
in their methods of approaching problems to be treated.

During the lifetime of software, one of the most delicate steps is to express needs in
specifications. Drafting and evaluating specifications are important steps, especially for
safety software.

Industrial fields in advanced technology (aeronautics, energy, railway transport,
telecommunications) have integrated all of these concerns in the framework of
developing their software. Concerning other sectors, such as mechanics, assistance,
practical and easy operation documents must be made available to research offices,

4

encouraging the appropriation of safety software development techniques, and more
especially, their specifications.

The main work today is essentially done in the universities. It is not easily accessible to
non specialists and its implementation requires an intellectual effort and a significant
investment in training and in computer tools.

The CETIM work is part of this “Safety software specification” vision. Our goal is to
reduce the distance between the state of the art and present practices, thus making
methods and tools easier to use.

5

1. ELECTRONIC SYSTEMS CONCERNING SAFETY

1.1 Dependable electronic systems

1.1.1 Need for a system approach

Often safety needs and the verification of their implementation are tasks
accomplished afterwards. To take the safety aspect into account when
expressing needs implies a modelisation of the system which is different from
that obtained when only the performance and cost aspects are considered.

In fact, while defining the functional needs of a system provides a description of
their service the system is to render, defining safety needs describes the
behaviour which the system must avoid. This description leads to identifying the
functions which the system must fulfil in order to reduce the possibility that the
behaviour to be avoided occurs.

From a system point of view, the safety concept may be planned on various
levels. At a global lever, which is that of the mission, safety expresses the
absence of accidents or incidents, concerning people, needs or the environment,
and it is associated with the safety function. At the component level, it expresses
the absence of behaviour which could cause an accident for the specified
mission. Finally, the safety concept may also be considered at an output piloted
by a component.

To ensure a determined level of safety, risks must be analysed first. This
analysis process is continuous and iterative. It intervenes early in system
development. The idea is to identify dangerous phenomena and attempt to
eliminate them. In order to do this, the dangerous state must be suppressed at
the system operational level, or all dangerous phenomena must be suppressed.

Since it is impossible to eliminate all dangerous phenomena cannot be
eliminated, the associated risks must be evaluated and estimated. When a risk
is considered high, measures must be imagined to reduce it, either by decreasing
its severity, or by decreasing its probability of occurring.

Risk analysis is led on four levels :

• Very early in the life cycle : preliminary analysis of risks identifies critical

functions (safety functions) and highlights dangers.
• At the system level : makes it possible to identify risks introduced by interface

between sub-systems and risks of human errors.
• At the sub-systems level : each sub-system is analysed and the safety

criteria, during normal operation or in a degraded mode, concerning the sub-
system is identified.

• At the support and operations level : analysis identifies the procedures to
reduce danger during use and maintenance of the system.

6

1.1.2 Operation safety process

The most traditional process, in the automobile industry and in mechanics, to
ensure operational safety of systems is based on experience feedback.
Engineers collect and analyse operational dependability data in order to eliminate
and control risks of failures. This systems safety approach is issued from an
industrial culture mainly based on system testing, rather than on analysis.

A second process is based on system dependability. This approach measures
the probability of random failures, rather than the probability of a risk of an
accident. It is not efficient to test the safety of systems and software.

A consequence of these two approaches is the use of well-tried components.
Safety is not the property of an isolated element, but the combination of the
equipment, the software and the environment in which the system is used.

The system approach to safety mainly consists in identifying risks as early as
possible and classifying them, in order to undertake corrective actions to
eliminate or minimise them before system design choices are made firm.

Several models of life cycles have been developed :

The cascade model is simple. A certain number of steps (or phases) is agreed
upon. A step must end with the production of certain documents or software.
The results of the step are thoroughly reviewed, and the next step is taken only
when this review is considered satisfactory.

The V model, which is more recent, presents a more realistic approach to the
relationship between development activities and verification activities, when there
is a software code.

Cascade and V models have disciplined the software development process, by
identifying its main activity and by specifying their sequencing. However, the
linear vision introduced by these models and their rigidity have called by
modifications and extensions of these models.

The first evolutionary model is the incremental model. Only one sub-assembly is
developed at a given time. Core software is first developed, then increments are
successively developed and integrated.

Another form of evolutionary development consists in relying on modelling, a
common practice in the field of engineering. Producing models makes it possible
to specify the needs and desires of the user, either globally or by focussing on
certain functions.

A representative model of this approach is the spiral model. Development
according to this model begins with a preliminary analysis of needs which is
refined during the initial cycles, taking into account constraints and risk analysis.
The originality of this model is to surround the development itself with phases
devoted to risk analysis and to the determination of safety objectives.

7

At present, there is a strong tendency to prefer the definition of system
development models in order to master the development of complex systems
(the standard MIL-STD 499B prepared by the American department of defence,
version EIA/IS-632 of which applies to commercial systems).

In order to harmonise system safety evaluation methods, ITSEC criteria
(Information Technology Security Evaluation Criteria) and a method of evaluation
ITSEM (Information Technology Security Evaluation Manual) have been
elaborated. In this method, the evaluation process is based on two aspects :

•••• The study of dependability, which strives to analyse whether or not the system

is apt to fulfil its safety objectives, in its design principle,
•••• The study of compliance, which strives to analyse whether or not safety

functions and mechanisms are correctly installed.

The standard IEC61508 presents a development model for critical
electrical/electronic/ programmable electronic systems. This model presents a
generic development process. The approach adopted distinguishes four levels of
criticality.

Depending on the levels of criticality identified for a system and for the software,
this standard recommends the application of operation safety methods and
techniques.

The various models described above mix fundamentally different activities,
development itself and verification, and conserve the strict sequencing of
activities.

The standard DO-178B, specific to the aeronautics industry, makes this
separation. It recommends system structures which use design techniques
allowing for partitioning, heterogeneous redundancy and monitoring. It offers a
new software development model, the process model [LAP95]. Its B review
consider that information on the system level are necessary as an entrance point
into the software development process.

An explicit operation safety development model is proposed by LAAS-CNRS
[LAP95]. It presents a global view and summarises the main activities required
to develop a dependable operating system : fault prevention, fault tolerance, fault
elimination and fault forecast.

The state of the art shows that developing a depend able system requires
the integration of operation safety activities thro ughout the life cycle. It
therefore becomes necessary to be able to certify critical systems, no longer only
software.

8

1.1.3 Obtaining and validating a dependable system

Figure 1.1 shows the relationship between use of means, in a “traditional” quality
process, to strive for a system exempt from faults, and the operation safety
process, which implements other operation safety means in order to strive for a
system exempt from failures.

While fault prevention attempts to prevent faults from occurring or from being
introduced, fault forecasting attempts to estimate the presence, creation and
consequences of faults.

Certain methods of evaluation are entirely ordinal, such as AMDEC (Analyse des
Modes de Défaillance, de leurs Effets et de leur Criticité – Analysis of Failure
Modes, their Effects and their Criticality) or APR (Analyse Préliminaire des
Risques – Preliminary Risk Analysis); others are entirely based on probability
such as MARKOV chains. Finally, certain methods may be used for both
aspects, such as dependability diagrams and failure tree diagrams.

Figure 1.1 : Elements comprising operation safety.

ZERO
failure

Zéro
fault

FAULT
PREVENTION

FAULT
TOLERANCE

FAULT
ELIMINATION

FAULT
FORECAST

Strive for a system
exempt from faults

Grant the system the aptitude
to provide services

which fulfil its function

Obtain confidence in the aptitude
of the system to provide

services which fulfil its function

ATTAINMENT VALIDATION
AVOID

FAULTS

OPERATION SAFETY

9

Three types of processes may be distinguished from among the forecasting
methods :

1. The inductive process moves from a particular situation to a more general

situation. This is a detailed study of the effects consequences of failures have
on a system,

2. The deductive process moves from a more general situation to a more
particular situation. This is the study of the causes of a failure on a system,

3. The hybrid process is a combination of the two preceding processes.

Methods of evaluation based on probability require a modelling activity which
consists in elaborating an analytical model parameterised with the rate of failure
of each component in the system.

The two most recognised and most used models are MIL-HDBK-217F and
RdF93. The MIL-HDBK-217F model is recognised on an international level and
remains the reference in the electronic industry. The RdF93 model is a
dependability collection published by CNET in France, more particularly for the
telecommunications sector.

Fault elimination attempts to reduce the presence of faults, in quantity and
severity, by three phases : verification, diagnostic and correction. After the
correction phase, non regression must be verified, in order to ensure that
elimination of the fault did not have any undesirable consequences.

Fault tolerance attempts to provide a service capable of fulfilling the function or
functions despite the faults.

In many sectors of activity, the cost restriction does not allow for use of material
redundancy. However, some fault tolerance techniques may be implemented in
order to improve the dependability and safety of electronic systems :

− Watchdogs to check that the process is not blocked,
− Timer degradation to ensure processing speed,
− Inlet networks to filter parasites,
− Protection diodes, against overpressure (transitory or load dump),
− Inlet tests (limit values or loss of information),
− Outlet tests (intelligent power circuit for the diagnosis),
− Checksum on the read-only memory to detect memorisation errors which

affect the software.

10

1.1.4 Explicit operation safety for mecatronic syst ems

A global mecatronic system is composed of two main sub-assemblies : the
physical system which identifies the various mechanical hydraulic, pneumatic,
electric, etc. parts, and the electronic system which integrates the actuators and
the sensors, as well as the electronic command unit (equipment and software).
The structure of the piloting system consists in expressing a global functional
view (white box) of the system.

Operation safety studies must be applied when developing the system. The
solution chosen must be justified and accompanied by the tracability of operation
safety requirements on each of the three levels of knowledge of the system
(global system, electronic piloting system and software).

Figure 1.2 : Explicit operation safety process.

Sub-assembly
equipment & software

specifications

Mecatronic project progess over time

External AF
Internal AF

 Operation safety
 studies
 APR, AMDEC
 forecast dependability

Electronic piloting
system specification

and structure

 Operation safety
 studies
 APR, AMDEC
 forecast dependability

Operation safety
studies
AEEL, AdD
Software dependability

Expressing needs

Operation safety
requirements
of the global system
Justification of structure
choise made

Electronic piloting
system specification
and structure

GLOBAL

SYSTEM

ELECTRONIC

PILOTING

SYSTEM

(equipment and software)

SOFTWARE

Operation safety
requirements
of the electronic piloting system
Justification of structure
choise made

Sub-assembly
equipment & software
specifications

Operation safety
requirements
of the software
Justification of structure
choise made

11

1.1.4.1 Establishing safety objectives

A safety objective for the global system may be allotted according to the return of
experience with systems previously developed, based on expert judgement. The
operation safety study must set a realistic objective. The objective for electronic
systems is expressed by a rate of failure.

Allotting a safety objective for each function must be in keeping with the
dependability objective expressed for the overall electronic system. Other
complementary objectives may be necessary for maintenance actions.

1.1.4.2 Mecatronic system specification

Once the various events feared have been identified for the mecatronic system,
the operation safety demands must be specified. The first step is to express
OPERATION SAFETY ASSURANCE CRITERIA which will be used to establish confidence
in the operation safety level of the system.
The second step is to define the OPERATION SAFETY MEANS which must be
implemented to ensure control of operation safety when designing the electronic
system.
The operation safety study of function and physical structures of the electronic
system is composed of various activities. It is mainly accomplished by AEEL
(analyse des effets des erreurs sur le logiciel – analysis of the effect of errors on
the software) and by failure tree diagrams.
Using the software failure tree diagrams makes it possible to complete the AEEL,
in order to warn against faults in design. The study is run on the software
structure (specification and/or general design), in order to study the potential
failure combinations which cause feared events in the software. Analysis of
minimum cuts makes it possible to rank the critical elements of the software.

TYPES OF SOFTWARE ERRORS CLASSES OF ERRORS USED

Calculation error Evaluation of an incorrect equation, incorrect result to
an operation

Algorithm error Error in instruction sequencing, (un)conditional
incorrect branching, incorrect processing loop

Error in task synchronisation Incorrect synchronisation primitive type, unexpected
synchronisation parameter

Error in data processed Error in definition, error in initialisation, error in
manipulation, modification of the value of data

Error in interfacin g between
procedures

Error in procedure instruction, error in procedure
outlet, error in parameter transmission between
procedures

Error in transferring data with
the environment

Error in defining data, error in data transmission,,
incorrect transfer periodicity

Table 1.2 : Example of software error typology.

12

1.2 Evaluating safety software

1.2.1 Specific characteristics of safety software

Software is an intellectual creating including programs, procedures, rules and all
associated documents, related to implementation of the programmed system.
Software is materialised by specifications, a code (program) and documentation.

Software development is often difficult to control. Moreover, software is rarely a
finished product; it evolves from one version to another, within very short periods
of time. It is a paradoxical product, which may become obsolete, but is not
subject to wear. On the contrary, it is best when used frequently. Finally,
software development is essentially devoted to product design and testing and
little emphasis is placed on series production.

One of the most important characteristics of software is that it is a product with
countless inputs and which processes combinations far greater than the brain
capacity. As a consequence, software behaviour cannot be fully apprehended by
man. It is therefore separated into different modules. Nevertheless, it remains
difficult to fully control the complexity of the product.

1.2.2 Evaluating safety software

The problem raised by software evaluation is to obtain justified confidence in the
software behaviour. The software is often analysed according to the method
used for its development.

The evaluation is then based on a wide variety of criteria such as its structure, its
development process, or the manner in which it was written, even though, in fact,
only its behaviour should be evaluated. This is why it is rather difficult to
distinguish between development methods and evaluation methods. These two
types of methods increasingly overlap one another.

Finally, it is interesting to note that there are no specific methods for critical
software. The methods used for critical software and those used for traditional
software differ by the requirements of the standards. The major difference, in
fact, resides in the budget and the time devoted.

Evaluating software may have highly varied significations. In general, two levels
of evaluation are frequently distinguished : validation and verification.

1.3 Software safety requirements

Expressing software safety requirements, as well as the taking into account and
follow-up of these requirements throughout the software development cycle,
remains within the field of avant garde projects to date. Information concerning
these requirements is not actually diffused to the general public and often
remains limited to a circle of experts.

13

Work concerning software safety requirements has be initiated by organisations
such as ISdF (Institut de Sûreté de Fonctionnement – Operation Safety Institute),
INRS (Institut National de Recherche et de Sécurité – National Institute for
Research and Safety), as well as by INRETS (Institut National de REcherche sur
les Transports et leur Sécurité – National Institute for Research concerning
Transport and Safety) within the framework of research projects such as
CASCADE (Certification and Assessment of Safety Critical Application
Development) and ACRUDA. In general, all of this work resembles the needs of
avionics, nuclear and railway transport fields.

Thus, based on collected information concerning practices in the industrial
environment in the field of software safety, mainly in the defence, transport and
space sectors, and concerning use of work and reflections by European groups
(PDCS and EWICS/TC7) and national groups (AFCET and ISdF), work done by
IsdF reflection groups has led to the elaboration of two synthesis documents. An
initial guide to elaborate the safety requirements for the software, for the
provider, and a second guide to develop software with strict safety requirements,
for the contracting party have thus been drafted.

14

2. SPECIFICATION AND VALIDATION OF SAFETY SOFTWARE

2.1 Specification requirements

A study run by HSE concerning primary causes of failures on a population of 34
accidents, shows that the main part (44.1%) is caused by poor specification.

Prim ary cause o f con tro l system fa ilu re [based on
34 inc iden ts]

14.70%

5 .9 0%

1 4.70%

20 .6 0%

44.10 %
D es ign &
im p lem entat ion

In s tal lat ion &
com m iss io nin g

O perat ion& m aintena nce

C hang es after
com m iss io nin g

S pec i fica tion

Special attention must be paid to :

− Adequation faults . Adequation between the need recognised and the actual

need must be ensured,
− Over-specification . This may lead to unnecessary restriction and exclude

certain solutions,
− Under-specification . This may allow for a manoeuvre margin which is too

wide concerning the chosen solutions, and may lead to unacceptable choices,
− Unfortunate consequences of certain requests . Impossible or non

verifiable objectives should not be specified. Requests to apply standards
or guides should only be made once their contributions and negative
impacts have been carefully considered,

− The form . It is recommended that enunciation remains precise, that styles “in
keeping with the rules of the art” be avoided, that terminology be defined, that
references from one document to another be avoided, that there be a constant
concern for tracability and verification.

Requirements concerning the product and the processes, which may be
applied to the software and its entities and auxiliary services, must be
established by contract. A fair compromise must be made between contractual
requirements which are necessarily severe, and the minimum freedom to be
granted to the developer, i.e. which engages responsibility and motivation.

Formulating operation safety objectives must be quantitative , in terms of the
rate or critical failures and/or qualitative , with a list of feared events, a qualitative
analysis, the respect for specific procedures and regulations.
From the point of view of software output safety, feared events must be
described perfectly. It is recommended that a preliminary list of accepted
degraded operation modes be established as early as possible.
It is highly inadvisable to simply formulate quantitative requirements for the
software.

15

2.2 Validation and specification methods

2.2.2 Specification methods

Three types of specification language may be distinguished : specification in
ordinary language, semi-formal specification and formal specification.

Ordinary language is chosen as the specification language if it is usually used. It
may prove to be ambiguous, contradictory and incomplete, since two major
problems persist :

1. Difficulty of expression : man does not think with words only.
2. Difficulty of interpretation : a text need not be complex to be difficult to

interpret. Specification may thus be interpreted differently depending on the
definitions one possesses or those consider to be the definitions used by the
drafter.

Informal specifications written in ordinary language are generally incomplete,
incoherent, ambiguous, contradictory and erroneous; at best, errors introduced
are discovered late in the life cycle of the software. As a consequence, it seems
reasonable that they not be used for safety software.

Table 1.3 provides several specification methods and their main characteristics.

Contrary to ordinary language, specifications implemented by formal methods
are not ambiguous, are precise, the semantics of notations is clearly defined. If
one is familiar with the representation used, formal methods are a good means of
communication and documentation.

In fact, formal methods are more than a tool for representation; they are also a
technique for drafting specifications which restrains the designer to make
abstractions and finally results in a better comprehension and modelisation of the
specifications. It is sometimes even possible to make simulations.

Use of a formal method requires considerable investments in time and training.
Formal methods are a significant step forward for the development and
evaluation of critical software.

Table 1.4 provides a non exhaustive list of formal methods.

16

Name Place in the
Life cycle and

Purpose of
The method

Observations

RdP
Réseau de
Pétri
Pétri
Network

Specification
Development

Method based on transition systems, using
tokens and spaces. It makes it possible to
demonstrate properties such as non-
blocking, vivacity or equity of a set of co-
operating processes. It is often used to
specify parallelism and synchronisation.

Statecharts Specification
Development

Specification method based on transition
systems.

SADT
(Structured
Analysis
Design
Technique)

Specification,
design

Development

Graphic specification method. It uses
boxes to represent data or activities and
arrows to represent flows between data or
these activities. It is sometimes designated
as a semi-formal design method and is
often used in industry.

SART
(Structured
Analysis
Real Time)

Specification
Development

Real time extension proposed for the
structured S.A. method of E. Yourdon and
T. de Marco. One of the most widely used
structured software analysis methods for
real time applications.

Z Specification,
design

Development

Formal specification language based on the
Zermelo theory of sets. It makes it possible
to express functional conditions of the
problem to be translated into set notation.

LDS Specification
Development

Specification and functional description
language. It is subject to a CCITT
standard.

CCS Specification
Development

Formalism used to describe parallelism
semantics. It is based on process algebra
and remains very abstract and impossible
to be used to make useful conclusions.

CSP Specification
Development

Presents the same characteristics as CCS.

Table 1.3 : Specification methods which contribute to evaluating software.

17

Name Place in the

Life cycle and
Purpose of
The method

Observations

VDM
(Vienna
definitio
n
method)

Specification,
Design

Development
Static evaluation

The oldest and best established formal
specification language. It is also a development
method. It combines concrete notions such as
types of data and abstract notions such as the
theory of sets. Before – after predicates (pre and
post conditions) where what does not change
must be clarified, guides the refining of the
specifications. Proof is required and written using
a three value logic (True, False and Undefined).
This particular logic does not simplify the
establishment or the verification of proof. There is
no mechanism to decompose or compose
specifications or refinings. VDM has been chosen
by the EEC, the English Standards Institution
Committee and ISO to be used as the basis to
develop a specification language standard.

B Specification,
Design

Development
Static evaluation

Formal method of specification based on the theory
of sets and first order logic. Specifications are
modelled using abstract machines. These
machines, inspired by the object oriented design
method, have three parts. The first describes the
state and properties of the machine; the second
specifies the operations which make it possible to
modify the state; and the third records the
composition connections with other machines.
Specifications are developed using vertical
iterations by refining and horizontal iterations by
machine construction. Proof obligations are
obtained by a substitution calculation. The B
method is implemented by Atelier B, which strives
to cover the entire development of software, from
specifications and the production of proof
obligations to code generation.

RAISE Specification,
Design

Development
Static evaluation

Set of tools which uses a specification formalism
referred to as RSL and which combines the VDM
method and process algebra.

CLEAN
ROOM

Specification,
Design

Development
Static and
dynamic

evaluation

Combines a formal method and a traditional
software workshop. Specifications are written in
PDL (Program Description Language) making it
possible to define abstract machines.
Development is done manually using refining and
the generation of proof obligations. Finally, a
series of statistic tests makes it possible to
evaluate the dependability of the software

18

developed.
FDM
(Formal
Develo
pment
method
ology)

Specification,
Design

Development
Static evaluation

Combines a specification language (Ina jo) and an
assertion drafting language (Ina Mod). It
implements abstract machines, refinings justified
by proof obligations. It has the support of an
interactive demonstrator, ITP, which takes care of
proof, but remains rather limited. FDM is certified
by the US National Computer Security Centre for
safety applications.

Table 1.4 : Formal methods which contribute to software evaluation.

2.2.3 Methods of validation

The first step is to make certain that software specifications are in compliance
with user needs. This verification is relatively difficult to make since the user
often expresses his needs in an informal, incomplete, imprecise or yet incoherent
manner. This activity therefore mainly rests on the experience and the know-how
of experts in the field.

The second level of evaluation corresponds to moving from specifications to the
final code; the final code must be in compliance with the software specifications.
This evaluation is in fact devoted to the software development process. Its
success depends on the methods and tools issued from the software
engineering.

The third level of evaluation, corresponding to moving from the final code to the
software behaviour, consists in executing the final code to check the software
behaviour. This level of evaluation is based on dynamic methods and is
automatically controlled for the most part.

The fourth level of evaluation consists in making certain that the final code is in
compliance with the user needs. For the same reasons as those expressed for
the first level of evaluation, which are inherent to the nature of the user needs,
this compliance is very difficult to demonstrate.

The fifth level of evaluation, corresponding to moving from specifications to
software behaviour, consists in checking that the software behaviour is in
compliance with what is described in the specifications. This activity was
previously referred to as VERIFICATION. It is also mentioned in documentation as
the answer to the question, “Have we built the software correctly”. To date, this
evaluation may be done by tests for which the initial sets have been elaborated
based on specifications.
Over a longer period of time and by the intermediary of more elaborate methods,
this evaluation may be done by program synthesis techniques or specification
simulation techniques.

Finally, the sixth level represents the total evaluation activity.

19

Figure 1.3 : Software evaluation activities.

2.3 CASE tools for specification and validation

The first CASE tools (Computer Aided Software Engineering) were developed as
of 1985 in order to help software developers better understand and apply
functional analysis methods and specification methods.

Despite the diversity of the tools available on the market today, the research we
have done to identify those which enable safety software specification has
remained sterile.

Appendix 4.2 contains the sheets of the 9 most renowned products.

Although oriented towards safety software development, the SCADE product
(Safety Critical Application Development Environment) by VERILOG, does not
have a sheet since it is not well adapted to small and medium sized applications.

INTERPRETER

DEVELOPER

OPERATOR

Know-how
experience

Methods

Methods

Compliance with
the final code

Technical and
equipment choises

Compliance with
specifications

Specifications
drafted

Compliance with
user needs

VALIDATION VERIFICATION

User
needs

Specifications

Final code

Software
behaviour

20

2.4 Specification and validation procedure

The role played by specification for operating safety is to explicit “what to do?”,
resulting from refining the specifications after functional analysis and preliminary
risk analysis. It forms the interface between the analyst and the software
designer, specifying the safety restrictions, such as execution time, inputs and
outputs, the behaviour desired in case of failure, etc.

We contacted 7 French companies in order to report on the methods and tools
used in the software development process, notably for critical software. Very few
companies use specific methods. Among the companies which systematically
implement software engineering methods and tools are companies involved in
the automobile and nuclear industries.

It was very difficult for us to establish a procedure based on industrial practices
concerning critical software specification. The interviews obtained with
specialists from different horizons, enabled us to synthesise the following
procedure for specification :

The specification phase is often based on the experience of the person in charge
of drafting the specification.
It is necessary to :

- Provide a precise definition of the composition and role of the analysis and

specification team
- have final users intervene early
- plan project reviews and their contents
- have the client express his needs as extensively as possible

- Facilitate “client”-developer” communication
- For specification, in so far as possible, use an adequate method and possibly

an adequate tool
- (CASE tools ensure the unity of the dictionary and make it easier to avoid

systematic transcription faults)
- a good drawing is worth 1,000 words

- imagine being in the client’s position and adopt his logic and his manner of
expressing himself

- use neutral vocabulary for both parties, client / specification person or team
- incite the client to enter into the developer logic, in order that he may formalise

his need better
- the client will thus express the needs he considers “evident” and

therefore not necessary to be stated
- begin by making a functional analysis and a specification of the overall system
- make as complete a description as possible of the environment-operator-

application interactions
- define the role of the operator
- take into account the application ergonomics : screens, alarm control,

diagnostic, interventions for maintenance, etc.
- divide to rule better

- wait for the right moment in the system description before dividing
specification tasks among the members of a team

- decrease the complexity by carefully chosen divisions

21

- minimise the information exchange flows
- do not decompose the system into more than three level, since

complexity increases quickly and overall control may be lost
- decompose critical functions into primitive functions. Impasses may

thus be highlighted.
- in parallel, during specification, specify the manner in which to check objective

expectations (acceptance files) and the means necessary to complete the
verification

- take the referential into full consideration : standards, guides, technical
documents, etc., before referring to them in the specifications
- select elements which may be realised and measured in relation with the

size of the application, the structure and culture of the company which
develops the software

- validate the specifications by an internal audit type action done by a person /
team other than that concerned by specification and development

- include the final user of the application

22

3. CONCLUSION

Faced with the fact that few software fault models exist, essentially design faults,
the software operation safety procedure to be established must be based on the
combined implementation of various complementary techniques.

Over and above the development process, it has been explained that
organisation and management dimensions play an important role in safety
software projects. The need to express safety requirements for the software, to
take into account and follow-up these requirements throughout the development
cycle is absolutely necessary. In addition to operation safety activities, the
procedure must also include “quality” activities depending on the criticality of the
software developed.

There is a great difference between software development practices and
theoretical works which treat the subject.
It is difficult to elaborate an operation safety methodology for small and average
sized companies. Organisational restriction, and more particularly the lack of
operation safety culture, greatly complicate the elaboration of an operation safety
process. There are no specific software safety specification tools for small and
average sized applications.

Safety software specification is a very important phase in the life cycle. The
procedure proposed highlights the prime importance of the role of communication
between the person (team) doing the specification and the final user (client) and
the necessity to use adapted methods and tools.

23

4. APPENDIXES

4.1 “S PECIFICATION METHODS” Sheets

AMDE LOGICIEL
[Analysis of Failure Modes and their Effects]

METH1

PURPOSE
The purpose of the software AMDE is to identify likely software failure modes, possible causes for
each mode and the effects on the system, on the one hand, and to control the failure risks of a software
product, by implementing preventive or corrective actions, on the other hand.
The software AMDE is sometimes referred to as AEEL (Analysis of the Effects of Software Errors).

PLACE IN THE LIFE CYCLE
AMDE is a software design assistance method for systems for which dependability and/or safety is a
main component. It may be used during the specification phase or during the software design phase.

NECESSARY RESOURCES
The software AMDE requires perfect knowledge of the software to be analysed. No specific tool need
be used. An Excel table, or even a Word table are sufficient.

ADVANTAGES AND INCONVENIENCES
Before making an AMDE, the level of detail to be reached in the software tree chart must be defined.
The AMDE is extremely efficient when centred on software components which way cause failures in
the overall system. It makes it possible to optimise verifications by differentiating the levels of tests
run depending on the criticality of the software components.
For complex systems with a large number of components, it is preferable to make analyses at several
levels (identification of the system parts to be make dependable, restriction of the analysis to certain
functions and to certain software failures, such as blocking tasks, for example).

REPRESENTATION OR THEORIES USED
AMDE are usually realised by tables presented as columns containing information, for each
elementary software component studied (failure mode, causes of failures, effects of failures, means of
detecting failures).

PRODUCTS
AMDEC-SOFIA, AMDEC-PRO.

FOR FURTHER INFORMATION
- CEI 812-1985 : Techniques d’analyse de la fiabilité des systèmes/Procédures d’analyses des modes
de défaillances et de leurs effets. (System dependability analysis techniques / Analysis procedures of
failure modes and their effects.)
- A. Villemeur-1988 : Sûreté de fonctionnement des systèmes industriels (Operating safety of
industrial systems) - Eyrolles.
- C. Hourtolle-1987 : Conception de logiciels sûrs de fonctionnement, Analyse de la sécurité des
logiciels (Designing dependable operating software, Analysis of software safety) – Doctorate thesis in
computer science at LAAS-CNRS.

24

FAILURE CHART METH2

PURPOSE
The purpose of the Failure chart is to find combinations of events, based on a feared event, which lead
to occurrence of this event. The failure chart makes it possible to identify fairly rapidly all risks to the
execution environment of software (equipment, software, even human).

PLACE IN THE LIFE CYCLE
The failure chart is a method which may be used during the specification and design phases of
software.

NECESSARY RESOURCES
The principles of failure charts are relatively simple and do not require specific tools. However, it is
recommended that a tool be used to determine certain characteristics of the chart, such as minimum
cuts.

ADVANTAGES AND INCONVENIENCES
The purpose is to rapidly identify the parts of the software which combine events to be avoided by the
system.
In order not to burden the analysis, it is advisable to define the level to be reached by the analysis
beforehand. Only chart branches corresponding to software failures are detailed to the extent that
they may be allotted to a software component.
The failure chart is not adapted for the representation of dynamic events and leads to repetitions if the
feared events are not well separated from one another.

REPRESENTATION OR THEORIES USED
Based on a list of feared events, the failure chart consists in decomposing each event (chart root) by
successive levels of events, connected by AND, OR, etc. type logical operators, with precise
symbolism.
On the basis of the failure chart thus established, particular techniques (preferably requiring the
implementation of tools) are used in order to identify the weak points of the software, such as reducing
the chart to minimum cuts.

PRODUCTS

FOR FURTHER INFORMATION
- A. Villemeur-1988 : Sûreté de fonctionnement des systèmes industriels (Operating safety of
industrial systems)- Eyrolles..
- C. Hourtolle-1987 : Conception de logiciels sûrs de fonctionnement, Analyse de la sécurité des
logiciels (Designing dependable operating software, Analysis of software safety) – Doctorate thesis in
computer science at LAAS-CNRS.
- N. Limnios-1991 : Arbres de défaillances (Failure charts) - Hermès.

25

B LANGUAGE METH3

PURPOSE
The purpose of the B language is formal development of software components and the supply of
correction verification means in relation to the specifications.

PLACE IN THE LIFE CYCLE
The B language covers all specification, design and realisation phases of the software, the ADA or C
code may be generated automatically.

RESOURCES NECESSARY
Implementation of the B language for industrial development of software requires a set of assistance
tools, notably for the verification (proof) phases and code generation phases.

ADVANTAGES AND INCONVENIENCES
The B language is a homogeneous language used from the specification phase to the realisation
phase, allowing for formal verifications.
Mathematical demonstrations, referred to as “proof”, carried out while using the B language,
guarantee the internal coherence of the various modules, the coherence of their interactions, as well
as the validity of the realisation modules in relation to the specification modules.
Failure of a mathematical demonstration highlights a lack or incoherence in the specifications.
The B language is well adapted to realising automatic controls, control-commands, or to the
establishment and verification of critical algorithms. However, it is not well adapted to realise
parallel or critical real time software systems. Several weeks of training are required to become
operational.

REPRESENTATION OR THEORIES USED
The B language is a formal specification language enabling modelisation of a system (with software
parts) by abstract machines. It is a modular language which offers data encapsulation, ranking and
decomposition mechanisms. The properties of the modelled system are expressed by mathematical
formulas. The formal semantics of the B language guarantee that these properties are met when the
software is installed.

PRODUCTS
Atelier B (STERIA).

FOR FURTHER INFORMATION
- J.F. Monin-1996 : Comprendre les méthodes formelles - Panorama et outils logiques
(Understanding formal methods – Panorama and logical tools)- Masson.
- S. Taouil-Traverson-1997 : Stratégie d’intégration de la méthode B dans la construction de logiciel
critique (Method B integration strategy in critical software construction) – Doctorate Thesis in
Computer Science - Télécom. Paris - July 1997.

26

LUSTRE LANGUAGE METH4

PURPOSE
The purpose of the Lustre language is to develop critical real time software, in fields such as control-
command, automatic control and signal treatment.

PLACE IN THE LIFE CYCLE
The Lustre language covers specification and design phases. It is also possible to automatically
generate the C code, from a “Lustre” description.

RESOURCES NECESSARY
Implementing the Lustre language for industrial development require use of a CASE tool (graphic
editor, simulator, C code generator).

ADVANTAGES AND INCONVENIENCES
Lustre is a synchronous data flow language. A “Lustre” program may be graphically represented by
a network of operators acting in parallel with the rhythm of inputs. The Lustre execution model
guarantees functional determinism and ensures a limited execution time.
Lustre facilitates the manipulation of time phenomena for the user. The graphic aspect of the
language reinforces readability of the descriptions.
It is possible to generate the directly compilable C code from a Lustre description. This description
may be simulated, thus making it possible to validate the functional behaviour.
The mathematical semantics of the language makes it possible to formally check the properties.
The Lustre language is adapted to automatic controls in general (equation or function block
representation). The Lustre language is not well adapted for asynchronous type applications
(communication protocol type applications). It is best to be familiar with equation and functional
block representations to implement the Lustre language.

REPRESENTATION OR THEORIES USED
The Lustre language has high level language properties. Modularity and ranking concepts are part of
the language and concern both data and processing. Completeness and coherence are guaranteed by
the semantics of the language (verification of the causality principle (the output of a program cannot
depend on future inputs), detection of cyclical definition, etc.).

PRODUCTS
SCADE (Verilog).

FOR FURTHER INFORMATION
- N. Halbwachs-1991 : Programmation et vérification des systèmes réactifs - le langage Lustre
(Programming and verification of reactive systems – the Lustre language) - Techniques et Sciences
Informatiques (Computer Science and Techniques) - Vol.10 n°2 - 1991.
- C. Dubois-1995 : Approche synchrone et logiciels critiques pour l’automatique (Synchronous
approach and critical software for automatic control) - REE n°1 - June 1995.

27

PETRI NETWORK METH5

PURPOSE
The purpose of a Petri network is the dynamic description of software behaviour, in order to check the
properties of completeness and coherence, etc. The Petri network also makes it possible to test the
degraded modes of the software, as well as the efficiency of the fault tolerance techniques.

PLACE IN THE LIFE CYCLE
Behavioural modelisation by the Petri networks is a precious help in specifying and designing, aside
from the verification it enables to accomplish. It is used at the end of static specification and makes it
possible to refine this phase.

RESOURCES NECESSARY
The interest of dynamic specification lies in its simulation, which may be interactive and more
exhaustive (all behaviour of the model are simulated and memorised in a state graph of the model).
This simulation requires implementation of powerful computer tools.

ADVANTAGES AND INCONVENIENCES
Within the framework of malfunction analysis, verification is based on the model form and makes it
possible to highlight incoherent behaviour or behaviour which blocks, such as non-reinitialisation,
non-determinism, dead code (transitions which may not be drawn), blocked states.
It is one of the methods most often used to specify parallelism and synchronisation.
Often used to design models, it fails in the specification of complex systems. In fact, the networks
become to large and are difficult to use.
Within the framework of model verification in relation to needs, specific invariable logic type
properties of the model are verified, as is coherence of the actual behaviour in comparison with the
expected behaviour, and calculation of global properties.
Within the framework of time evaluations, certain products provide an automatic simulation mode
referred to as “stochastique”, in which transitions are drawn at random dates, depending on the law
of distribution associated with them. This makes it possible to evaluate certain quantitative
characteristics of the model, such as its performance (average response time, etc.), as well as its
dependability (average frequency of breakdown occurrence).
Within the framework of test generation, the model becomes a reference according to which the system
is to be validated. A tool allows for the automatic generation of validation test scenarios, which are
representative, based on specifications.
Implementation of Petri networks requires a major investment in terms of tools.

REPRESENTATION OR THEORIES USED
The method of representation by Petri networks is based on transition systems by using tokens and
spaces.

PRODUCTS

FOR FURTHER INFORMATION
- C. Hourtolle-1987 : Conception de logiciels sûrs de fonctionnement, Analyse de la sécurité
des logiciels (Designing dependable operating software, Analysis of software safety) – Doctorate
thesis in computer science at LAAS-CNRS.

28

SA
[Structured Analysis]

METH6

PURPOSE
The purpose of the SA method is the static specification of the software. This method was defined by
E. Yourdon and T. de Marco in 1978-1979. It allows for structured analysis of software by successive
refining of processing until all are described in terms of logical data flows.

PLACE IN THE LIFE CYCLE
The SA method covers the specification phase.

RESOURCES NECESSARY
Implementation of the SA method requires no computer tools. However, for relatively large projects,
it is recommended to implement CASE tools, especially since these tools supply assistance for
construction and model validation.

ADVANTAGES AND INCONVENIENCES
The SA method is especially well adapted for information exchange and order transmission problems.
It is used by many software engineering workshops. Due to its concepts, it concentrates on the
software functional specification phase.
It is not well adapted for representation of the dynamic behaviour of software. In fact, it presents a
static view of the various functions which the software to be realised must assume.

REPRESENTATION OR THEORIES USED
The SA method language is composed of graphic tools and/or textual tools.
The graphic tools implement DFD (Data Flow Diagrams), which are interconnection “process”
networks or function connected by data which circulates.
The textual tool is comprised of a DD (Data Dictionary). This is created, is interpreted at the same
time as the data flow diagrams. The DD group together the semantics and structure of all data
present in the system. The data dictionary includes the description of the data flows.
The graphic and/or textual tool implements DSD (Data Structure Diagrams) and PSPEC (Process
Specifications). The description of complex data requires the creation of DSD. Information contained
in the DSD may be textual or graphic.
The last refining levels reveal elementary processes referred to as PSPEC function primitives. These
may be expressed by abstract algorithms, decision charts, decision tables, Michael Jackson diagrams
or Nassi Shneiderman diagrams.

PRODUCTS
Teamwork (CAYENNE Software).

FOR FURTHER INFORMATION
- P. Jaulent-1990 : Génie logiciel (Software engineering) - Armand Colin.

29

SADT
[Structured Analysis and Design Technique]

METH7

PURPOSE
The SADT method of analysis is a multiple disciplinary language which strives to encourage
communication between users and designers. Designed according to simple concepts and based on
graphic and textual formalism which is easy to learn, SADT makes it possible to model the problem
raised before attempting to expose a solution, on the one hand, and, on the other hand, to ensure
efficient communication between the various people concerned by the problem to be solved.

PLACE IN THE LIFE CYCLE
The SADT method cover the system specification and design phases.

RESOURCES NECESSARY
Implementing the SADT method requires no computer tools. However, for relatively large projects, it
is advisable to implement CASE tools, since these tools provide assistance for model construction and
validation.

ADVANTAGES AND INCONVENIENCES
The SADT method is a simple method, often used in industry, especially to decompose a system into
sub-systems. Its power of expression nevertheless remains weak. This method offers good readability,
due to the clear presentation of its graphics, the limited number of its basic concepts making it easy to
learn, its aptitude to communicate in a non computer language, the hierarchical and modular
structure of the model obtained.
However, SADT is missing certain elements, such as specification from the point of view of
performance and temporal restrictions, coherence between actigrams and questionable datagrams,
and it presents a very limited dynamic point of view.

REPRESENTATION OR THEORIES USED
SADT is a graphic method. It implements boxes to represent data or activities and arrows to
represent flows between this data or these activities. A SADT model is composed of a set of
hierarchically arranged diagrams. At the most general level, there is a context diagram which shows
the sources and destinations of the various information arriving to or leaving the “box to be
analysed”. Each element of the diagram may be decomposed into another diagram. Each diagram of
lower levels provides a limited number of details concerning a well defined subject.

PRODUCTS
ENVISION (CASE France).

FOR FURTHER INFORMATION
- P. Jaulent-1990 : Génie logiciel (Software engineering)- Armand Colin.

30

SART
[Structured Analysis Real Time]

METH8

PURPOSE
The SART method is a real time extension of the SA structured analysis method. This extension
offered by the Ward-Mellor and Hatley-Pirbhai schools partially solves the problem of dynamic and
factual modelisation of a real time application, thus making it possible to elaborate a model while
considering the “response to events”, from the “action-perception area” of the system.
The SART method helps to specify the software to be implemented on two types of real time systems,
combination systems and sequential systems.

PLACE IN THE LIFE CYCLE
The SART method covers the specification phase.

RESOURCES NECESSARY
Implementation of the SART method requires use of CASE tools, since these tools provide assistance
for model construction and validation.

ADVANTAGES AND INCONVENIENCES
The real time extensions offered by the SART method to model the dynamics of software with high real
time restrictions seems well adapted. However, the definition and the syntax rigour of the method
remain somewhat ambiguous (the rules for data connection and circulation between the processes are
not clearly established, the DFED, the PSPEC and the DD are too dependent on human
interpretation).
Finally, although several CASE tools offer partial simulation of the system based on the analysis
model, most actually only verify the “balancing” of data and the exactitude of the syntax.

REPRESENTATION OR THEORIES USED
The SART structured analysis language is composed of :
- SA structured analysis tools
The real time extension offered to the SA method by the Ward-Mellor and Hatley-Pirbhai schools
includes :
- a graphic tool which is the control flow diagram, referred to as CFD (Control Flow Diagrams),
- a textual tool which is the DD dictionary of structured analysis data,
- two graphic and/or textual tools which are the control specifications referred to as CSPEC (Control
Specifications), and the timing specifications, referred to as TSPEC in the Hatley-Pirbhai notation.

PRODUCTS
AXIOM/SYS (ASTREE PERFORMANCE), ENVISION (CASE France), STP-SE (AONIX),
TEAMWORK (CAYENNE SOFTWARE).

FOR FURTHER INFORMATION
- P. Jaulent - 1990 : Génie logiciel (Software engineering) - Armand Colin.
- D.J. Hatley, I.A. Pirbhai - 1991 : Stratégies de spécification des systèmes temps réel
(Specification strategies for real time systems) (SA-RT) - Masson.

31

STATE CHARTS METH9

PURPOSE
The purpose of the State chart method is to describe and validate the behaviour of reactive systems.

PLACE IN THE LIFE CYCLE
State charts are implemented in the specification and design phases for reactive systems.

RESOURCES NECESSARY
Implementation of State charts requires knowledge of client requirements, which are analysed to
define the system, its environment and its functions.
Implementation of State charts requires knowledge of the formalism of the finished machines.
Implementation of a tool is necessary for efficient processing of state charts (Statemate).

ADVANTAGES AND INCONVENIENCES
The “State chart” method is very efficient to express the behaviour of a system.
“State chart” simulation makes it possible to obtain non ambiguous specifications which may be
validated by running it.
However, the “State chart” system may become relatively heavy to implement, for complex systems.
Implementation of “State charts” requires a rather long training period.

REPRESENTATION OR THEORIES USED
The “State chart” method is issued from work accomplished by David Harel in the 1980’s.
The system is described according to 3 views :
1- Specification of the structure (module-charts) which describe the logical and physical modules, as

well as the environment,
2- Specification of activities (activity-charts) including a data flow part and a control part,
3- Specification of the control (state charts).
The “State chart” is an extension of the diagram at a finished state. It makes it possible to represent a
hierarchical and structured description of simultaneous actions or activities, complex transition
conditions. The “State chart” makes it possible to :
- refine by detailing a state using one or several automatic controls. When several automatic controls
are used, there is parallel evolution,
- explicit or default specification of an initial state for a set of automatic controls, and multiple
synchronisation,
- association of time restrictions and states.

PRODUCTS
Statemate (i-Logix).

FOR FURTHER INFORMATION
- J.J. Valloton-1991 : Statemate : un outil pour la spécification des systèmes réactifs, (Statemate : a
tool for reactive system specification) Génie logiciel (Software engineering) n°25-December 1991.

32

4.2 “S PECIFICATION TOOLS” Sheets

ATELIER B ATEL1

METHODS
Set of tools dedicated to development according to the B method for critical safety systems. Created in
collaboration with GEC-ALSTHOM, RATP, SNCF INRETS, Atelier B may be used with the B formal
method. It notably integrates the following tools : a syntax and type controller, a generator of proof
obligations, a demonstrator, “C” and “ADA” translators. The tools are activated from a graphic
interface and automatically control the development phases.

DESIGNER
STERIA (F), GEC-ALSTHOM Transport (F)

INTERFACE SOFTWARE PACKAGES
INTERLEAF, LATEX, FRAME MAKER, WORD, VCG

PLATFORMS
UNIX (HP-UX-LINUX-SOLARIS)

DISTRIBUTORS
STERIA
12, rue Paul Dautier, BP58
78142 Vélizy-Villacoublay
Tel. 01.34.88.60.00
Fax. 01.34.88.62.00
atelierb.aix@steria.fr

PRICE
Experimentation version : 40 KF
Basic version (1 licence) : 130 KF

OBSERVATIONS
40 sites installed in France.
First installation 03/1995
Most recent version 3.0 (12/96)

33

AXIOM/SYS ATEL2

METHODS
Analysis, specification of real time systems or software with SART and modelisation of equipment
structure. Uses the D.J. Hatley I.A. Pirbhai method.

DESIGNER
STG (US)
INTERFACE SOFTWARE PACKAGES

PLATFORMS
MICROSOFT (Windows 3.xx, Windows 95, Windows NT Workstation)
DISTRIBUTORS
ASTREE PERFORMANCE
92100 Boulogne Billancourt
Tel. 01.47.02.63.09
Fax. 01.47.02.63.22
www.astree-performance.fr

PRICE
10 KF to 25 KF

OBSERVATIONS
800 in the world.
Most recent version 5.0D (01/1997)

34

DESIGN IDEF ATEL3

METHODS
BPR (Business Process Reengineering) tool, which may be used with the methods IDEF0 (SADT) and
IDEF1X, making it possible to model complex processes with a rigorous, hierarchical procedure.
Offers a bridge towards “Workflow” and simulation.

DESIGNER
METASOFTWARE (US)
INTERFACE SOFTWARE PACKAGES
VISUAL WORKFLOW
PLATFORMS
APPLE (Mac/OS), MICROSOFT (Windows 3.xx, Windows 95, Windows NT)
DISTRIBUTORS
AONIX
92247 Malakoff Cedex
Tel. 01.41.48.10.00
Fax. 01.41.48.10.20
foulquier@aonix.fr

PRICE
User rights : 30 KF

OBSERVATIONS
400 in France.
1200 in the world.
Most recent update : 12/97

35

ENVISION ATEL4

METHODS
Modelisation and simulation tool, multiple method, multiple user. May be used with the software
engineering methods SART, SD, SADT, UML, real time, entity-relation.

DESIGNER
FUTURE TECH. SYSTEMS (US)
INTERFACE SOFTWARE PACKAGES
All software under Windows, Excel, MS Project, WORD.
PLATFORMS
MICROSOFT (Windows 3.xx, Windows 95, Windows NT Server, Windows NT Workstation), NetWare
DISTRIBUTORS
CASE France
75015 Paris
Tel. 01.45.54.31.28
Fax. 01.45.54.29.98
jacquiot@artinternet.fr

PRICE
User rights : 10 KF to 59 KF.

OBSERVATIONS
650 in France
40 in GB
Most recent version 5.2 (10/96)

36

OBJECT GEODE ATEL5

METHODS
Set of tools dedicated to the analysis, design and validation of real time and distributed applications.
It allows for simulation, code generation and testing. OBJECT GEODE may be used with coherent
integration to complementary object oriented approaches based on standards such as OMT (Object
Modelling Technique) by Rumbaugh, SDL (Specification and Description Language) and MSC
(Message Sequence Chart). The tool has graphic editors, a simulator operating in an interactive,
random or exhaustive mode, a C/C++ code generator for the real time operating systems on the
market.

DESIGNER
VERILOG (F)

INTERFACE SOFTWARE PACKAGES

PLATFORMS
UNIX (AIX, HP, UX, SOLARIS, SUN/OS)

DISTRIBUTORS
VERILOG
92220 Bagneux
Tel. 01.45.36.57.00
Fax. 01.46.65.77.38

PRICE
As of 50 KF

OBSERVATIONS
1126 in France
2169 in Europe
2623 in the world

37

ORCHIS ATEL6

METHODS
Functional specification tool which responds to the standard. IDEFO. Offers a graphic editor for
actigrams, glossaries, a rule check and a document generator for the author-reader cycle.

DESIGNER
TNI (F)

INTERFACE SOFTWARE PACKAGES

PLATFORMS
MICROSOFT (MS/DOS), UNIX(AIX, HP, UX, SOLARIS)

DISTRIBUTORS
TNI
54600 Villiers Les Nancy
Tel. 03.83.44.01.41
franck.corbier@tni.fr

PRICE
5 KF and 10 KF

OBSERVATIONS
Most recent version 2.12 (7/95).

38

STP-SE ATEL7

METHODS
Analysis and design environment implementing the De Marco, Yourdon, Hatley, Pirbhai et
Constantine SART and SD methods. This environment offers graphic and table editors, code
generation and documentation functions.

DESIGNER
AONIX (US)

INTERFACE SOFTWARE PACKAGES
INTERLEAF, FRAMEMAKER, TOOLTALK, SOFTBENCH, RTM DE MARCONI, CLEAR CASE

PLATFORMS
MICROSOFT (Windows NT Server, Windows NT Workstation), UNIX (AIX, DIGITAL UNIX, HP ,
UX, IRIX, SOLARIS)

DISTRIBUTORS
AONIX
92247 Malakoff Cedex
Tel. 01.41.48.10.00
Fax. 01.41.48.10.20
foulquier@aonix.fr

PRICE
Under Windows NT : 20 KF
Under UNIX : 35 KF

OBSERVATIONS
880 in France
12000 in the world
Most recent version : 6.4 (12/1997)

39

SYNCCHARTS/ESTEREL ATEL8

METHODS
Graphic software for the specification and display of software applications or reactive equipment. It
associates a synchronous language with graphic formalism which allows for the description of
complex applications without programming (real time systems, communication protocols, etc.). It
includes a graphic editor a synchronous language compiler ESTEREL v. 5, a graphic verification tool
and a multiple target code generator.

DESIGNER
SIMULOG, CMA

INTERFACE SOFTWARE PACKAGES

PLATFORMS
UNIX (AIX, DIGITAL, UNIX, HP-UX, IRIX, SOLARIS)

DISTRIBUTORS
SIMULOG
78286 Guyancourt Cedex
Tel. 01.30.12.27.00
Fax. 01.30.12.27.27

PRICE

OBSERVATIONS
2 in France
2 in the world

40

TEAMWORK ATEL9

METHODS
Software engineering workshop for analysis, design, code generation and code simulation of real time
systems.

DESIGNER
CAYENNE SOFTWARE (US)

INTERFACE SOFTWARE PACKAGES
SOFTBENCH, DOORS, RTM

PLATFORMS
DIGITAL VAX (Open VMS), MICROSOFT (Windows NT Server, Windows NT Workstation), OS2
Warp, UNIX (AIX, DIGITAL UNIX, HP-UX, IRIX, SOLARIS)

DISTRIBUTORS
CAYENNE SOFTWARE
92108 Boulogne Billancourt Cedex
Tel. 01.41.10.25.50
Fax. 01.41.10.80.11

PRICE
User rights : 50 KF to 300 KF

OBSERVATIONS
39000 in the world.

41

 4.3 Bibliography

4.3.1 Standard references

NF EN 954-1
Sécurité des
machines. Parties des systèmes de commande relatives à la sécurité. Partie 1 :
Principes généraux de conception. (Machine safety. Parts of command systems
concerning safety. Part 1 : General design principles). 1997-02.

NF EN 1050
Sécurité des machines. Principes pour l’appréciation du risque. (Machine safety.
Risk appreciation principles). 1997-01.

IEC 300-3-1
Gestion de la sûreté de fonctionnement. Partie 3 : Guide d’application. Section
1 : Techniques de la sûreté de fonctionnement, Guide méthodologique.
(Operating safety management. Part 3 : Application guide. Section 1 : Operating
safety techniques, Methodological guide). - 1991.

IEC 812-1985
Techniques d’analyse de la fiabilité des systèmes. Procédure d’analyse des
modes de défaillance et de leurs effets (AMDE). (System dependability analysis
techniques. Analysis procedure for failure modes and their effects). 1985-12.

IEC 61508-1
Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques
programmables relatifs à la sécurité. Partie 1 : Prescriptions générales. Première
édition. (Functional safety of electric/electronic/programmable electronic systems
concerning safety. Part 1 : General instructions. First issue.) 1998-12.

IEC 61508-3
Sécurité fonctionnelle des systèmes électriques/électroniques/électroniques
programmables relatifs à la sécurité. Partie 3 : Prescriptions concernant les
logiciels. (Functional safety of electric/electronic/programmable electronic
systems concerning safety. Part 3 : Instructions concerning software). 1998-11.

4.3.2 References and technical documents

ARAGO 15
Informatique tolérante aux fautes. Observatoire Français des Techniques
Avancées. (Fault tolerant computers. French Observatory for Advanced
Techniques). Masson 1994.

[CAL90]
Spécification et conception des systèmes, une méthodologie. (System
specification and design, a methodology). J.P. Calvez. Masson 1990.

CASCADE-1
Generalised Assessment Method (GAM). Part1 : Rules. Esprit 9032 Cascade -
1997.

42

CASCADE-2
Generalised Assessment Method (GAM). Part2 : Guidelines. Esprit 9032
Cascade - 1997.

CASCADE-3
Generalised Assessment Method (GAM). Part3 : Examples. Esprit 9032 Cascade
- 1997.

[DAR96]
Méthodes contribuant à l’évaluation des logiciels de sécurité : Etude
bibliographique. (Methods contributing to the evaluation of safety software :
Bibliographical study). M. Darricau. INRETS 1996.

M. DARRICAU
Acquisition et représentation des connaissances impliquées dans les
spécifications de logiciels de sécurité : Application au système de pilotage
automatique (Acquisition and representation of knowledge implied in safety
software specifications : Application of the automatic piloting system) - INRETS
1997.

EWICS-TC7
Guidelines for the use of Programmable Logic Controllers in Safety-related
Systems. EWICS TC7 - Version 13 1997.

T. FORSE
Qualimétrie des systèmes complexes. Mesure de la qualité du logiciel. (Quality
measurement of complex systems. Measuring software quality). Les Editions
d’Organisation 1989.

J.C. GEFFROY
Sûreté de fonctionnement des systèmes informatiques. (Operating safety of
computer systems) InterEditions 1998.

D.J. HATLEY
Stratégies de spécification des systèmes temps réel (Specification strategy for
real time systems) (SA-RT). Masson 1991.

[HEN96]
Méthodologie de développement des systèmes électroniques embarqués
automobiles, matériels et logiciels, sûrs de fonctionnement. (Development
methodology for electronic systems installed in automobiles, equipment and
software, operation dependable). V. Hénault. Doctorate Thesis, Ecole Doctorale
Sciences pour l’ingénieur de Nantes - 1996.

C. HOURTOLLE
Conception de logiciels sûrs de fonctionnement : Analyse de la sécurité des
logiciels, mécanismes de décision pour la programmation N-Versions. (Designing
dependable operating software : analysis of software safety, decision
mechanisms for N-Version programming) Doctorate Thesis, Laboratoire
d’Automatique et d’Analyse des Systèmes (LAAS) - 1987.

[PAG80]

43

ISdF-14/92
Guide pour le développement de logiciels à hautes exigences de sécurité.
(Guide for the development of high safety requirement software). ISdF project
n°14/92.

ITSEC
Information Technology Security Evaluation Criteria (ITSEC). Provisional
Harmonized Criteria - June 1991.

ITSEM
Information Technology Security Evaluation Manual (ITSEM). Provisional
Harmonized Methodology - September 1993.

P. JAULENT
Génie logiciel, les méthodes. (Software engineering, methods). Armand Colin
1990.

J.C. LAPRIE
Sûreté de fonctionnement des systèmes informatiques, matériels et logiciels
(Operating safety of computer systems, equipment and software) - J.C. Laprie, B.
Courboie, M.C. Gaudel, D. Powell - 1989.

[LAP95]
Guide de la sûreté de fonctionnement. (Guide to operating safety). J.C. Laprie.
Cépaduès Editions 1995.

D. LIGHTFOOT
La spécification formelle avec Z. (Formal specification with Z). Technea 1994.

N. LIMNIOS
Arbres de défaillances. (Failure charts) Hermès 1991.

J.F. MONIN
Comprendre les méthodes formelles, Panorama et outils logiques.
(Understanding formal methods, Panorama and logical tools). Masson 1996.

C. NICOLAS
Etat de l’art sur les méthodes et les outils de validation des logiciels. (State of
the art concerning software methods and validation tools) MASI-EDF 93.14 -
1993.

J.P. PEREZ
Systèmes temps réel : méthodes de spécification et de conception. (Real time
systems : methods for specification and design) Dunod 1990.

C. SOURISSE
La sécurité des machines automatisées. Tome 1 : Notions de base -
Réglementation - Normes - Techniques de prévention. (The safety of automatic
controlled machines. Volume 1 : Basic notions – Regulations – Standards –
Techniques of prevention). Groupe Schneider 1996.

44

C. SOURISSE
La sécurité des machines automatisées. Tome 2 : Techniques et moyens de
prévention opératifs - Systèmes de commande - Utilisation des machines. (The
safety of automatic controlled machines. Volume 2 : Techniques and means of
operational prevention – Command systems – Use of machines). Groupe
Schneider 1997.

S. TAOUIL-TRAVERSON
Stratégie d’intégration de la méthode B dans la construction de logiciel critique.
(B method integration strategy in the construction of critical software). Doctorate
Thesis, Ecole Nationale Supérieure des Télécommunications - July 1997.

