
1

S T S A R C E S
Standards for Safety Related Complex Electronic Systems

A n n e x 2

Tools for Software fault avoidance

Task 1.1: Software Fault Avoidance through Quality

F i n a l R e p o r t o f W P 1 . 2

Philippe Charpentier

INRS

E u r o p e a n P r o j e c t S T S AR C E S

Contract SMT 4CT97-2191

2

Contents

1. INTRODUCTION 5

1.1. OBJECTIVES 5
1.2. TARGET AREAS 5
1.3. INSTRUCTIONS 5
1.4. OVERVIEW OF DOCUMENT 7

2. SOFTWARE PRODUCT REQUIREMENTS 8

2.1. PRESENTATION 8
2.2. LIST OF REQUIREMENTS 8

2.2.1. INTERFACE WITH SYSTEM ARCHITECTURE 8
2.2.2. SOFTWARE SPECIFICATIONS 9
2.2.3. SOFTWARE THAT CAN BE PARAMETRIZED BY THE USER 10
2.2.4. PRE-EXISTENT SOFTWARE 11
2.2.5. SOFTWARE DESIGN 12
2.2.6. DEVELOPMENT LANGUAGES 13
2.2.7. CODING 13

3. SOFTWARE DEVELOPMENT PROCESS REQUIREMENTS 14

3.1. DEVELOPMENT PROCESS 14
3.1.1. SOFTWARE LIFECYCLE 14

3.1.1.1. Presentation .. 14
3.1.1.2. Activities in the lifecycle ... 14

3.1.2. SOFTWARE LIFECYCLE REQUIREMENTS 15
3.2. ORGANISATION 15

3.2.1. SOFTWARE QUALITY ASSURANCE REQUIREMENTS 15
3.2.2. SAFETY SUPERVISION AND MANAGEMENT REQUIREMENTS 16

3.3. DOCUMENTATION 16
3.3.1. DOCUMENTATION MANAGEMENT REQUIREMENTS 16

3.4. CONFIGURATION AND SOFTWARE MODIFICATION MANAGEMENT 17
3.4.1. CONFIGURATION AND ARCHIVING MANAGEMENT REQUIREMENTS 18
3.4.2. SOFTWARE MODIFICATIONS MANAGEMENT 19

3.5. TOOLS 20
3.5.1. DEVELOPMENT TOOL REQUIREMENTS 20

3.6. EXTERNAL SUBCONTRACTING 20
3.6.1. EXTERNAL SUBCONTRACTING REQUIREMENTS 20

3.7. REPRODUCTION , DELIVERY 21
3.7.1. EXECUTABLE CODE PRODUCTION REQUIREMENTS 21
3.7.2. SOFTWARE INSTALLATION AND EXPLOITATION REQUIREMENTS 21

4. SOFTWARE VERIFICATION AND VALIDATION REQUIREMENT S 22

4.1. PRESENTATION 22
4.2. GENERAL VERIFICATION AND VALIDATION REQUIREMENTS 23
4.3. VERIFICATION REQUIREMENTS 24

4.3.1. GENERAL VERIFICATION REQUIREMENTS 24
4.3.2. REVIEW REQUIREMENTS 24

3

4.3.3. CODE VERIFICATION (SOURCE CODE AND DATA) REQUIREMENTS 25
4.4. SOFTWARE TEST REQUIREMENTS 26

4.4.1. GENERAL VALIDATION REQUIREMENTS 26
4.4.2. SOFTWARE SPECIFICATION VERIFICATION REQUIREMENTS: VALIDATION TESTS 28
4.4.3. SOFTWARE DESIGN VERIFICATION REQUIREMENTS: SOFTWARE INTEGRATION TESTS 30
4.4.4. DETAILED DESIGN VERIFICATION REQUIREMENTS: MODULE TESTS 31

5. CONCLUSION 32

6. GLOSSARY 33

7. APPENDIX: CODING RULES 35

7.1. INTRODUCTION 35
7.2. GENERAL RULES 36

7.2.1. GENERAL RULES: COMMENTS AND DECLARATIVE PARTS 36
7.2.2. GENERAL RULES: INSTRUCTIONS 36

7.3. RULES FOR CODING IN C 36
7.3.1. RULES FOR CODING IN C: COMMENTS AND DECLARATIVE PARTS 36
7.3.2. RULES FOR CODING IN C: INSTRUCTIONS 37

7.4. RULES FOR CODING IN ASSEMBLY LANGUAGE 37
7.4.1. RULES FOR CODING IN ASSEMBLY LANGUAGE: COMMENTS AND DECLARATIVE 37

4

SUMMARY:

This document outlines an optimal set of requirements for the production of embedded
software used to ensure safety-related functions of the machinery sector. It does not replace
the IEC 61508 Standard (especially part 3 "Software Requirements"), which served as a basis
but provides a set of basic requirements, coherent with this standard, adapted to the machinery
software products usually developed by SME/SMIs.

The requirements focus on the following points:

• Software product: Requirements describe the main characteristics which an embedded
software should possess to guaranty its quality and safety.

• Software development process: Requirements are established for all technical activities
associated with software development, for those involved in software design. These can
then be used to guide the designer during the production of this type of software.

• Software verification: A reference framework is given for software evaluation. The
requirements should allow the analyst to decide on the fitness of an embedded software to
satisfy the safety requirements of the target system to be analysed.

5

1. INTRODUCTION

1.1. OBJECTIVES

This document outlines an optimal set of requirements for the production of software used to
ensure safety-related functions within a given system.

The major objective dealt with here, through the application of these requirements, is the
prevention of software failures and any other unexpected behaviour that might lead to the
creation of dangerous faults in the target system.

In order to satisfy these objectives, the requirements discussed here focus on the following
points:

• a description of the main characteristics which a finished software product should possess
to guaranty its quality and safety (software product requirements),

• the establishment of the requirements imposed on all technical activities associated with
software development, for those involved in software design. These can then be used to
guide the designer during the production of this type of software (software development
process requirements).

• a reference framework for software evaluation. These requirements should allow the
analyst to decide on the fitness of a software product to satisfy the safety requirements of
the target system to be analysed (software verification requirements).

1.2. TARGET AREAS

The requirements outlined in the present document concern software products that are part of
a control system used to ensure safety functions.

They can be used for all types of machinery, regardless of the technology involved and
whether or not the system parameters can be defined by the user, provided the safety
functions are ensured by software and that these functions are not of an especially high
criticality (e.g. safety functions in the area of nuclear power or aeronautics are excluded).

This document does not replace the IEC 61508 Standard (especially part 3 "Software
Requirements"), which served as a basis. It provides a set of basic requirements,
coherent with this standard, adapted to the machinery software products usually
developed by SME/SMIs.

1.3. INSTRUCTIONS

The requirements discussed in the present document are organised into two software
requirement levels (1,2) according to the criticity of the functions ensured by the software.
Level 2 corresponds to the highest requirements for the software considered in this document.
The level associated with a given function depends on a risk analysis of the entire system (for

6

determining the software requirement level, see Appendix B of the “Guide to evaluating
software quality and safety requirements1”).

The level can be used to establish a list of elementary requirements for the software under
consideration. Three degrees of importance can be defined to help decide whether or not it is
necessary to consider a given requirement as a function of the level of criticity:

• "O" (Obligatory): this requirement should be applied systematically to the software in
question.

• "R" (Recommended): the application of this requirement is recommended but not
automatically imposed.

• "/" (no requirement): the application of this requirement is left to the user's discretion.

It should be the system designer's responsibility to demonstrate to the analyst that all
applicable requirements have been met in the software to be evaluated. Each of these
elementary requirements should thus solicit an appropriate response, by means of either a
document produced for the software or activities carried out during software development,
results of which should be kept for evaluation by the analyst. For example, it is important to
note that a validation testing activity such as informal debugging (with no paper or
computational evidence) with a logic analyser does not constitute proof of a given test. This
should not prevent the designer from carrying out this type of activity if it is needed during a
specific development phase.

It is recommended that the system designer take these requirements into consideration from
the outset of the software development procedure when the intervention of the analyst takes
place before the beginning of the development itself. These requirements could give rise to
contractual quality clauses when the system designer signs a contract with a software
provider.

All texts in italics in the sections on requirements are informative comments intended to
define the objectives of the requirements in question precisely, clarify the manner in which
they are to be understood, and lay down any possible limitations on their application.

No. Coordination with the analyst for software evaluation Level
 1 2

1.1 Any deviations from the requirements presented in this
document should be pointed out by the applicant to the analyst
and should be approved by the latter.

The applicant should request a meeting with the analyst.

O O

1 GUIDE TO EVALUATING SOFTWARE QUALITY AND SAFETY REQUIREMENTS
STSARCES Project - WP 1.2 / Aspect 2 – Final Report - INRS – Fev 2000

7

1.4. OVERVIEW OF DOCUMENT

In addition to this introductory section, this document contains three major sections :

• Section 2: requirements concerning the software product :

- Interface with system architecture
- Software specification
- Software that can be parametrized by the user
- Pre-existent software
- Software design
- Development languages
- Coding

• Section 3: requirements concerning the software development process:

- Development process
- Organisation
- Documentation
- Configuration and software modification management
- Tools
- External subcontracting
- Reproduction, delivery

• Section 4: requirements concerning software verification and validation :

- General verification and validation requirements

- Verification requirements:

- General verification requirements
- Review requirements
- Code verification (source code and data) requirements

- Software test requirements:

- General validation requirements
- Software specification verification requirements: validation tests
- Software design verification requirements: software integration tests
- Detailed design verification requirements: module tests.

An appendix to this document contains coding rules, in particular for C and assembly
language - the languages the most commonly used in the preparation of the type of software
considered in this document.

8

2. SOFTWARE PRODUCT REQUIREMENTS

2.1. PRESENTATION

This chapter presents the requirements a software product should possess if it is to be fully
safe in operation and of satisfactorily high quality. To obtain such a software product, a
number of activities, a certain organisation and a number of principles must all be established.
This should take place as early as possible in the development cycle (different requirements
and recommendations concerning the development process are given in the following
chapter).

Software product requirements should cover:

- Interface with the architecture of the system integrating the software
- Software specification
- Software that can be parametrized by the user
- Pre-existent software
- Software design
- Development languages
- Software coding (coding rules are presented in Appendix).

2.2. LIST OF REQUIREMENTS

2.2.1. Interface with system architecture

No. Interface with system architecture Level
 1 2

1.2 Software safety requirements as well as the determination of
expected events should arise from safety analyses at system,
functional and hardware level, etc.

/ O

1.3 The list of constraints imposed by hardware architecture on
software should be defined and documented.
Consequences of any hardware/software interaction on the
safety of the machine or system being monitored should be
identified and evaluated by the designer, and taken into account
in the software design.

Constraints such as :

- protocols and formats,
- input/output frequencies,
- by rising and falling edge or by level,
- input data using reverse logic etc.

Listing these constraints allows them to be taken into account at the start of the
development activity, and reduces the risk of incompatibilities between software and
hardware when the former is installed in the target hardware.
The consequences of any software errors should be studied at system level in
particular.

O O

9

2.2.2. Software Specifications

No. Software Specifications Level
 1 2

1.4 Software specifications should take the following points into
account:

a) safety functions with a quantitative description of the
performance criteria (precision, exactness) and temporal
constraints (response time), all with tolerances or margins
when possible,

b) non safety functions with a quantitative description of the
performance criteria (precision, exactness) and temporal
constraints (response time), all with tolerances or margins
when possible,

c) system configuration or architecture,
d) instructions relevant to hardware safety integrity

(programmable electronic systems, sensors, actuators, etc.),
e) instructions relevant to software integrity and the safety of

safety functions,
f) constraints related to memory capacity and system

response time,
g) operator and equipment interfaces,
h) instructions for software self-monitoring and for hardware

monitoring carried out by the software,
i) instructions that allow all the safety functions to be verified

while the system is working (on-line testing).

The instructions for monitoring, developed taking safety objectives and operating
constraints (duration of continuous operation ,etc.) into account, can include devices
such as watch dogs, CPU load monitoring, feedback of output to input for software
self-monitoring. For hardware monitoring, CPU and memory monitoring, etc.
Instructions for safety function verification: for example, the possibility of
periodically verifying the correct operation of safety devices should be included in
the specifications.

O O

1.5 Functional requirements should be specified for each functional
mode. The transition from one mode to the other should be
specified
Functional modes can include:

- nominal modes,
- one or more degraded modes.

The objective is to specify the behaviour in all situations in order to avoid unexpected
behaviours in non-nominal contexts.

O O

10

2.2.3. Software that can be parametrized by the user

The following requirements concern the development of software products that are designed
to allow end-users to set their own parameters.

The end-user may be either the person responsible for integrating the product into the system
or else the user.

Such software can have different degrees of complexity: a table of messages or a system
option. In keeping with the spirit of the present document, the definition of software
parameters is limited and defined precisely in the specification documents. This excludes any
modifications that might cause doubt about the exact version of the software, since this type
of modification should always be undertaken by the software designer (see Software
modification processes).

Certain systems can also include optional functions that are selected through the use of
parameter-setting options in the software.

No. Software that can be parametrized by the user Level
 1 2

1.6 The parameters should be formally specified (type, relations, …)
in the form of memory arrays. Moreover, the software and the
parameters should be capable of independent evolutions.

R R

1.7 Software specifications should define mechanisms that can be
used to prevent the possibility of any parameters set by the user
can affect the system safety. In so far as modifiable parameters
are concerned, these mechanisms should provide protection
against :

- undefined or invalid initial values,
- values falling outside functional limits,
- data alteration.

The definition of software parameters by users should be kept
within the limits established by the system specifications
approved by the analyst.

In particular, test procedures should include different parameter values and different
types of software behaviour. The designer should ensure that only those parameters
which can be modified are accessible to the user.

R O

11

2.2.4. Pre-existent software

The term "pre-existent" software refers to source modules that have not been developed
specifically for the system at hand, and are integrated into the rest of the software. These
include software products developed by the designer for previous projects, or commercially
available software (e.g. modules for scientific calculations, sequencers, etc.).

When dealing with this type of software, and especially in the case of commercial software
products, the designer does not always have access to all the elements needed to satisfy the
previous requirements (e.g. what tests have been carried out, is the design documentation
available). Specific co-ordination with the analyst is therefore necessary at the earliest
possible moment.

No. Pre-existent Software Level
 1 2

1.8 The designer should indicate the use of pre-existent software to
the analyst, and it is the designer's responsibility to demonstrate
that pre-existent software has the same level as the present
requirements.

Such a demonstration should be done:

- either by using the same verification activities on the
pre-existent software as on the rest of the software,

- or through practical experience where the pre-existent

software has functioned on a similar system in a
comparable executable environment (e.g. it is
necessary to evaluate the consequences of a change of
the compiler or of a different software architecture
format).

The goal of indicating the use of pre-existent software is to open up consultations with
the analyst as early as possible about any eventual difficulties that this type of
software might cause.
The integration of pre-existent source modules can be the cause of certain anomalies
or unsafe behaviour if they were not developed with the same rigour as the rest of the
software .

O O

1.9 Pre-existent software should be identified using the same
configuration management principles that were applied to the
rest of the software.

Perfect configuration control should be exercised over all the software components,
regardless of their origin.

O O

12

2.2.5. Software design

No. Software Design Level
 1 2

1.10 Description of the software design should include at the very
least:

- a description of the software architecture that defines the
structure decided on to satisfy specifications,

- a description of inputs and outputs (e.g. in the form of an
internal and external data dictionary), for all the modules
making up the software architecture,

- sequencers and interruptions,
- global data,
- a description of each software module (inputs/outputs,

algorithm, design particularities, etc.),
- libraries used,
- pre-existent software used.

O O

1.11 Software should be modular in order to facilitate its
maintenance:

- each module or group of modules should correspond, if
possible, to a function in the specifications

- interfaces between modules should be as simple as
possible.

The general characteristic of correct software architecture can be summed
up in the following way: a module should possess a high level of functional
cohesion and a simple interface with its environment

O O

1.12 Software should be designed to limit those parts associated with
safety:

- data/functional architecture: strict limitation of global
variables, implementation of operators on state variables
(visibility),

- control of the layout of arrays in memory (risk of array
overflows).

O O

13

2.2.6. Development languages

The goal of these requirements is to ensure that the designer uses a programming language
and development tools that are well adapted to the software being developed, and that these
tools do not lead to the introduction of errors in the executable code on the target machine.
The following requirements can be applied to any language used (if more than one language
is used simultaneously on the same system). Generally, the most widely used languages
include:

- an assembly language, specific to the microprocessor or microcontroller employed,
- an advanced programming language such as C.

No. Development Languages Level
 1 2

1.13 The selected programming language should correspond to the
characteristics of the application, and should be fully and clearly
defined or at least limited by clearly defined characteristics.

The characteristics of the application refer to such factors as size, type (industrial or
scientific software, management, etc.), and any performance constraints. For
example, COBOL does not satisfy the development requirements of a
monitoring/control application on an industrial machine.
Any deficiencies in the language can be avoided using appropriate coding rules.

R O

2.2.7. Coding

No. Coding Level
 1 2

1.14 The source code should:

a) be readable, understandable, and subject to tests,
b) satisfy design specifications of the software module,
c) obey the coding manual instructions.

O O

1.15 The coding rules applicable to a given software product should
be outlined in detail in a coding manual and used to develop the
software. The coding manual should :

- indicate what programming principles should be applied
and prohibit any uncertain language aspects,
- describe rules for source code presentation and
documentation,
- include conventions used in naming components,
subroutines, variables and constants.

A set of rules are provided in Appendix A of this document. For example, indented
presentation of different blocks of instructions, use of blank lines, contents of the
source file header (author's name, input and output data, modified data, etc.).
These conventions help improve software legibility and maintenance.

R O

14

3. SOFTWARE DEVELOPMENT PROCESS REQUIREMENTS

3.1. DEVELOPMENT PROCESS

3.1.1. Software Lifecycle

3.1.1.1. Presentation
A software project begins with the specification of the necessary and sufficient conditions for
the design and production of a product. This organisation, specific to each project, forms the
software lifecycle.

The activity schedule is defined in relation to the specific aspects of the project, for example,
complexity of the system and the software under consideration, use of previously developed
software products, production of a prototype or availability of test equipments.

The basic objectives of requirements relevant to software development planning (definition of
the development phases, means required, etc.) are to orient development in such a way that it
can satisfy the functional specification requirements of the target system and inspire the
confidence necessary to satisfy safety constraints.

These requirements deal with the following points:

• software lifecycle that is used to define and coordinate software development activities,
and all activities associated with development (documentation, configuration and
modifications management, etc.) by adapting them to the system under consideration

• choice of the development environment and especially development tools,

• planning of other activities (verification, quality assurance, etc.),

• certain additional requirements that must be taken into account at the beginning of the
development cycle (coordination with the analyst and external subcontracting).

3.1.1.2. Activities in the lifecycle
Software definition usually includes the following sequential development activities:

• specification

• design

• coding

• executable code production

These definition activities are complemented by software verification activities, the goal of
which is:

• to verify that the software product satisfies specified requirements at each of the different
stages of the development,

15

• to detect any errors that might have been introduced when developing the software.

The principal element of any software verification is testing. Other activities such as reviews
or analyses (for example rereading the code) are possible aspects of software verification.

Software testing activities generally include different phases that correspond to different
development activities:

• module tests

• software integration tests

• software validation tests

3.1.2. Software lifecycle requirements

The goal of the following software lifecycle requirements is to obtain a formalised description
of the organisation of software development and, in particular, the different technical tasks
making up this development. This description promotes improved planning of the
development activities and more thought being given to the optimal time schedule for this
development. For the purposes of the accompanying documentation, this description can be
grouped with the description of quality assurance steps.

No. Software Lifecycle Level
 1 2

2.1 The software development lifecycle should be specified and
documented (e.g in a Software Quality Plan). The lifecycle
should include all the technical activities and phases necessary
and sufficient for software development.

O O

2.2 Each phase of the lifecycle should be divided into its elementary
tasks and should include a description of:

- inputs (documents, standards etc.),
- outputs (documents produced, analytical reports, etc.),
- activities to be carried out,
- verifications to be performed (analyses, tests, etc.).

O O

3.2. ORGANISATION

3.2.1. Software Quality Assurance Requirements

The goal of quality assurance activities is primarily to ensure that the software product, its
documentation, and the lifecycle activities all conform to the present requirements and that
any deficiencies are detected, evaluated, monitored and resolved.

16

No. Software Quality Assurance Level
 1 2

2.3 The programme used to guarantee software quality should be
well-documented (e.g in a Software Quality Plan) and include at
least:

- the organisation, the people who are responsible for quality
assurance, development and tests, and the required
independence,

- the quality assurance activities included in the software
lifecycle (examples of methods, reviews, inspections),

- any documents produced (reports, etc.).

This documentation can be assembled by referencing any applicable internal
documents used for an entire set of projects simply by specifying what has been used
for the project in question .

R O

3.2.2. Safety supervision and management requirements

Safety supervision and management tasks are used to follow / monitor the setting up of safety
measures as the project develops, and to ensure that all the expected activities take place.
They should keep abreast of the availability of resources, the monitoring of critical junctures
in the project and eventually, the follow-up of any subcontractors in so far as software safety
is concerned. This should be done for all the information contained in the project schedule.

No. Safety Supervision and Management Level

 1 2
2.4 Safety supervision should be a permanent activity while the

software is being produced.

By continually monitoring the progress in software safety, it is possible to take any
action on the conducted activities quickly. This is necessary to prevent safety from
drifting .

R R

3.3. DOCUMENTATION

3.3.1. Documentation management requirements

Certain requirements specific to the documentation or to certain documents are presented
below.

The aim of these requirements is to establish a common basis of reference for the applicant or
organisation (designer in general) and the analyst who is evaluating the system.

It should be noted that all the information collected by the analyst during audits or through
consultation of related documentation must always be treated as confidential.

17

No. Documentation Management Level
 1 2

2.5 The list of documents to be produced should be defined at the
outset of the project (e.g in a Software Quality Plan)

The creation of such a list ensures that the corresponding tasks are also planned and
therefore constitutes a guarantee that all the expected documentation exists.

O O

2.6 Each document should at least:

- be identified in a unique way (reference, version,
revision index),

- be dated,
- carry a title that indicates the scope of its content and that

sets the document in the context of the documentation as
a whole. (specification, design, etc.),

- be written in the language mutually agreed by the
applicant and the analyst.

Furthermore, any subsequent changes to the documents should
follow established guidelines (management of revision indices,
etc.), and all documents should be available in their definitive
version when the final software evaluation is undertaken by the
analyst.

The requirement concerning the langage in which the documents are to be written
enables the analyst to carry out his evaluation with documents that the personnel can
understand. If this is not the case, the applicant runs the risk of having the evaluation
refused.
The requirement concerning subsequent changes to documents is intended to
maintain the quality level achieved with the initial version as new documentation
versions appear.
Provisional versions of the documents can be provided with the agreement of the
analyst if he or she intervenes during the development phases.

O O

2.7 The necessary documentation should be established at each
phase of the lifecycle to facilitate verification and validation,
and the software safety requirements should be traceable and
capable of being verified at each stage of the process
(traceability matrix for each definition document)

This will avoid a situation where the only available documentation is the source code
because the documents that should have been prepared were not (deadlines too tight,
project manager transferred to another contract, etc.).

R O

3.4. CONFIGURATION AND SOFTWARE MODIFICATION MANAGEMENT

 Management of the configuration and therefore of the version is indispensable to any
development which requires approval. Indeed, approval is only valid where a given
configuration has been identified. Configuration management includes configuration
identification activities, modification management, the establishment of reference points and
the archiving of software products, including the associated data (documents, records of tests,

18

etc.). Throughout the entire project lifecycle, the principal objectives of these requirements
are to:

• provide a defined and controlled software configuration that can be used to reproduce an
executable code coherently (with future software production or modification in mind).

• provide a recognised reference basis for progress evaluation and for modifications
management,

• provide a means of control which guarantees that any problems are properly analysed,
and that the approved modifications are carried out,

• guarantee physical archiving and reproduction possibility of the software

3.4.1. Configuration and archiving management requirements

No. Configuration and Archiving Management Level
 1 2

2.8 A procedure for configuration management and modifications
management should be defined and documented. This procedure
should, as a minimum, include the following items:

- articles managed by the configuration, at least :
. software specification,
. preliminary and detailed software design,
. source code modules,
. plans, procedures and results of the validation tests.

- identification rules (of a source module, of a software
version, etc.),
- treatment of modifications (recording of requests, etc.).

For each article of configuration, it is necessary to be able to
identify any changes that may have occurred and the versions of
any associated elements.

The purpose of this is to be able to trace the historical development of each article:
what modifications have been made, why, and when?

O O

2.9 Software configuration management should allow a precise and
unique software version identification to be obtained.
Configuration management should associate all the articles (and
their version) making up a software version .
The aim of this requirement is to avoid errors such as modification of a module that
is not in the latest code version or delivery of an untested code version to the client,
etc.

O O

19

No. Configuration and Archiving Management Level
 1 2

2.10 All articles in the software configuration should be covered by
the configuration management procedure before being tested or
being requested by the analyst for final software version
evaluation.

The objective here is to guarantee that the evaluation procedure is performed on
software with all elements in a precise state. Any subsequent change will require
revision of the software and will thus be identifiable by the analyst.

O O

2.11 Procedures for the archiving of software and its associated data
should be established (methods for storing backups and
archives).

These backups and archives can be used to maintain and modify software during its
functional lifetime.

O O

3.4.2. Software modifications management

No. Software Modifications Management Level
 1 2

2.12 Any software modification is subject to the rules established for
modification and configuration management, and requires that
the development process be recommenced at the highest
"upstream" point needed to take the modification into account.

In particular, the documentation should also be updated, and all necessary
verification activities carried out. This guarantees that the software will retain all its
initial properties after any modification.

O O

2.13 The description of software modifications should include details
of each modification made. This should include at least the
following items for each modification:

a) the modification request,
b) the report detailing the analysis of the impact of the

software modification, the decisions made in this respect
and their justification,

c) the version of the software to be modified as well as the
configuration articles and their version.

This minimal degree of formalism ensures that modifications are introduced
by the different individuals working on the project using properly controlled
procedures and in a concerted, systematic fashion. By so doing , it is
possible to define the tests to be carried out precisely - something that would
be impossible if the exact state of the modifications and their impact had not
previously been established.

R O

20

3.5. TOOLS

3.5.1. Development tool requirements

No. Development Tools Level
 1 2

2.14 Optimisation of object code performance options are forbidden.

Any optimisation by the compiler might modify the size of the resultant code and its
speed of execution. Since the instructions generated differ according to the options
selected, test representiveness might be jeopardised if options are used.

R O

2.15 If a new compiler or a new linker is used during the
development procedure, the validity of the testing activities
already performed should be analysed by the designer.

The instructions generated might be different, and test representiveness might be
altered. Only an analysis of the situation will remove the uncertainty caused by this.

R O

2.16 Tools used during the development procedure (compiler, linker,
tests, etc.) should be identified (name, reference, version, etc.) in
the documentation associated with the software version (e.g. in
the Version Sheet).

Different versions of tools do not necessarily produce the same results. Precise
identification of tools thus directly demonstrates the continuity of the process of
generation of an executable version in the event that a version is modified.

O O

3.6. EXTERNAL SUBCONTRACTING

The aim of these requirements is to guarantee that the entire software respects the present set
of requirements, whether it is subcontracted to several different firms or not. The software
designer who signs a contract with external subcontractors should take all the necessary
steps (e.g. software quality clauses) to ensure that any software not directly developed by his
or her firm respects the requirements applicable to the entire software version integrated into
the system under consideration.

3.6.1. External subcontracting requirements

No. External Subcontracting Level

 1 2
2.17 In the event that any part (even partially) of the software

development is subcontracted to a third party, the present
requirements should also apply to the subcontractor. They may
possibly be adapted to reflect the importance and nature of the
subcontracted tasks.

O O

2.18 The designer should ensure and demonstrate that the
requirements have been respected by the subcontractor(s).

O O

21

3.7. REPRODUCTION, DELIVERY

3.7.1. Executable code production requirements

The objective of the following activity is to enable the production of an executable object code
that will be loaded into the target system.

No. Executable Code Production Level
 1 2

2.19 Any option or change in the generation, during the software
production should be recorded (e.g. in the Version Sheet) so
that it is possible to say how and when the software was
generated.

O O

3.7.2. Software installation and exploitation requirements

No. Software Installation and Exploitation Level
 1 2

2.20 All failures linked to safety and dependability functions brought
to the attention of the designer of the system should be recorded
and analysed.

This means that the designer is aware of any safety and dependability-related
failures that are communicated to him and that he takes the appropriate
action (e.g. warning other users, software modification, etc.).

O O

22

4. SOFTWARE VERIFICATION AND VALIDATION REQUIREMENTS

4.1. PRESENTATION

The purpose of verification activities is to demonstrate that software products stemming from
a given phase of the development cycle conform to the specifications established during the
previous phases and to any applicable standards or rules. They also serve as a means of
detecting and accounting for any errors that might have been introduced during software
development .

Software verification is not simply a series of tests, even though this is the predominant
activity for the relatively small software considered in this text. Other activities such as
reviews and analyses, whether associated with these tests or not, are also considered to
be verification activities. In certain cases they can replace some tests (e.g. in the event that a
test cannot be carried out because it would cause deterioration of a hardware component).

It is important to note the rapidly increasing cost of correcting an error in relation to the phase
at which it is discovered. The optimal cost of correcting an error corresponds to the earliest
possible moment in the lifecycle. For example, an error discovered in the specification stage
by means of verification of the coherence between the software specification and the system
specification costs significantly less than if this same error is discovered at the end of the
development cycle (through software or system validation). A discovery made late in the
process requires that all development phases influenced by this error, and already completed,
must be undertaken anew.

Software tests can be carried out at different phases of the lifecycle:

• module tests at the level of each individual module can be used to demonstrate that the
module carries out the specified function, and only this function. Different types of module
tests can be noted, including logical tests (error search, verification of correctness of the
interconnections of the different branches, search for abnormal behaviour) and calculation
tests (verification of calculation results, performance and exactitude of algorithms).
Calculation tests typically include data tests within specification limits, outside these same
limits (abnormal state), at the specified limits, and at algorithmic singularities. Abnormal
behaviour tests (outside boundary values, algorithmic singularities, errors) are generally
referred to as robustness tests.

• software integration tests are used to demonstrate that the functional units made up of an
assembly of modules operate correctly. This type of tests is principally concerned with the
verification of the interconnections between modules, data circulation, dynamic aspects
and the sequencing of expected events. They typically include tests on inter-modular
connections, dynamic aspects, the sequencing of expected events, and the rerun of
operations in case of interruption.

• validation tests allow verification that the software installed in the hardware satisfies the
functional specifications, especially by verifying hardware/software interfaces, general
performance levels, real-time operation, general functions, use and allocation of resources.

23

The following chapters present the different requirements concerning:

General verification and validation requirements

• Verification requirements :

- General verification requirements

- Review requirements

- Code verification (source code and data) requirements

• Software test requirements :

- General validation requirements

- Software specification verification requirements: Validation tests

- Software design verification requirements: Software integration tests

- Detailed design verification requirements: Module tests

4.2. GENERAL VERIFICATION AND VALIDATION REQUIREMENTS

No. General Verification and Validation Requirements Level
 1 2

3.1 The analyst should be able to carry out the evaluation of
software conformity to the present requirements by conducting
any audits or expertises deemed useful during the different
software development phases.

All technical aspects of software lifecycle processes are subject
to evaluation by the analyst.

The analyst must be allowed to consult all verification reports
(tests, analyses, etc.) and all technical documents used during
software development.

The intervention of the analyst at the specification phase is preferable to an a
posteriori intervention since it should limit the impact of any decisions made. On the
other hand, financial and human aspects of the project are not subject to evaluation.

It is in interest of the applicant to provide proof of all activities carried out during
software development.

The analyst should have all the necessary elements at his or her disposal in order to
formulate an opinion. Subcontracted software should not be left out of the evaluation
procedure.

O O

24

No. General Verification and Validation Requirements Level
 1 2

3.2 Evaluation of software conformity to the present requirements is
performed for a specific, referenced software version. Any
modification of previously evaluated software which has
received a final opinion from the analyst should be pointed out
to the latter in order that any additional evaluation activities can
be carried out to update this opinion .

Any modification can modify software behaviour; the opinion delivered by the analyst
can therefore only be applied to a precise software version.

O O

4.3. VERIFICATION REQUIREMENTS

As well as tests, verification activities can also include techniques such as reviews,
inspections, checks, cross-readings and code verification.

4.3.1. General verification requirements

No. General Verification Requirements Level
 1 2

3.3 A verification report should be produced for each verification
activity, and should identify and document all distortions (non-
conformities) with respect to:

- the corresponding specifications,
- rules or standards (design, coding),
- any quality assurance procedures that may exist.

The goal of this requirement is to record any identified non-conformities in order to
be able to correct them (either immediately in the case of non-conformities that are
unacceptable from an operational or safety point of view or at a later date on another
software version if the non-conformity is only minor).

R O

4.3.2. Review requirements

Internal reviews at key points in the development process allow the designer to ensure that
the product will achieve the objectives set.

25

No. Review Requirements Level
 1 2

3.4 An external specification review (with the analyst) should be
held at the end of the software specification phase.

Activities involving analysis and software specification
verification should:

- verify the exhaustiveness and adequacy of the software
specifications with respect to the system specifications,

- verify the traceability with respect to the system
specifications.

The software specification review should ensure that the real needs were taken into
account in the specifications, that the technical risks have been identified, resolved
and reduced by appropriate choices, and that it has been verified that the software
specifications satisfy the system specifications.
 Analysis activities ensure that software specifications are coherent with system
specifications, that they are complete, and that the connection between the software
and system specifications has been clearly established.

R O

3.5 Analysis activities and software design verification should
verify the conformity to specifications.

Here the purpose is to ensure that the software specification and design (both detailed
and preliminary) are coherent.

O O

3.6 An external validation review (with the analyst) should be held
at the end of the validation phase.

This can be used to ascertain whether or not the product satisfies the specifications
If the validation of the software is not subject to the expression of any reserves ,
development is considered to be at an end.

O O

3.7 The result of each review should be documented and archived. It
should include a list of all actions decided on in the review
process, and the review conclusion (decision on whether or not
to move on to the next activity). The activities defined in the
review should be monitored and treated.

O O

4.3.3. Code verification (source code and data) requirements

This verification corresponds to the first step in the verification of the actual code once it has
been written. This is a "static" verification in so far as it is based on cross-readings,
inspections, etc. It is only after this point that dynamic verification procedures (module tests,
integration, validation) will make up the principal verification methods.

These verifications include code and data verifications.

26

No. Code Verification (source code and data) Level
 1 2

3.8 Code verification (static analysis) should ensure that the code
conforms to :

- the software design documents,
- coding rules.

Here the purpose is to ensure that the design is up to date and coherent with the code
(source and data)

R O

4.4. SOFTWARE TEST REQUIREMENTS

4.4.1. General validation requirements

Before writing the first test sheets, it is important to establish a test strategy in a Test Plan.
This strategy indicates the approach adopted, the objectives that have been set in terms of test
coverage, the environments and specific techniques used, the success criteria to be applied,
etc.

The test objectives must be adapted to the safety integrity level of the software, to the type of
software, and to the specific factors at work in adopting a given software product. These
criteria determine the types of test to be undertaken ~ functional tests, limit tests, out of limit
tests, performance tests, load tests , external equipment failure tests, configuration tests ~ as
well as the range of objects to be covered by the tests (functional mode tests, safety function
tests, tests of each element in the specification, etc.).

27

No. General Validation Requirements Level
 1 2

3.9 The software verification strategy used at the different software
development steps and the techniques and tools used for this
verification should be described in a Test Plan before being
used. This description should, as a minimum, include:

- identification of the software and its safety-related
components that will be submitted to validation procedure
before use,

- organisation of the verification activities (integration,
validation, etc.) and any interfaces with other development
activities,

- independence of the verification (if applicable): the
verification strategy should be developed and
implemented, and the test results should be evaluated
independently (by an individual, department, or
organisation) in relation to the size of the development
team,

- verification methods and tools used (types of tests, etc.),

- environment of the verification (test equipment,
emulators, etc.),

- manner in which test results were verified,

- a traceability matrix demonstrating the correspondance
between the tests to be undertaken and the objectives of
the tests defined.

A single document (e.g. plan of the test) can satisfy all the planning
requirements of several verification activities (module testing, integration,
validation). These documents can, if necessary, refer to general procedures
or instructions that are applicable to all software projects in addition to the
specific measures taken for the project.

The aim of formalising this strategy is to further ensure the reproducibility of the
activity .
The advantage of independent evaluation lies in the introduction of individuals not
involved in development phases, and who therefore do not know how the software has
been developed. In general, this ensures that the tests are performed more efficiently.

R O

28

No. General Validation Requirements Level
 1 2

3.10 Verification of a new software version should include non-
regression tests.

Non-regression tests are used to ensure that the modifications performed on the
software have not modified the behaviour of the software in any unexpected way.

O O

3.11 Directives for drawing up test procedures should include :

- a description of the input data to be used (value),
- a description of the expected output (value),
- criteria on which test results will be judged acceptable

(tolerance).

This requirement implies that the tests carried out will be documented (using a format
defined by the designer). The test documentation can be used to optimise the tests
carried out (by avoiding repeating the same test several times), and to redo the tests
at a later date (non regression tests of a new software version, or for another similar
project for which software routines have been reused).

R O

3.12 The tests formalised in reports should be able to be carried out
again (e.g., in the presence of the analyst).

Certain tests requiring specific means can only be carried out again with a sufficient
warning. This requirement allows the analyst to guarantee the reality and exactness
of all test results presented during evaluation.

R O

4.4.2. Software specification verification requirements: Validation tests

The purpose of these verifications is to detect errors associated with the software in the target
system environment. Errors detected by this type of verification include:

• any incorrect mechanism to treat interruptions,

• insufficient respect of running time requirements,

• incorrect response from the software operating in transient mode (start-up, input flow,
switching in a degraded mode, etc.),

• conflicts of access to different resources or organisational problems in the memory,

• inability of integrated tests to detect faults,

• software/hardware interface errors,

• stack overflows.

Validation tests are the principal component of software specification verification.

29

No. Software Specification Verification Level
 1 2

3.13 The test coverage should be made explicit in a traceability
matrix and respect the following requirements:
- each element of the specification, including safety
mechanisms, should be covered by a validation test,
- it should be possible to verify the real-time behaviour of the
software in any operational mode.
Furthermore, the validation should be carried out in conditions
representative of the operational conditions of the system.

This requirement guarantees that the software reacts as expected in operation. It
applies only to cases where the test conditions can be destructive for hardware (e.g.,
physical fault of a component that cannot be simulated).
To be significant, validation should be performed in the operational conditions of the
system (i.e. with the final versions of software and hardware, and the software
installed in the target system.). Any other combination could decrease the efficiency
of the test and require analysis of its representiveness.

O O

3.14 Validation results should be recorded in a validation report that
should cover at least the following points:

- the versions of software and system that were validated,
- a description of the validation tests performed (inputs,

outputs, testing procedures),
- the tools and equipments used to validate or evaluate the

results,
- the results showing whether each validation test was a

success or failure,
- a validation assessment: identified non-conformities,

impact on safety, decision as to whether or not to accept
the validation.

A validation report should be made available for each delivered
software version and should correspond to the final version of
each delivered software product.

This report can be used to provide proof that tests were indeed carried out, and that
the results were correct (or contained explainable deviations). It can also be used to
redo tests at a later date, for a future software version or for another project.
The second requirement provides a guarantee that each delivered version has been
validated in its final form. On the other hand, this requirement does not impose a
complete validation of each modification of an existing code - an impact analysis can,
in certain cases, justify partial validation.

O O

30

4.4.3. Software design verification requirements: Software integration tests

This verification focuses on the correct assembly of software modules and on the mutual
relationships between software components. It can be used to reveal errors of the following
kind:

• incorrect initialisation of variables and constants,

• errors in the transfer of parameters,

• any data alteration, especially global data,

• inadequate end to end numerical resolution,

• incorrect sequencing of events and operations.

Software integration tests form the principal component of this verification.

No. Software Design Verification Level
 1 2

3.15 Software integration tests should be able to verify:

- correct sequencing of the software execution,
- exchange of data between modules,
- respect of the performance criteria,
- non-alteration of global data.

The test coverage should be given explicitly in a traceability
matrix demonstrating the correspondence between the tests to be
undertaken and the objectives of the tests defined.

R O

3.16 Any modification of the software during its integration should
be analysed to identify the impact on the relevant modules and
to ascertain whether certain verifications should be repeated.

All tests carried out should be representative of the final software version. Code
modifications during tests might invalidate the results of previous tests.

R O

3.17 Integration test results should be recorded in a software
integration test report, which should, as a minimum, contain the
following points:

- the version of the integrated software
- a description of the tests performed (inputs, outputs,

procedures),
- the integration tests results and their evaluation.

R O

31

4.4.4. Detailed design verification requirements: Module tests

Module tests focus on software modules and their conformity with the detailed design. This
activity is indispensable for large and complex software products, but is only recommended
for the relatively small software products dealt with here. This conformity can also be
demonstrated using static techniques (e.g. re-reading the code).

This phase of the verification procedure allows detection of the following type of errors:

• inability of an algorithm to satisfy software specifications,

• incorrect loop operations,

• incorrect logical decisions,

• inability to compute valid combinations of input data correctly,

• incorrect responses to missed or altered input data,

• violation of array boundaries,

• incorrect calculation sequences,

• inadequate precision, accuracy or performance of an algorithm.

No. Detailed Design Verification Level
 1 2

3.18 Each software module should be submitted to a series of tests to
verify, using input data, that the module fulfils the functions
specified at the detailed design stage.

The test coverage should be given explicitly in a traceability
matrix that demonstrates the correspondence between the tests
to be undertaken and the objectives of the tests defined.

/ R

3.19 Module test results should be recorded in a report that contains
at least the following points:

- the version of the module tested,
- the input data used,
- expected and observed results,
- an evaluation of the results (positive or otherwise).

The aim of this requirement is to ensure that each module is verified in its final
version and that tests will be reproducible (for use in non-regression tests for
example).

/ R

32

5. CONCLUSION
The major objective dealt with this document, through the application of safety and quality
requirements, is the prevention of embedded software failures and any other unexpected
behaviour that might lead to the creation of dangerous faults in a system dedicated to the
machinery sector.

In order to satisfy this objective, requirements are given and organised into two software
requirement levels (1,2) according to the criticity of the functions ensured by the software.
The requirements focus on:

• Software product. Requirements are established in order to obtain an embedded
software that is fully safe in operation and of satisfactorily high quality.

• Software development process. The basic objectives of these requirements (definition
of the development phases, means required, etc.) are to orient development in such a
way that it can satisfy the functional specification requirements of the target system
and inspire the confidence necessary to satisfy safety constraints.

• Software verification: The purpose of verification requirements is to demonstrate that
software products stemming from a given phase of the development cycle conform to
the specifications established during the previous phases and to any applicable
standards or rules. They also serve as a means of detecting and accounting for any
errors that might have been introduced during embedded software development.

The requirements outlined in this document can be used for all types of machinery, regardless
of the technology involved and whether or not the system parameters can be defined by the
user, provided the safety functions are ensured by software.

It is recommended that the system designer take these requirements into consideration from
the outset of the embedded software development procedure, when the intervention of the
analyst takes place before the beginning of the development itself.

33

6. GLOSSARY

• Aliasing: access to the same data by means of different names.

• Audit: methodical and independent examination intended to determine whether the
activities and the results relative to quality and safety satisfy the previously-
established measures, and if these measures have been applied efficiently and in such
a way as to ensure the achievement of the objectives set (NXF50-120).

• Coding: activity of source code production, representation in languages such as
assembly language or C, which can then be accepted by an assembler or compiler for
the production of executable instructions for use by the target processor.

• Design: software architecture construction activity (usually called "preliminary
design") which allows the implementation of software specifications and the
construction of detailed algorithms (activity usually referred to as "detailed design").

• Executable code production: activity in which the different code components are
grouped (by link editing especially) into a form that allows the generation of an
executable code to be loaded into the target system.

• Version Sheet: document defining a software version in terms of its constituent parts
and the tools required to produce them.

• Configuration Management: all the activities (manual and automatic) allowing the
constituent parts of a software product and the relations existing between these parts
to be identified and defined. Such activities consist in controlling changes to a
software product during its life cycle, following up the state of application of these
changes, archiving each of the successive states and checking that each state is
complete and coherent.

• Test traceability matrix : matrix intended to establish the correspondence between
the tests to be carried out and the objectives of the tests defined, and allowing the
evaluation of test coverage.

• Module tests: can be used to demonstrate that the lowest level software module
carries out the entire function foreseen at the detailed design stage, and only this
function.

• Software quality plan: document laying down the operating modes, resources and
sequences of activities linked to quality regarding a product, service contract or
particular project. (NFX 50-120). It is a project management tool.

34

• Review: activity organised at a key point ("milestone") in the development cycle (e.g.
specification, validation) in which specialists external to the development team
participate. The review is intended to ensure that all the activities required during a
given phase have been undertaken, that the problems to be dealt with have been taken
into account and that the solutions proposed allow the transition to the next
development phase. It is not a control operation. It judges the work undertaken in a
given phase or stage in terms of the justifications offered and making
recommendations.

• Software integration tests: are used to verify the relationships between the different
software components and the temporal sequencing of treatment. They are used to
verify that units composed of several software modules function correctly.

• Software validation tests: are the ultimate step in the software development process.
The purpose of these tests is to verify the correct operation of the software with
respect to the specifications in the environment of the target system .

• Specification: activity that consists in describing the expected software
functionalities, and that takes into account inputs and any applicable constraints.

• Validation : the test and evaluation of the integrated computer system (hardware and
software) to ensure compliance with the functional, performance and interface
requirements.

• Verification : the process of determining whether or not the product of each phase of
the digital computer system development process fulfils all the requirements imposed
by the previous phase.

35

7. APPENDIX: CODING RULES

7.1. INTRODUCTION

Coding requirements are presented in this Appendix in the form of coding rules for software
written in C or in assembly language (the most widely used languages in the areas considered
in this text).

The interest of these rules is to reduce the risk of programming errors and to make re-reading
the code and integrating and maintaining the software much easier. It is not our intention to
restrict the software developer, merely to attract his or her attention to possible sources of
error during programming activities or to difficulties that are likely to occur during the
integration and maintenance steps. For example:

Forbidding the assignment of variables in the Boolean expression in C is intended to detect
programming errors:

 if (my_variable = my_constant) ...

The intention of the programmer is to compare a variable to a constant and not to assign
my_variable to be equal to my_constant. There is thus a typing error, with "=" instead of

"= =".

Rules limiting structural complexity (limitation of nesting, restrained use of break and
continue, etc.) are intended to facilitate integration and maintenance. It is indeed somewhat
delicate to test or to modify structurally complex sources.

The rules proposed here are applicable to any requirement level set for the software.

Note: there may be times when certain of these rules may be unsuited to a given project. It is
preferable to avoid imposing a strict ban on a given point but rather to allow periodic neglect
of a given rule. Nevertheless, it is necessary to add a comment explaining why the rule was
not respected (and not simply forgotten), and to justify the action.

These rules are presented in three parts:

• general rules applicable to both C and assembly language. These rules are identified by the
prefix "G".

• rules specific to C. These rules are identified by the prefix "C".

• rules specific to assembly language. These rules are identified by the prefix "A".

Each part is composed of rules applicable to comments and declarative parts, followed by
rules applicable to executable instructions.

36

7.2. GENERAL RULES

7.2.1. General rules: Comments and declarative parts

No. General Rules: Comments and Declarative Parts
G-1 Use a standard header for each module and subroutine.
G-2 Use explicit identifiers.
G-3 Limit subroutines to 150 lines.
G-4 Comment all data and parameters declarations.
G-5 Comment source code instructions using the following principles:

- comments that should be coherent with the code,
- one comment for each block of significant instructions and for each

complex decision,
- use non-trivial comments, i.e. comments that add something as compared

to simply reading the code,
- comments for the abnormal ends of modules.

G-6 Aliasing forbidden.

7.2.2. General Rules: Instructions

No. General Rules: Instructions
G-7 Use a single entry and single exit point for each subroutine.
G-8 Do not use recursive structures.
G-9 Limit the nesting of control structures (less than five levels).
G-10 All instructions should be reachable by executing the code (no dead code).
G-11 Do not use literal numerical values in the source code (except for trivial values).
G-12 Do not declare unused variables/constants.
G-13 Initialise each variable before use.
G-14 Limit the use of pointers.
G-15 Limit the use of interruptions.
G-16 Branch in the loops forbidden.
G-17 Recursivity, if employed, should be explained in detail.

7.3. RULES FOR CODING IN C

7.3.1. Rules for coding in C: Comments and declarative parts

No. Rules for coding in C: Comments and declarative parts
C-1 Define the upper limit of each array with a symbolic constant (the lower limit is

implicitly set to 0 in C).
C-2 Test the limits of arrays when performing operations on array indices in order to

avoid violating the array size limitations.
C-3 Indent the source code in relation to the nesting of control structures.
C-4 Characterise each array.
C-5 Initialise arrays when they are declared.

37

7.3.2. Rules for coding in C: Instructions

No. Rules for coding in C: Instructions
C-6 Explain each conversion of type (casting).
C-7 Transfer data using only parameters.
C-8 Do not transfer expressions in function calls.
C-9 Do not redefine imported data locally.
C-10 Reserve the use of the "static" clause in a C function to state variables.
C-11 Set a feedback test on the code returned from each function.
C-12 Limit the data exported by a C module.
C-13 Expressions should be independent of the order in which they are evaluated. Do

not use "++" or "--" in complex expressions.
C-14 Do not use "!=" and "==" instructions for real numbers.
C-15 Set the end of the programme (if it exists) in the main programme, and only with

an exit statement.
C-16 Do not perform any assignments in Boolean expressions.
C-17 Limit the use of "goto" to the treatment of errors.
C-18 Limit the use of "continue" or "break" instructions. Use at most one "continue"

or one "break" per loop.
C-19 Do not modify the counter of the "for " loop in the body of the loop.
C-20 Use the "sizeof" instruction whenever possible.
C-21 Forbid the use of dynamic allocations ("malloc" calls)
C-22 By default, reserve the treatment of a "switch" to the treatment of errors.
C-23 Associate a "default" to each "switch".
C-24 Terminate all cases of "switch" by a "break".

7.4. RULES FOR CODING IN ASSEMBLY LANGUAGE

7.4.1. Rules for coding in assembly language: Comments and declarative

No. Rules for coding in Assembly language: Comments and declarative parts
A-1 Define the modes of use of all registers.
A-2 Define the mode of representation of the different types of variables.
A-3 Define the internal representation of the Boolean operators TRUE/FALSE
A-4 Define the mode of representation of negative integers.
A-5 Define the initialisation of the registers.
A-6 Define the mode of called parameter transfer: stack or register.
A-7 Comment all tests carried out.
A-8 Comment logic masks.
A-9 Comment branch points.
A-10 Comment indirect addressing operations.

