Standards for Safety Related Complex Electronict8yss

N STSARCES
3

Annex 2

Tools for Software fault avoidance
Task 1.1: Software Fault Avoidance through Quality

Final Report of WP1.2

Philippe Charpentier
INRS

(INRS

European Project STSARCES
Contract SMT 4CT97-2191

Contents

1. INTRODUCTION 5
1.1. OBJECTIVES 5
1.2. TARGET AREAS 5
1.3. INSTRUCTIONS 5
1.4. OvERVIEW OF DOCUMENT 7

2. SOFTWARE PRODUCT REQUIREMENTS 8
2.1. PRESENTATION 8
2.2. LIST OF REQUIREMENTS 8

2.2.1. NTERFACE WITH SYSTEM ARCHITECTURE 8
2.2.2. DFTWARESPECIFICATIONS 9
2.2.3. ®FTWARE THAT CAN BE PARAMETRIZED BY THE USER 10
2.2.4. RRE-EXISTENT SOFTWARE 11
2.2.5. ®FTWARE DESIGN 12
2.2.6. [DEVELOPMENT LANGUAGES 13
2.2.7. @DING 13
3. SOFTWARE DEVELOPMENT PROCESS REQUIREMENTS 14
3.1. DEVELOPMENT PROCESS 14
3.1.1. ®FTWARELIFECYCLE 14
R T IO IO IO = =YY =T 0] = 1T] [T 14
3.1.1.2. Activities iN the lIfECYCIEveeeeeeeeeee e 14
3.1.2. ®FTWARE LIFECYCLE REQUIREMENTS 15
3.2. ORGANISATION 15
3.2.1. SFTWAREQUALITY ASSURANCEREQUIREMENTS 15
3.2.2. \FETY SUPERVISION AND MANAGEMENT REQUIREMENTS 16
3.3. DOCUMENTATION 16
3.3.1. [DDCUMENTATION MANAGEMENT REQUIREMENTS 16
3.4. CONFIGURATION AND SOFTWARE M ODIFICATION MANAGEMENT 17
3.4.1. (ONFIGURATION AND ARCHIVING MANAGEMENT REQUIREMENTS 18
3.4.2. SFTWARE MODIFICATIONS MANAGEMENT 19
3.5. TooLs 20
3.5.1. [DEVELOPMENT TOOL REQUIREMENTS 20
3.6. EXTERNAL SUBCONTRACTING 20
3.6.1. EXTERNAL SUBCONTRACTING REQUIREMENTS 20
3.7. REPRODUCTION, DELIVERY 21
3.7.1. EXECUTABLE CODE PRODUCTION REQUIREMENTS 21
3.7.2. ®FTWARE INSTALLATION AND EXPLOITATION REQUIREMENTS 21

4. SOFTWARE VERIFICATION AND VALIDATION REQUIREMENT S 22
4.1. PRESENTATION 22
4.2. GENERAL VERIFICATION AND VALIDATION REQUIREMENTS 23
4.3. VERIFICATION REQUIREMENTS 24

4.3.1. (ENERAL VERIFICATION REQUIREMENTS 24
4.3.2. RVIEW REQUIREMENTS 24

4.3.3. (®DE VERIFICATION (SOURCE CODE AND DATA REQUIREMENTS 25

4.4, DFTWARE TEST REQUIREMENTS 26
4.4.1. (ENERAL VALIDATION REQUIREMENTS 26
4.4.2. B®FTWARE SPECIFICATION VERIFICATION REQUIREMENTSV ALIDATION TESTS 28
4.4.3. SFTWARE DESIGN VERIFICATION REQUIREMENTSSOFTWARE INTEGRATION TESTS 30
4.4.4. [ETAILED DESIGN VERIFICATION REQUIREMENTSMODULE TESTS 31

5. CONCLUSION 32
6. GLOSSARY 33
7. APPENDIX: CODING RULES 35
7.1. INTRODUCTION 35
7.2. GENERAL RULES 36
7.2.1. (GENERAL RULES COMMENTS AND DECLARATIVE PARTS 36
7.2.2. GENERAL RULES: INSTRUCTIONS 36

7.3. RULESFORCODING IN C 36
7.3.1. RJILES FOR CODING INC: COMMENTS AND DECLARATIVE PARTS 36
7.3.2. RJLES FOR CODING INC: INSTRUCTIONS 37

7.4. RULESFOR CODING IN ASSEMBLY LANGUAGE 37
7.4.1. RILES FOR CODING IN ASSEMBLY LANGUAGE COMMENTS AND DECLARATIVE 37

SUMMARY:

This document outlines an optimal set of requireimeor the production of embedded
software used to ensure safety-related functiornth@fmachinery sector. It does not replace
the IEC 61508 Standard (especially part 3 "SoftviRequirements"”), which served as a basis
but provides a set of basic requirements, cohevehtthis standard, adapted to the machinery
software products usually developed by SME/SMIs.

The requirements focus on the following points:

» Software product. Requirements describe the maaracheristics which an embedded
software should possess to guaranty its qualitysahety.

» Software development process: Requirements ardlissiad for all technical activities
associated with software development, for thoselued in software design. These can
then be used to guide the designer during the ptaduof this type of software.

» Software verification: A reference framework is @iv for software evaluation. The
requirements should allow the analyst to decidéherfitness of an embedded software to
satisfy the safety requirements of the target systebe analysed.

1. INTRODUCTION

1.1. OBJECTIVES

This document outlines an optimal set of requireiméor the production of software used to
ensure safety-related functions within a givenesyst

The major objective dealt with here, through theliaption of these requirements, is the
prevention of software failures and any other umetgd behaviour that might lead to the
creation of dangerous faults in the target system.

In order to satisfy these objectives, the requireneliscussed here focus on the following
points:

» a description of the main characteristics whiclnglied software product should possess
to guaranty its quality and safety (software pradaquirements),

» the establishment of the requirements imposed bteetinical activities associated with
software development, for those involved in sofeveesign. These can then be used to
guide the designer during the production of thigetpf software (software development
process requirements).

» a reference framework for software evaluation. €hesquirements should allow the
analyst to decide on the fitness of a software gpeotb satisfy the safety requirements of
the target system to be analysed (software vetidicaequirements).

1.2. TARGET AREAS

The requirements outlined in the present documentern software products that are part of
a control system used to ensure safety functions.

They can be used for all types of machinery, rdgasdof the technology involved and
whether or not the system parameters can be detayethe user, provided the safety
functions are ensured by software and that thesetibns are not of an especially high
criticality (e.g. safety functions in the area oictear power or aeronautics are excluded).

This document does not replace the IEC 61508 Standh(especially part 3 "Software

Requirements"), which served as a basis. It provide a set of basic requirements,
coherent with this standard, adapted to the machimy software products usually

developed by SME/SMIs.

1.3. INSTRUCTIONS

The requirements discussed in the present docuraentorganised into two software

requirement levels (1,2) according to the critiaiythe functions ensured by the software.
Level 2 corresponds to the highest requirementthiisoftware considered in this document.
The level associated with a given function depesda risk analysis of the entire system (for

6

determining the software requirement level, see elplx B of the “Guide to evaluating
software quality and safety requireméfjts

The level can be used to establish a list of eleangmequirements for the software under
consideration. Three degrees of importance carebeeatl to help decide whether or not it is
necessary to consider a given requirement as aidnnaf the level of criticity:

 "O" (Obligatory): this requirement should be applied eystically to the software in
guestion.

« "R" (Recommended): the application of this requirementreésommended but not
automatically imposed.

* "I" (norequirement): the application of this requiegrnis left to the user's discretion.

It should be the system designer's responsibilityot demonstrate to the analyst that all
applicable requirements have been met in the softwa to be evaluated Each of these
elementary requirements should thus solicit an @ppate response, by means of either a
document produced for the software or activitiegied out during software development,
results of which should be kept for evaluation bg ainalyst. For example, it is important to
note that a validation testing activity such asoinfal debugging (with no paper or
computational evidence) with a logic analyser dogsconstitute proof of a given test. This
should not prevent the designer from carrying big type of activity if it is needed during a
specific development phase.

It is recommended that the system designer takethequirements into consideration from
the outset of the software development procedurenvthe intervention of the analyst takes
place before the beginning of the developmentfit§d¢lese requirements could give rise to
contractual quality clauses when the system desigigns a contract with a software
provider.

All texts in italics in the sections on requirements are informativenroents intended to
define the objectives of the requirements in qoesprecisely, clarify the manner in which
they are to be understood, and lay down any pasBihitations on their application.

No. Coordination with the analyst for software evaluaton Level
1| 2
1.1 | Any deviations from the requirements presemtdtis O|O

document should be pointed out by the applicatttécanalyst
and should be approved by the latter.

The applicant should request a meeting with theyastal

! GUIDE TO EVALUATING SOFTWARE QUALITY AND SAFETY REQIREMENTS
STSARCES Project - WP 1.2 / Aspect 2 — Final ReptRS — Fev 2000

1.4. OVERVIEW OF DOCUMENT

In addition to this introductory section, this dagent contains three major sections :
» Section 2: requirements concerning the softwardymb:

- Interface with system architecture

- Software specification

- Software that can be parametrized by the user
- Pre-existent software

- Software design

- Development languages

- Coding

» Section 3: requirements concerning the softwareldgwment process:

- Development process

- Organisation

- Documentation

- Configuration and software modification managetmen
- Tools

- External subcontracting

- Reproduction, delivery

» Section 4: requirements concerning software vetion and validation :
- General verification and validation requirements
- Verification requirements:

- General verification requirements
- Review requirements
- Code verification (source code and data) requargsn

- Software test requirements:

- General validation requirements

- Software specification verification requirementatidation tests

- Software design verification requirements: sofevategration tests
- Detailed design verification requirements: medigsts.

An appendix to this document contains coding ruiesparticular for C and assembly
language - the languages the most commonly us#teipreparation of the type of software
considered in this document.

2.

SOFTWARE PRODUCT REQUIREMENTS

2.1. PRESENTATION

This chapter presents the requirements a softwa@dupt should possess if it is to be fully
safe in operation and of satisfactorily high qualifo obtain such a software product, a
number of activities, a certain organisation amdiaber of principles must all be established.
This should take place as early as possible irdéwelopment cycle (different requirements
and recommendations concerning the developmentegso@are given in the following
chapter).

Software product requirements should cover:

- Interface with the architecture of the systenegnating the software
- Software specification

- Software that can be parametrized by the user

- Pre-existent software

- Software design

- Development languages

- Software coding (coding rules are presented ipefalix).

2.2. LIST OF REQUIREMENTS

2.2.1. Interface with system architecture

No. Interface with system architecture Level
1] 2
1.2 | Software safety requirements as well as the debation of /| O

expected events should arise from safety analyssstem,
functional and hardware level, etc.

1.3 | The list of constraints imposed by hardware archit@ on O| O
software should be defined and documented.
Consequences of any hardware/software interactiche®
safety of the machine or system being monitorediishioe
identified and evaluated by the designer, and takienaccount
in the software design.

Constraints such as :
- protocols and formats,
- input/output frequencies,
- by rising and falling edge or by level,
- input data using reverse logic etc.

Listing these constraints allows them to be takém agcount at the start of the
development activity, and reduces the risk of imzatibilities between software and
hardware when the former is installed in the targatdware.

The consequences of any software errors shoultuldésd at system level in
particular.

2.2.2. Software Specifications

No.

Software Specifications

1.4

Software specifications should take the followiragnps into
account:

a) safety functions with a quantitative descriptidriree
performance criteria (precision, exactness) angozal
constraints (response time), all with tolerancesargins
when possible,

b) non safety functions with a quantitative descoptof the
performance criteria (precision, exactness) angozai
constraints (response time), all with tolerancesargins
when possible,

c) system configuration or architecture,

d) instructions relevant to hardware safety integrity
(programmable electronic systems, sensors, actjagtur.)

e) instructions relevant to software integrity and slagety of
safety functions,

f) constraints related to memory capacity and system
response time,

g) operator and equipment interfaces,

h) instructions for software self-monitoring and fartiware
monitoring carried out by the software,

i) instructions that allow all the safety functionsverified
while the system is working (on-line testing).

The instructions for monitoring, developed tak#adety objectives and operating
constraints (duration of continuous operation ,etato account, can include device
such as watch dogs, CPU load monitoring, feedimdicutput to input for software
self-monitoring. For hardware monitoring, CPU and nzegnmonitoring, etc.
Instructions for safety function verification: fekample, the possibility of
periodically verifying the correct operation offety devices should be included in
the specifications.

4

1.5

Functional requirements should be specified fohdanctional
mode. The transition from one mode to the otheukhbe
specified
Functional modes can include:

- nominal modes,

- one or more degraded modes.

The objective is to specify the behaviour in dllaions in order to avoid unexpectg
behaviours in non-nominal contexts.

o

10

2.2.3. Software that can be parametrized by the user

The following requirements concern the developrmésbftware products that are designed
to allow end-users to set their own parameters.

The end-user may be either the person responsibli@tegrating the product into the system
or else the user.

Such software can have different degrees of comylex table of messages or a system
option. In keeping with the spirit of the preserdcament, the definition of software

parameters is limited and defined precisely in gpecification documents. This excludes any
modifications that might cause doubt about the exacsion of the software, since this type
of modification should always be undertaken by #udtware designer (see Software

modification processes).

Certain systems can also include optional functitimst are selected through the use of
parameter-setting options in the software.

No. Software that can be parametrized by the user Level

1.6 | The parameters should be formally specified (typlations, ...) R | R
in the form of memory arrays. Moreover, the sofevand the
parameters should be capable of independent evptuti

1.7 | Software specifications should define mechanisrasdganbe | R | O
used to prevent the possibility of any parametetdyg the user
can affect the system safety. In so far as moddiphrameters
are concerned, these mechanisms should providectimt
against :

- undefined or invalid initial values,
- values falling outside functional limjts
- data alteration

The definition of software parameters by users khbe kept
within the limits established by the system speations
approved by the analyst.

In particular, test procedures should include @iént parameter values and different
types of software behaviour. The designer shouldrertbat only those parameters
which can be modified are accessible to the user.

11

2.2.4. Pre-existent software

The term "pre-existent” software refers to sourcedules that have not been developed
specifically for the system at hand, and are ind¢ga into the rest of the software. These
include software products developed by the desifpreprevious projects, or commercially
available software (e.g. modules for scientificccdditions, sequencers, etc.).

When dealing with this type of software, and esgcin the case of commercial software

products, the designer does not always have adoesaht the elements needed to satisfy the
previous requirements (e.g. what tests have beemedaout, is the design documentation

available). Specific co-ordination with the analyist therefore necessary at the earliest
possible moment.

No. Pre-existent Software Level

1.8 | The designer should indicate the use of pre-existgitwareto | O | O
the analyst, and it is the designer's respongitididemonstrate)
that pre-existent software has the same leveleaprisent
requirements.

Such a demonstration should be done:

- either by using the same verification activitoesthe
pre-existent software as on the rest of the soéwar

- or through practical experience where the pre-emtst
software has functioned on a similar system in a
comparable executable environment (e.g. it is
necessary to evaluate the consequences of a chnge
the compiler or of a different software architeetur
format).

The goal of indicating the use of pre-existentvgafé is to open up consultations with
the analyst as early as possible about any ewatditficulties that this type of
software might cause.

The integration of pre-existent source moduleshiathe cause of certain anomali€
or unsafe behaviour if they were not developed vaighseme rigour as the rest of th
software .

1.9 |Pre-existent software should be identified usirgghme O| O
configuration management principles that were apolpio the
rest of the software.

DO

Perfect configuration control should be exercisedraall the software components,
regardless of their origin.

2.2.5. Software design

No.

Software Design

1.10

Description of the software design should inclutitha very
least:

- adescription of the software architecture thedires the
structure decided on to satisfy specifications,

- a description of inputs and outputs (e.g. in thenfof an
internal and external data dictionary), for all thedules
making up the software architecture,

- sequencers and interruptions,

- global data,

- adescription of each software module (inputg/ots,

algorithm, design particularities, etc.),

libraries used,
pre-existent software used.

1.11

Software should be modular in order to facilitdge i
maintenance:

- each module or group of modules should correspibl
possible, to a function in the specifications

- interfaces between modules should be as simp
possible.

The general characteristic of correct softwarekhitecture can be summed
up in the following way: a module should possebgh level of functional
cohesion and a simple interface with its environmen

nd,

e

as

1.12

Software should be designed to limit those pas@ated with
safety:

- data/functional architecture: strict limitatiohglobal
variables, implementation of operators on stateabées
(visibility),

- control of the layout of arrays in memory (riskaoray
overflows).

12

The goal of these requirements is to ensure thadesigner uses a programming language
and development tools that are well adapted tosthfevare being developed, and that these
tools do not lead to the introduction of errorstire executable code on the target machine.
The following requirements can be applied to amglaage used (if more than one language
is used simultaneously on the same system). Génetlaé most widely used languages
include:

- an assembly language, specific to the micropremesr microcontroller employed,

2.2.6. Development languages

- an advanced programming language such as C.

be outlined in detail in a coding manual and usedevelop the
software. The coding manual should :

- indicate what programming principles should bplizol
and prohibit any uncertain language aspects,

- describe rules for source code presentation and
documentation,

- include conventions used in naming components,
subroutines, variables and constants.

A set of rules are provided in Appendix A of ttusuimentFor example, indented
presentation of different blocks of instructionse wf blank lines, contents of the
source file header (author's name, input and outiaua, modified data, etc.).
These conventions help improve software legibility enaintenance.

No. Development Languages Level
1 2
1.13| The selected programming language should corresioottnd R| O
characteristics of the application, and shouldubg &ind clearly
defined or at least limited by clearly defined aweristics.
The characteristics of the application refer to lsdiactors as size, type (industrial gr
scientific software, management, etc.), and anfoperance constraints. For
example, COBOL does not satisfy the developmeniresgents of a
monitoring/control application on an industrial ntsine.
Any deficiencies in the language can be avoidediguappropriate coding rules.
2.2.7. Coding
No. Coding Level
1 2
1.14| The source code should: O| O
a) be readable, understandable, and subject &) test
b) satisfy design specifications of the softwarelaie,
c) obey the coding manual instructions
1.15| The coding rules applicable to a given softwarelpob should | R | O

14

3. SOFTWARE DEVELOPMENT PROCESS REQUIREMENTS

3.1. DEVELOPMENT PROCESS

3.1.1. Software Lifecycle

3.1.1.1. Presentation

A software project begins with the specificationtloé necessary and sufficient conditions for
the design and production of a product. This orggtion, specific to each project, forms the
software lifecycle.

The activity schedule is defined in relation te gpecific aspects of the project, for example,
complexity of the system and the software undessicanation, use of previously developed
software products, production of a prototype orilabdity of test equipments.

The basic objectives of requirements relevant fawswe development planning (definition of
the development phases, means required, etc.p argenht development in such a way that it
can satisfy the functional specification requiretseaf the target system and inspire the
confidence necessary to satisfy safety constraints.

These requirements deal with the following points:

» software lifecyclethat is used to define and coordinate softwaresldgwment activities,
and all activities associated with development (uoeentation, configuration and
modifications management, etc.) by adapting thethesystem under consideration

» choice of the development environmerdnd especially development tools,
» planning of other activities (verification, quality assurance, etc.),
» certain additional requirements that must be taken into account at the beginninte

development cycle (coordination with the analyst arternal subcontracting).

3.1.1.2. Activitiesin thelifecycle
Software definition usually includes the followisgquential development activities:

« specification

» design

e coding

» executable code production

These definitioractivities are complemented by software verificatarctivities, the goal of
which is:

» to verify that the software product satisfies spedirequirements at each of the different
stages of the development,

15

» to detect any errors that might have been introdwdeen developing the software.

The principal element of any software verificatisrtesting. Other activities such as reviews
or analyses (for example rereading the code) assilple aspects of software verification.

Software testing activities generally include diffiet phases that correspond to different
development activities:

* module tests
» software integration tests

+ software validation tests

3.1.2. Software lifecycle requirements

The goal of the following software lifecycle reguirents is to obtain a formalised description
of the organisation of software development andparticular, the different technical tasks

making up this development. This description presoitmproved planning of the

development activities and more thought being giteethe optimal time schedule for this
development. For the purposes of the accompanyaegrdentation, this description can be
grouped with the description of quality assuranisps.

No. Software Lifecycle Level
1 2
2.1 | The software development lifecycle should be spetidnd O| O

documented (e.g in a Software Quality Pldrje lifecycle
should include all the technical activities and ggsanecessary
and sufficient for software development.

2.2 | Each phase of the lifecycle should be divided its elementary O | O
tasks and should include a description of:
- inputs (documents, standards etc.),
- outputs (documents produced, analytical repetts),
- activities to be carried out,
- verifications to be performed (analyses, tedts,)e

3.2. ORGANISATION

3.2.1. Software Quality Assurance Requirements

The goal of quality assurance activities is prinhatio ensure that the software product, its
documentation, and the lifecycle activities all fmym to the present requirements and that
any deficiencies are detected, evaluated, monitaretiresolved.

16

No. Software Quality Assurance Level
1] 2
2.3 | The programme used to guarantee software qualiylgtbe R| O
well-documented (e.g in a Software Quality Planjl include at
least:

- the organisation, the people who are responglguality
assurance, development and tests, and the required
independence,

- the quality assurance activities included ingb&ware
lifecycle Examples of methods, reviews, inspecjions

- any documents producecgports, etc.).

This documentation can be assembled by referergiggpplicable internal
documents used for an entire set of projects silplypecifying what has been useld
for the project in question .

3.2.2. Safety supervision and management requirements

Safety supervision and management tasks are udetlde / monitor the setting up of safety
measures as the project develops, and to ensuteathtéhe expected activities take place.
They should keep abreast of the availability obteses, the monitoring of critical junctures

in the project and eventually, the follow-up of auypcontractors in so far as software safety
is concerned. This should be done for all the imfation contained in the project schedule.

No. Safety Supervision and Management Level
1 2
2.4 | Safety supervision should be a permanent activityjenthe R| R

software is being produced.

By continually monitoring the progress in softwasdety, it is possible to take any
action on the conducted activities quickly. Thinésessary to prevent safety from
drifting .

3.3. DOCUMENTATION

3.3.1. Documentation management requirements

Certain requirements specific to the documentatorto certain documents are presented
below.

The aim of these requirements is to establish ancmmbasis of reference for the applicant or
organisation (designer in general) and the analykb is evaluating the system.

It should be noted that all the information colkettby the analyst during audits or through
consultation of related documentation must alway$reated as confidential.

17

No. Documentation Management Level

2.5 | The list of documents to be produced should benddfatthe | O | O
outset of the project (e.g in a Software Qualitgr |

The creation of such a list ensures that the c@oesling tasks are also planned and
therefore constitutes a guarantee that all the etgudocumentation exists.

2.6 | Each document should at least: O O

- be identified in a unique waydference, version,
revision inde,

- be dated,

- carry atitle that indicates the scope of itsteahand that
sets the document in the context of the documemtzis
a whole. gpecification, design, ejc.

- be written in the language mutually agreed by the
applicant and the analyst.

Furthermore, any subsequent changes to the docsrsieotld
follow established guidelines (management of revisndices,
etc.), and all documents should be available iir thefinitive
version when the final software evaluation is utalean by the
analyst.

The requirement concerning the langage in whichdib@uments are to be written
enables the analyst to carry out his evaluation witicuments that the personnel can
understand. If this is not the case, the applicans the risk of having the evaluatipn
refused.

The requirement concerning subsequent changescumuients is intended to
maintain the quality level achieved with the iniv&rsion as new documentation
versions appeatr.

Provisional versions of the documents can be pexlidith the agreement of the
analyst if he or she intervenes during the devalemt phases.

2.7 | The necessary documentation should be establighreztth R| O
phase of the lifecycle to facilitate verificationdavalidation,
and the software safety requirements should bedtde and
capable of being verified at each stage of thege®c
(traceability matrix for each definition document)

This will avoid a situation where the only availabigcumentation is the source cogle
because the documents that should have been pepane not (deadlines too tight,
project manager transferred to another contract, et

3.4. CONFIGURATION AND SOFTWARE MODIFICATION MANAGEMENT

Management of the configuration and therefore lué wersion is indispensable to any
development which requires approval. Indeed, apgraog only valid where a given
configuration has been identified. Configuration magement includes configuration
identification activities, modification managemgthie establishment of reference points and
the archiving of software products, including thesaciated data (documents, records of tests,

18

etc.). Throughout the entire project lifecycle, trancipal objectives of these requirements
are to:

» provide a defined and controlled software configima that can be used to reproduce an
executable code coherently (with future softwakedpction or modification in mind).

» provide a recognised reference basis for progresaluation and for modifications
management,

» provide a means of control which guarantees that problems are properly analysed,
and that the approved modifications are carried, out

» guarantee physical archiving and reproduction pbaisy of the software

3.4.1. Configuration and archiving management requiremens

No. Configuration and Archiving Management Level

1] 2
2.8 | A procedure for configuration management and modalifons O| O
management should be defined and documented. Tdtsgure
should, as a minimum, include the following items:

- articles managed by the configuration, at least :
software specification,
preliminary and detailed software design,
source code modules,
plans, procedures and results of the validagstst
- identification rules (of a source module, of #ware
version, etc.),
- treatment of modifications (recording of requests.).

For each article of configuration, it is necesdarpe able to
identify any changes that may have occurred aadéhsions of

any associated elements.

()

The purpose of this is to be able to trace theohisil development of each articl
what modifications have been made, why, and when?

2.9 | Software configuration management should aliqwecise and O | O
unique software version identification to be obeain
Configuration management should associate all ides (and

their version) making up a software version
The aim of this requirement is to avoid errors sashmaodification of a module that
is not in the latest code version or delivery ofuartested code version to the client,

etc.

No.

Configuration and Archiving Management

2.10

All articles in the software configuration should tovered by
the configuration management procedure before kiestgd or
being requested by the analyst for final softwaesion
evaluation.

The objective here is to guarantee that the evangtrocedure is performed on
software with all elements in a precise state. Amssguent change will require
revision of the software and will thus be identif@bly the analyst.

2.11

Procedures for the archiving of software and isbaemted data
should be established (methods for storing backnps
archives).

These backups and archives can be used to mamtairmodify software during its
functional lifetime.

3.4.2. Software modifications management

No.

Software Modifications Management

2.12

Any software modification is subject to the rulasadlished for
modification and configuration management, and ireguthat
the development process be recommenced at theshighe
"upstream” point needed to take the modificatido account.

In particular, the documentation should also be ated, and all necessary
verification activities carried out. This guaraetethat the software will retain all it
initial properties after any modification.

2.13

The description of software modifications shouldule details
of each modification made. This should includesast the
following items for each modification:

a) the modification request,

b) the report detailing the analysis of the impzidhe
software modification, the decisions made in tespec
and their justification,

c) the version of the software to be modified as wslthe
configuration articles and their version.

This minimal degree of formalism ensures that nicatibns are introduced
by the different individuals working on the projesing properly controlled
procedures and in a concerted, systematic fasiBgrso doing , it is
possible to define the tests to be carried outigedg - something that woulg
be impossible if the exact state of the modificegtiand their impact had no
previously been established.

|

19

20

3.5. TOOLS

3.5.1. Development tool requirements

No. Development Tools Level

2.14 | Optimisation of object code performance optionsfareidden. | R | O

Any optimisation by the compiler might modify ttze ®f the resultant code and its
speed of execution. Since the instructions genegiféer according to the options
selected, test representiveness might be jeopardisgtions are used.

2.15|If a new compiler or a new linker is used during th R| O
development procedure, the validity of the testingvities
already performed should be analysed by the designe

The instructions generated might be different, tast representiveness might be
altered. Only an analysis of the situation will reradhe uncertainty caused by this

2.16 | Tools used during the development procedure (campihker, | O | O
tests, etc.) should be identified (name, referemersion, etc.) in
the documentation associated with the softwardaeg.g. in
the Version Sheet).

Different versions of tools do not necessarily proglthe same results. Precise
identification of tools thus directly demonstratiese continuity of the process of
generation of an executable version in the eveattdhversion is modified.

3.6. EXTERNAL SUBCONTRACTING

The aim of these requirements is to guaranteettieentire software respects the present set
of requirements, whether it is subcontracted tcesavdifferent firms or not. The software
designer who signs a contract with external sub@mtors should take all the necessary
steps (e.g. software quality clauses) to ensuredhg software not directly developed by his
or her firm respects the requirements applicabléh entire software version integrated into
the system under consideration.

3.6.1. External subcontracting requirements

No. External Subcontracting Level
1] 2
2.17 |In the event that any part (even partially) of soéware O| O

development is subcontracted to a third partyptiesent
requirements should also apply to the subcontrattoey may
possibly be adapted to reflect the importance atdra of the
subcontracted tasks.

2.18 | The designer should ensure and demonstrate that the O| O
requirements have been respected by the subcan{sjct

21
3.7. REPRODUCTION, DELIVERY

3.7.1. Executable code production requirements

The objective of the following activity is to erabie production of an executable object code
that will be loaded into the target system.

No. Executable Code Production Level
1] 2
2.19| Any option or change in the generation, duringdbftware O| O

production should be recorded (e.g. in the VerSlbeet)so
that it is possible to say how and when the sofweaas
generated.

3.7.2. Software installation and exploitation requirements

No. Software Installation and Exploitation Level

2.20 | All failures linked to safety and dependability émions broughtf O | O

to the attention of the designer of the system kshioe recorded
and analysed.

This means that the designer is aware of any safetydependability-relate
failures that are communicated to him and thatdiest the appropriate
action (e.g. warning other users, software modifar etc.).

o

4.

22

SOFTWARE VERIFICATION AND VALIDATION REQUIREMENTS

4.1. PRESENTATION

The purpose of verification activities is to demwate that software products stemming from
a given phase of the development cycle conformhéospecifications established during the
previous phases and to any applicable standardsles. They also serve as a means of
detecting and accounting for any errors that miggate been introduced during software
development .

Software verification is not simply a series oftseseven though this is the predominant
activity for the relatively small software considdrin this text Other activities such as
reviews and analyses, whether associated with thewssts or not, are also considered to
be verification activities. In certain cases they can replace some testsiifetlie event that a
test cannot be carried out because it would caetszidration of a hardware component).

It is important to note the rapidly increasing coltorrecting an error in relation to the phase
at which it is discovered. The optimal cost of eoting an error corresponds to the earliest
possible moment in the lifecycle. For example, aorediscovered in the specification stage
by means of verification of the coherence betwibensoftware specification and the system
specification costs significantly less than if tiseme error is discovered at the end of the
development cycle (through software or system waéiliah). A discovery made late in the
process requires that all development phases imdkee by this error, and already completed,
must be undertaken anew.

Software tests can be carried out at different @has the lifecycle:

* module tests at the level of each individual modulean be used to demonstrate that the
module carries out the specified function, and dahiy function. Different types of module
tests can be noted, including logical tests (esemrch, verification of correctness of the
interconnections of the different branches, se&oclabnormal behaviour) and calculation
tests (verification of calculation results, perfamge and exactitude of algorithms).
Calculation tests typically include data tests witkpecification limits, outside these same
limits (abnormal state), at the specified limitadaat algorithmic singularities. Abnormal
behaviour tests (outside boundary values, algordhsmgularities, errors) are generally
referred to as robustness tests.

» software integration testsare used to demonstrate that the functional unéde up of an
assembly of modules operate correctly. This typtesis is principally concerned with the
verification of the interconnections between modulgata circulation, dynamic aspects
and the sequencing of expected events. They typitatiude tests on inter-modular
connections, dynamic aspects, the sequencing oéctag events, and the rerun of
operations in case of interruption.

» validation tests allow verification that the software installedtime hardware satisfies the
functional specifications, especially by verifyingrdware/software interfaces, general
performance levels, real-time operation, genenattions, use and allocation of resources.

The following chapters present the different reguients concerning:

General verification and validation requirements

» Verification requirements :

- General verification requirements

- Review requirements

- Code verification (source code and data) requargsn

» Software test requirements :

- General validation requirements

- Software specification verification requirementslidation tests

- Software design verification requirements: Sofeviategration tests

- Detailed design verification requirements: Modigsts

4.2. GENERAL VERIFICATION AND VALIDATION REQUIREMENTS
No. General Verification and Validation Requirements Level
1 2
3.1 | The analyst should be able to carry out the evialoaif O| O

software conformity to the present requirementsdayducting
any audits or expertises deemed useful during iffereht
software development phases.

All technical aspects of software lifecycle pro@ssare subject
to evaluation by the analyst.

The analyst must be allowed to consult all vertfmareports
(tests, analyses, etc.) and all technical documesgd during
software development.

The intervention of the analyat the specification phase is preferable to an a
posteriori intervention since it should limit thepact of any decisions made. On the
other hand, financial and human aspects of theqatogre not subject to evaluation|.

Itis in interest of the applicant to provide pfad all activities carried out during
software development.

The analyst should have all the necessary elena¢nlss or her disposal in order tg
formulate an opinion. Subcontracted software shawldbe left out of the evaluatign
procedure.

23

24

No. General Verification and Validation Requirements Level

3.2 |Evaluation of software conformity to the presemjuieementsis O | O
performed for a specific, referenced software wersAny
modification of previously evaluated software whics
received a final opinion from the analyst shouldEnted out
to the latter in order that any additional evalmatactivities can
be carried out to update this opinion .

Any modification can modify software behaviour; tipénion delivered by the analyst
can therefore only be applied to a precise softwemsion.

4.3. VERIFICATION REQUIREMENTS

As well as tests, verification activities can alswlude techniques such as reviews,
inspections, checks, cross-readings and code atidin.

4.3.1. General verification requirements

No. General Verification Requirements Level

3.3 | A verification report should be produced for eaehification R| O
activity, and should identify and document all disbns (non-
conformities) with respect to:

- the corresponding specifications,
- rules or standards (design, coding),
- any quality assurance procedures that may exist.

The goal of this requirement is to record any iifeed non-conformities in order to
be able to correct them (either immediately in¢hee of non-conformities that are
unacceptable from an operational or safety pointiefv or at a later date on another
software version if the non-conformity is only minor

4.3.2. Review requirements

Internal reviews at key points in the developmentess allow the designer to ensure that
the product will achieve the objectives set.

25

No. Review Requirements Level

3.4 | An external specification review (with the analysitpuld be R| O
held at the end of the software specification phase

Activities involving analysis and software speditfion
verification should:
- verify the exhaustiveness and adequacy of the aodtw
specifications with respect to the system specitios,
- verify the traceability with respect to the syste
specifications

The software specification review should ensuréttiareal needs were taken into|
account in the specifications, that the technicsiks have been identified, resolved
and reduced by appropriate choices, and that it een verified that the software
specifications satisfy the system specifications.

Analysis activities ensure that software speciitcet are coherent with system
specifications, that they are complete, and the donnection between the softwar
and system specifications has been clearly estedalis

D

3.5 | Analysis activities and software design verificatghould O| O
verify the conformity to specifications

o

Here the purpose is to ensure that the softwareifpation and design (both detailg
and preliminary) are coherent.

3.6 | An external validation review (with the anajysttould be held| O | O
at the end of the validation phase.

This can be used to ascertain whether or not tloelpet satisfies the specifications
If the validation of the software is not subjecthe expression of any reserves ,
development is considered to be at an end.

3.7 | The result of each review should be documentedhactuved. Itf O | O
should include a list of all actions decided omha review
process, and the review conclusion (decision orthdner not
to move on to the next activity). The activitiedided in the
review should be monitored and treated.

4.3.3. Code verification (source code and data) requiremes

This verification corresponds to the first steghe verification of the actual code once it has
been written. This is a "static" verification in dar as it is based on cross-readings,
inspections, etc. It is only after this point tliginamic verification procedures (module tests,
integration, validation) will make up the principagrification methods.

These verifications include code and data verifarzs.

26

No. Code Verification (source code and data) Level

3.8 | Code verification (static analysishould ensure that the code| R | O
conforms to :

- the software design documents,
- coding rules.

Here the purpose is to ensure that the design i®uate and coherent with the cod
(source and data)

@

4.4. SOFTWARE TEST REQUIREMENTS

4.4.1. General validation requirements

Before writing the first test sheets, it is impaoittéo establish a test strategy in a Test Plan.
This strategy indicates the approach adopted, thjeatives that have been set in terms of test
coverage, the environments and specific technigsesl, the success criteria to be applied,
etc.

The test objectives must be adapted to the saftgrity level of the software, to the type of
software, and to the specific factors at work iropiihg a given software product. These
criteria determine the types of test to be undemak functional tests, limit tests, out of limit

tests, performance tests, load tests , externalpewgnt failure tests, configuration tests ~ as
well as the range of objects to be covered by ¢lest(functional mode tests, safety function
tests, tests of each element in the specificagim).

No. General Validation Requirements Level
2
3.9 | The software verification strategy used atdifierent software @]

development steps and the techniques and toolsfaistds
verification should be described in a Test Plamteebeing
used. This description should, as a minimum, inelud

- identification of the software and its safetyateld
components that will be submitted to validationgadure
before use,

- organisation of the verification activities (igtation,
validation, etc.) and any interfaces with otheralepment
activities,

- independence of the verification (if applicablie
verification strategy should be developed and
implemented, and the test results should be eaduat
independently (by an individual, department, or
organisation) in relation to the size of the depeatent
team,

- verification methods and tools uségpes of tests, etc.)

- environment of the verificationigst equipment,
emulators, etc.),

- manner in which test results were verified,

- a traceability matrix demonstrating the corresfance
between the tests to be undertaken and the olgsatiiv
the tests defined.

A single document (e.g. plan of the test) can fyadil the planning
requirements of several verification activities ¢(fate testing, integration,
validation). These documents can, if necessary, refer to gepevabdures
or instructions that are applicable to all softwgpeojects in addition to the
specific measures taken for the project

The aim of formalising this strategy is to furtlersure the reproducibility of the
activity .

The advantage of independent evaluation liesérintroduction of individuals not
involved in development phases, and who thereforetienow how the software h4

been developed. In general, this ensures thatetsis ire performed more efficiently.

S

27

28

No. General Validation Requirements Level
1] 2
3.10| Verification of a new software version should ird#unon- O| O

regression tests.

Non-regression tests are used to ensure that théficattbns performed on the
software have not modified the behaviour of theasoft in any unexpected way.

3.11 | Directives for drawing up test procedures shoudduide : R| O

- a description of the input data to be usemlye,

- a description of the expected outpudl(ie)

- criteria on which test results will be judged egtable
(tolerancsg.

This requirement implies that the tests carriedwilitbe documented (using a format
defined by the designer). The test documentatiorbe used to optimise the tests
carried out (by avoiding repeating the same tesesd times), and to redo the testg
at a later date (non regression tests of a new soéwarsion, or for another similar
project for which software routines have been rejised

3.12| The tests formalised in reports should be ablestodsriedout | R | O
again (e.g., in the presence of the analyst).

Certain tests requiring specific means can only &eied out again with a sufficient]
warning. This requirement allows the analyst torgudee the reality and exactness
of all test results presented during evaluation.

4.4.2. Software specification verification requirements: \alidation tests

The purpose of these verifications is to deteatrerassociated with the software in the target
system environment. Errors detected by this typemwfication include:

any incorrect mechanism to treat interruptions,
insufficient respect of running time requirements,

incorrect response from the software operating remsient mode (start-up, input flow,
switching in a degraded mode, etc.),

conflicts of access to different resources or oigational problems in the memory,
inability of integrated tests to detect faults,
software/hardware interface errors,

stack overflows.

Validation tests are the principal component otwafe specification verification.

No.

Software Specification Verification

3.13

The test coverage should be made explicit in a&atidity
matrix and respect the following requirements:

- each element of the specification, including safety
mechanisms, should be covered by a validation test,

- it should be possible to verify the real-time &elour of the
software in any operational mode.

Furthermore, the validation should be carried nutanditions
representative of the operational conditions ofsystem.

This requirement guarantees that the software eastexpected in operation. It
applies only to cases where the test conditionsbeadestructive for hardware (e.g.
physical fault of a component that cannot be sitealp

To be significant, validation should be performedhe operational conditions of the

system (i.e. with the final versions of software hadlware, and the software
installed in the target system.). Any other coratiam could decrease the efficiency
of the test and require analysis of its represamess.

3.14

Validation results should be recorded in a valmlatieport that
should cover at least the following points:

- the versions of software and system that were atdat|

- adescription of the validation tests performiagts,
outputs, testing procedures),

- the tools and equipments used to validate ouexalthe
results,

- the results showing whether each validationviest a
success or failure,

- avalidation assessment: identified non-conformgjtie
impact on safety, decision as to whether or naictept
the validation.

A validation report should be made available fartedelivered
software version and should correspond to the fiaedion of
each delivered software product.

This report can be used to provide proof that testee indeed carried out, and that
the results were correct (or contained explainaldgidtions). It can also be used tq
redo tests at a later date, for a future softwaresian or for another project.

The second requirement provides a guarantee that delivered version has been
validated in its final form. On the other hand sthéquirement does not impose a

complete validation of each modification of an #mg code - an impact analysis can

in certain cases, justify partial validation.

29

30

4.4.3. Software design verification requirements: Softwarantegration tests

This verification focuses on the correct assemlflsadtware modules and on the mutual
relationships between software components. It camnided to reveal errors of the following
kind:

incorrect initialisation of variables and constants

errors in the transfer of parameters,

any data alteration, especially global data,
* inadequate end to end numerical resolution,
* incorrect sequencing of events and operations.

Software integration tests form the principal comgat of this verification.

No. Software Design Verification Level
1] 2
3.15| Software integration tests should be able to verify R| O

- correct sequencing of the software execution,
- exchange of data between modules,

- respect of the performance criteria,

- non-alteration of global data.

The test coverage should be given explicitly treaeability
matrix demonstrating the correspondence betweetesite to be
undertaken and the objectives of the tests defined.

3.16 | Any modification of the software during its integoam should R| O
be analysed to identify the impact on the relevaotlules and
to ascertain whether certain verifications showddpeated

All tests carried out should be representativeheffinal software version. Code
modifications during tests might invalidate theuiés of previous tests.

3.17 | Integration test results should be recorded inflavaoe R| O
integration test report, which should, as a minimaantain the
following points:

- the version of the integratedftware

- adescription of the tests performed (inputs, oistpu
procedures),

- the integration tests results and their evaluation.

31

4.4.4. Detailed design verification requirements: Module ésts

Module tests focus on software modules and theifocmity with the detailed design. This
activity is indispensable for large and complextwafe products, but is only recommended
for the relatively small software products dealtttwhere. This conformity can also be
demonstrated using static techniques (e.g. re-rgathe code).

This phase of the verification procedure allowsedgon of the following type of errors:
* inability of an algorithm to satisfy software sgemtions,
* incorrect loop operations,
 incorrect logical decisions,
* inability to compute valid combinations of inputaaorrectly,
* incorrect responses to missed or altered input data
« violation of array boundaries,
« incorrect calculation sequences,

* inadequate precision, accuracy or performance oakgorithm.

No. Detailed Design Verification Level

3.18 | Each software module should be submitted to asefigests to| / R
verify, using input data, that the module fulfitetfunctions
specified at the detailed design stage.

The test coverage should be given explicitly inagéability
matrix that demonstrates the correspondence betthedpsts
to be undertaken and the objectives of the tedisatk

3.19|Module test results should be recorded in a regpattcontains| / R
at least the following points:

the version of the module tested,

the input data used,

expected and observed results,

an evaluation of the results (positive or otheryi

The aim of this requirement is to ensure that eaodule is verified in its final
version and that tests will be reproducible (for irs@on-regression tests for
example).

5.

32

CONCLUSION

The major objective dealt with this document, tlgiouhe application of safety and quality
requirements, is the prevention of embedded softiwailures and any other unexpected
behaviour that might lead to the creation of daogerfaults in a system dedicated to the
machinery sector.

In order to satisfy this objective, requirements given and organised into two software
requirement levels (1,2) according to the critiaiythe functions ensured by the software.
The requirements focus on:

« Software product Requirements are established in order to obtairembedded
software that is fully safe in operation and ofsattorily high quality.

» Software development procedshe basic objectives of these requirements (diefim
of the development phases, means required, et fpasrient development in such a
way that it can satisfy the functional specificati@quirements of the target system
and inspire the confidence necessary to satisBtygabnstraints.

» Software verificationThe purpose of verification requirements is tandastrate that
software products stemming from a given phase efdwelopment cycle conform to
the specifications established during the previphsises and to any applicable
standards or rules. They also serve as a meansteftthg and accounting for any
errors that might have been introduced during emiégdoftware development.

The requirements outlined in this document candael dor all types of machinery, regardless
of the technology involved and whether or not thisteam parameters can be defined by the
user, provided the safety functions are ensuresbltyvare.

It is recommended that the system designer tak&thequirements into consideration from
the outset of the embedded software developmermedwoe, when the intervention of the
analyst takes place before the beginning of theldgment itself.

33

6. GLOSSARY

» Aliasing: access to the same data by means of different names

* Audit: methodical and independent examination intendedetermine whether the
activities and the results relative to quality asdfety satisfy the previously-
established measures, and if these measures hanepplied efficiently and in such
a way as to ensure the achievement of the objecsiee(NXF50-120).

* Coding: activity of source code production, representatio languages such as
assembly language or C, which can then be accépteth assembler or compiler for
the production of executable instructions for ugehe target processor.

» Design software architecture construction activity (Uguacalled "preliminary
design”) which allows the implementation of softevaspecifications and the
construction of detailed algorithms (activity udyakferred to as "detailed design").

» Executable code production activity in which the different code componente a
grouped (by link editing especially) into a formathallows the generation of an
executable code to be loaded into the target system

» Version Sheet:document defining a software version in terms gcnstituent parts
and the tools required to produce them.

» Configuration Management: all the activities (manual and automatic) allowihg
constituent parts of a software product and thatigels existing between these parts
to be identified and defined. Such activities cenhsn controlling changes to a
software product during its life cycle, following uhe state of application of these
changes, archiving each of the successive statédsclhacking that each state is
complete and coherent.

» Test traceability matrix: matrix intended to establish the corresponderetevden
the tests to be carried out and the objectivesheftésts defined, and allowing the
evaluation of test coverage.

+ Module tests can be used to demonstrate that the lowest Isofflvare module
carries out the entire function foreseen at thaibket design stage, and only this
function.

» Software quality plan: document laying down the operating modes, ressusnd
sequences of activities linked to quality regardangoroduct, service contract or
particular project. (NFX 50-120). It is a projecanagement tool.

34

Review. activity organised at a key point ("milestone¥)the development cycle (e.g.
specification, validation) in which specialists extal to the development team
participate. The review is intended to ensure #ilathe activities required during a
given phase have been undertaken, that the prolitebes dealt with have been taken
into account and that the solutions proposed alle transition to the next
development phase. It is not a control operatibfudges the work undertaken in a
given phase or stage in terms of the justificatioofered and making
recommendations.

Software integration tests are used to verify the relationships betweendifferent
software components and the temporal sequencingeatment. They are used to
verify that units composed of several software nheslfunction correctly.

Software validation tests are the ultimate step in the software developrmpentess.
The purpose of these tests is to verify the corogsration of the software with
respect to the specifications in the environmernheftarget system .

Specification activity that consists in describing the expecteftware
functionalities, and that takes into account inf@rtd any applicable constraints.

Validation: the test and evaluation of the integrated compspstem (hardware and
software) to ensure compliance with the functionaérformance and interface
requirements.

Verification : the process of determining whether or not thelpeb of each phase of
the digital computer system development procedssfall the requirements imposed
by the previous phase.

7.

35

APPENDIX: CODING RULES

7.1. INTRODUCTION

Coding requirements are presented in this Appeimdike form of coding rules for software
written in C or in assembly language (the most Widsed languages in the areas considered
in this text).

The interest of these rules is to reduce the rgkr@agramming errors and to make re-reading
the code and integrating and maintaining the so@twauch easier. It is not our intention to

restrict the software developer, merely to atttastor her attention to possible sources of
error during programming activities or to difficels that are likely to occur during the

integration and maintenance steps. For example:

Forbidding the assignment of variables in the Bawlexpression in C is intended to detect
programming errors:

if (my_variable = my_constant) ...

The intention of the programmer is to compare aabée to a constant and not to assign
my_variable to be equal to my_constant. Thereus thtyping error, with "=" instead of

Rules limiting structural complexity (limitation ofesting, restrained use of break and
continue, etc.) are intended to facilitate inteigratand maintenance. It is indeed somewhat
delicate to test or to modify structurally compboaurces.

The rules proposed here are applicable to any reqrement level set for the software.

Note: there may be times when certain of these rulesbeaynsuited to a given project. Itis
preferable to avoid imposing a strict ban on agigeint but rather to allow periodic neglect
of a given rule. Nevertheless, it is necessarydih @ comment explaining why the rule was
not respected (and not simply forgotten), and stifyaithe action.

These rules are presented in three parts:

» general rules applicable to both C and assembbyulage. These rules are identified by the
prefix "G".

* rules specific to C. These rules are identifiedH®yprefix "C".
* rules specific to assembly language. These rukegantified by the prefix "A".

Each part is composed of rules applicable to consnand declarative parts, followed by
rules applicable to executable instructions.

7.2

GENERAL RULES

7.2.1. General rules: Comments and declarative parts

No. General Rules: Comments and Declarative Parts
G-1 |Use a standard header for each module and subeoutin
G-2 | Use explicit identifiers.
G-3 | Limit subroutines to 150 lines.
G-4 |Comment all data and parameters declarations.
G-5 [Comment source code instructions using the follgvannciples:
- comments that should be coherent with the code,
- one comment for each block of significant instimies and for each
complex decision,
- use non-trivial comments, i.e. comments thatsatdething as comparec
to simply reading the code,
- comments for the abnormal ends of modules.
G-6 | Aliasing forbidden
7.2.2. General Rules: Instructions
No. General Rules: Instructions
G-7 |Use a single entry and single exit point for eadbrgutine.
G-8 | Do not use recursive structures.
G-9 |Limit the nesting of control structures (less thiae levels).
G-10 |Allinstructions should be reachable by executimgdode (no dead code).
G-11 | Do not use literal numerical values in the souim@ec(except for trivial values).
G-12 |Do not declare unused variables/constants.
G-13 |[Initialise each variable before use.
G-14 |Limit the use of pointers.
G-15 [Limit the use of interruptions.
G-16 |Branch in the loops forbidden.
G-17 |Recursivity, if employed, should be explained itaile
7.3. RULES FOR CODINGINC
7.3.1. Rules for coding in C: Comments and declarative pds
No. Rules for coding in C: Comments and declarativparts
C-1 | Define the upper limit of each array with a symbaonstant (the lower limit is
implicitly setto 0 in C).
C-2 | Test the limits of arrays when performing operagion array indices in order to
avoid violating the array size limitations.
C-3 |Indent the source code in relation to the nestingpatrol structures.
C-4 |Characterise each array.
C-5 |[Initialise arrays when they are declared.

36

7.3.2. Rules for coding in C: Instructions

No. Rules for coding in C: Instructions
C-6 |Explain each conversion of type (casting).
C-7 |Transfer data using only parameters.
C-8 | Do not transfer expressions in function calls.
C-9 | Do not redefine imported data locally.
C-10 |Reserve the use of thstatic" clause in a C function to state variables.
C-11 |Set a feedback test on the code returned from feackion.
C-12 |Limit the data exported by a C module.
C-13 |Expressions should be independent of the ordehiohwthey are evaluated. Do
not use *+" or "--" in complex expressions.
C-14 |Do not use =" and '=="instructions for real numbers.
C-15 |Set the end of the programme (if it exists) inri@n programme, and only with
anexit statement.
C-16 |Do not perform any assignments in Boolean exprassio
C-17 |Limit the use of fota" to the treatment of errors.
C-18 |Limit the use of tontinue" or "break” instructions. Use at most ofieontinue”
or one break" per loop.
C-19 |Do not modify the counter of théot" loop in the body of the loop.
C-20 |Use the Sizeot" instruction whenever possible.
C-21 |Forbid the use of dynamic allocationsn@lloc” calls)
C-22 | By default, reserve the treatment ofsavitch" to the treatment of errors.
C-23 |Associate adefault” to each Switch".
C-24 |Terminate all cases o§Witch" by a 'break”.
7.4. RULES FOR CODING IN ASSEMBLY LANGUAGE
7.4.1. Rules for coding in assembly language: Comments artkclarative
No. Rules for coding in Assembly language: Commengnd declarative parts
A-1 | Define the modes of use of all registers.
A-2 | Define the mode of representation of the diffetgpes of variables.
A-3 Define the internal representation of the Booleperators TRUE/FALSE
A-4 | Define the mode of representation of negative imiteg
A-5 | Define the initialisation of the registers.
A-6 | Define the mode of called parameter transfer: stagkgister.
A-7 |Comment all tests carried out.
A-8 |Comment logic masks.
A-9 | Comment branch points.
A-10 |Comment indirect addressing operations.

37

