RV STSARCES

Standards for Safety Related Complex Electronic t8yss

Annex 3

Tools for Software fault avoidance

Task 1.2: Guide to evaluating software quality and safety
requirements

Final Report of WP1.2

Philippe Charpentier
INRS

(INRS

European Project STSARCES
Contract SMT 4CT97-2191

Contents

1 INTRODUCTION 4
1.1 AIM OF THE DOCUMENT 4
1.2 TARGET PUBLIC OF THE DOCUMENT 4
1.3 MobeE OF USE 4
1.4 OVERVIEW OF THE DOCUMENT 5
2 EVALUATION OF QUALITY AND SAFETY REQUIREMENTS 6
2.1 PRESENTATION 6
2.2 (HECK-LIST 6
3 APPENDIX A : REQUIREMENTS EVALUATION 10
3.1 INTRODUCTION 10
3.2 REQUIREMENTS FOR SOFTWARE PRODUCT 12
3.2.1 FRESENTATION 12
3.2.2 REQUIREMENTS TO BE EVALUATED RELATIVE TO THE SOFTWARE PRIJCT 12
3.3 REQUIREMENTS FOR SOFTWARE DEVELOPMENT PROCESS 31
3.3.1 FRESENTATION 31
3.3.2 REQUIREMENTS TO BE EVALUATED RELATIVE TO THE SOFTWARE DEELOPMENT PROCESS 31
3.4 REQUIREMENTS FOR SOFTWARE VERIFICATION AND VALIDATION 54
3.4.1 HRESENTATION 54
3.4.2 REQUIREMENTS TO BE EVALUATED RELATIVE TO THE SOFTWARE VEIFICATION 54
4 APPENDIX B : GENERAL PRINCIPLES FOR DETERMINING T HE SOFTWARE
REQUIREMENT LEVEL 79
4.1 PRESENTATION 79
4.2 GENERAL PRINCIPLES FOR DETERMINING THE REQUIREMENT LEVEL 79
4.3 (QOLASSIFICATION OF SYSTEMS : CURRENT STATE OF STANDARDISATION 80

4.4 THE CASE OF MACHINERY

80

SUMMARY

This document is a complement to the document \&wé Quality and Safety Requirements”
which defines requirements applicable to embeddeftivare. It is intended to guide
evaluators in evaluating an embedded software mggpect to the software quality and safety
requirements that the designer of a system musfysat

This document present:

» the principles of evaluation for each requirememwerification recommendations
or additional questions to be raised in order tocped with the evaluation of
software products with acceptance or refusal caiter

= the principles of determining the software requieatievels.

All this information is meant to assist the anajystge the capacity of the embedded software
to satisfy each of the applicable requirements. Jundance sheets provided in this document
help the evaluator to collect information and pramfallow an expert judgement on whether
the software product is acceptable or not. It i@ for the evaluator to determine, from
different angles when necessary, the responsexctoad the requirements.

1 INTRODUCTION

1.1 AIM OF THE DOCUMENT

This document is intended to guide evaluators alueating a software product with respect to
the software quality and safety requirements thatdesigner of a system must satisfy.

It is a complement to the documkriSoftware Quality and Safety Requirements” which
defines all the requirements applicable to thevsne to be assessed. It should be borne in
mind that these requirements concern software fognpiart of a machinery control system
ensuring safety functionslighly critical systems (aeronautics, nuclear, ety.are excluded,

as is application softwaresuch as PLCs.

To achieve this aim, the guide is composed of teudsp

= a first part presenting the list of points to besaked - corresponding to the list of
requirements detailed in the docuntet8oftware Quality and Safety Requirements" -
along with the phase during which it is preferablevaluate these points.

= asecond part corresponding to the annexes laying d

- the principles of evaluation for each requiremergrification recommendations or
additional questions to be raised in order to pedosith the evaluation of software
products with acceptance or refusal criteria,

- laying down the principles of determining theta@ire requirement levels;

- the general practices regarding software evalnatevaluation strategy,
organisation, recommendations for the evaluator.

All this information is meant to assist the anajystge the capacity of the software product to
satisfy each of the requirements applicable testifavare undergoing evaluation.

1.2 TARGET PUBLIC OF THE DOCUMENT

The present guide is meant for the analyst andtisntended for diffusion to the designers of
the software to be evaluated.

It should be noted that software is not an isolgiemtiuct and that the analyst analyses the
entire system. This guide is limited to softwaraleation with respect to the software quality
and safety requirements, this software evaluatmmtributing to the analysis of the overall
system.

1.3 MODE OF USE

The reader’s attention is drawn to the fact th& guide is a series of guidance sheets that
help the evaluator collect information and prooatlow an expert judgement on whether the

! SOFTWARE QUALITY AND SAFETY REQUIREMENTS : STSARCEProject - WP 1.2 / Aspect 1 - INRS — Feb
2000.

1.4

5

software product is acceptable or not. They areerbaustive, and have not been designed to
be used as a verification check-list. They guide é¢kpert in the evaluation approach, and
throughout the audit the expert must remain attenttd any information the designer may
communicate. This information may be useful in dirgg the evaluation in real time or later
when assessing another aspect of the software grodu

The starting point of the evaluation is the sofevaequirement level, which sets the
requirements that the software must satisfy. Thislgis not modulated in function of this

level as each requirement is taken separately avitlew to answering the question : “ Does
the software product satisfy this requirement “hé Bvaluator should refer to the document
“ Software Quality and Safety Requirements ” toedetine how applicable a requirement is
to the software undergoing evaluation.

This guide is a tool for the evaluator to determinem different angles when necessary, the
responses to each of the requirements. To achlesethe evaluator should have a basic
knowledge of software quality or software developtmd&his knowledge should have been
acquired through experience of developing softviiat@n environment imposing high quality
constraints and/or through specific training. It akso desirable that the evaluator has
undergone training in audit techniques.

OVERVIEW OF THE DOCUMENT

In addition to this introductory chapter, the do&mnis composed of the following chapters
which contain recommendations for the evaluation :

= chapter 2 : evaluation for quality and safety reguients
= appendix A : requirements evaluation

- evaluation of the requirements relative to thigvgare product,
- evaluation of the requirements relative to thigveare development process,
- evaluation of the requirements relative to sofeweerification and validation.

= appendix B: general principles for determining sbéware requirement level

2 EVALUATION OF QUALITY AND SAFETY REQUIREMENTS

2.1 PRESENTATION

The following table represents a check-list of iegments to be verified by the analyst in ordeetsure that the software product and the
software process conform to the requirements lamindin the document "Software Quality and SafetyjiRements”. It is also gives the
preferential phase during which it is preferableheck these requirements

2.2 CHECK-LIST

Level Preferential phase
1] 2
1 - Introduction :
1.3 - Instructions
Point 1.1 Request for deviation with regard @ thquirements mentioned in this O | O |Atanytimein the development process
document.
2 - Requirements for software product :
2.2.1 - Interface with system architecture
Point 1.2 Determination of safety requirementstenbasis of system safety analysis. /| ¥pecification review
Point 1.3 List of constraints imposed on thewafe by the hardware architecture. O |Specification review
2.2.2 - Software Specification
Point 1.4 Checklist of the content of a givertwafe specification. g QSpecification review
Point 1.5 Specification of requirements in eacdm O| O|Specification review

2.2.3 - Software that can be parameterised byshe
Point 1.6 Specification of parameters and inddpane with regard to the software R | R |Specification and Design review

product.
Point 1.7 Parameter protection mechanisms arttéderance mechanisms. R {Ppecification review at the earliest, final evaluation review
2.2.4 - Pre-existing Software
Point 1.8 Earliest possible indication of prestixig software use. O QFirstreview
Point 1.9 Configuration management for pre-emgsgoftware. O] OjFinal review

2.2.5 - Software Design
|Point 1.10 Check-list of content of a given saftevdesign description. O (esign review

Level Preferential phase
1] 2
Point 1.11 Software architecture properties: nfetly, interface between modules, O | O |Design review
function of modules resulting form specifications.
Point 1.12 Separation of safety and non safetipa O | O |Design review
2.2.6 - Development Languages
|Point 1.13 Language function of the applicatiod mited language subset. R [Design review
2.2.7 - Coding
Point 1.14 Requirements for the source code. O | O [Final review
Point 1.15 Rules for coding. R | O |Final review
3 - Requirements for software development process :
3.1.2 - Software Lifecycle Requirements
Point 2.1 Formalised description of the lifecy@@ample: in a Software Quality Plan) O |Birst review
Point 2.2 Description of phases lifecycle: inpat output products, design and O | O [Firstreview
verification activities.
3.2.1 - Software Quality Assurance Requirements
Point 2.3 Documentation for the Software Quaissurance Requirements, (example:R | O |Firstreview
in a SQP).
3.2.1 - Safety Supervision and Management Reqeingsn
|Point 2.4 Follow-up at each phase of the safehstraints. R| R|Evaluation review over the course of the project.
3.3.1 - Documentation Management Requirements
Point 2.5 List of the software documentation éosipplied at the beginning of a projectD | O [First review, Final review
(example: in a SQP).
Point 2.6 Documentation management. O | O [Firstreview
Point 2.7 Establishment of documents at eaclesththe lifecycle and traceability. R @ntermediate reviews
3.4.1 - Configuration and archiving Management lRements
Point 2.8 Configuration management procedures. O | O [Final review
Point 2.9 Versions of configuration articles audtware version. g QFinal review
Point 2.10 Configuration management audit. O | O [Final review
Point 2.11 Software version archiving procedures. O | O [Specification review at the earliest, final evaluation review
3.4.2 - Software modifications Management
Point 2.12 Management of software modifications. O | O [Final review
Point 2.13 Content of software modification files R | O |Final review
3.5.1 - Development Tools Requirements
Point 2.14 No optimisation object code. R | O |Final review
Point 2.15 Validity of tests in cases of modifioa of compilation options, of the R | O |Final review
compiler, or the linker.

Level Preferential phase
1] 2
|P0int 2.16 Identification of development toolgdmple in a SQP). Q QFinal review
3.6.1 - External Sub-contracting Requirements
Point 2.17 Respect of present requirements byceubractor. O| OfFirst review
Point 2.18 Control of sub-contractors by the giesi. O| O]Final review
3.7.1 - Executable Code Production Requirements
|Point 2.19 Recording of compilation options iWersion Sheet. g QFinal review
3.7.2 - Software Installation and Exploitation Begments
|P0int 2.20 Recording of failures during the itlateon and the use of the software. O |@fter thefinal review
- Requirements for Software Verification :
4.2 - General Verification and Validation Requikatts
Point 3.1 Verification of the conformity to thequirements and of technical aspects | O | O |All thereviews
subject to evaluation.
Point 3.2 Evaluation of a given software version. O |Final review
4.3.1 - General Verification Requirements
|Point 3.3 Verification Report for each verificatiactivity. R| O]|All thereviews
4.3.2 - Reviews Requirements
Point 3.4 Specification review and specificati@nification activities. R| O|Specification review
Point 3.5 Content of verification activities agesign. O| O|Design review
Point 3.6 Validation review enabling deliveramdehe software qualification. Q QFinal review
Point 3.7 Review documentation and follow-up ¢tivaties decided during reviews. © Final review
4.3.3 - Code Verification (source code and dagjuRements
|Point 3.8 Conformity to design documents and @ogning rules. R| OFinal review
4.4.1 - General Validation Requirements
Point 3.9 Test plan: strategy/ techniques/ \@atfon tools and independent evaluation. R |Frstreview
Point 3.10 Non-regression tests for a new version O | O [Firstreview
Point 3.11 Content of test procedures. R | O |Firstreview
Point 3.12 Possibility to re-perform tests atdinalyst's request. R (Final review
4.4.2 - Software Specifications Verification Reganents : Validation Tests
Point 3.13 Validation test coverage and tracésbilatrix. O | O |Specification and final review
Point 3.14 Checklist of validation report content O | O |Specification and final review
4.4.3 - Software Design Verification RequiremerBoftware Integration Tests
Point 3.15 Integration test coverage and tradigabiatrix. R | O |Design and final review
Point 3.16 Analysis of the impact of modification the software (non-regression tests). R |Oesign and final review
Point 3.17 Checklist of the content of the ingggm report. R| OlDesign and final review
4.4.4 - Detailed Module Design Verification Reguirents : Module Tests

Level Preferential phase
1] 2

Point 3.18 Unit test coverage and traceabilityrina / | R [Design and final review

Point 3.19 Checklist of the content of unit tegiorts. /| R|Design and final review

10

3 APPENDIX A: REQUIREMENTS EVALUATION

3.1 INTRODUCTION

As in the document presenting the different requests, the requirements and their verifications
are presented in three sections:

» Section 2: requirements dealing with the softwaoelpct :

- Interface with system architecture

- Software Specification

- Software that can be parametrized by the user
- Pre-existing Software

- Software Design

- Development Languages

- Coding

» Section 3: requirements dealing with the softwareetbpment process :

- Development process

- Organisation

- Documentation

- Configuration and Software Modifications Manageine
- Tools

- External Sub-contracting

- Reproduction, delivery.

» Section 4: requirements dealing with software veatfon :
- Software Verification :

. reviews
. code verification

- Software Tests :

. Validation Tests
. Integration Tests
. Module Tests

11

SUBJECT : CO-ORDINATION WITH THE ANALYST FOR | Requirementn® 1.1
SOFTWARE EVALUATION

Requirement

Any deviations from the requirements presented inhis document should be pointed
out by the applicant to the analyst and should begproved by the latter.

Aim of the evaluation

The evaluation consists in determining whether diegiations communicated by the
designer are acceptable or not.

Preferential evaluation phase and supports necessary for the evaluation
The applicant can submit a deviation at any timéhendevelopment process

Recommendations/ techniques for the evaluation

The developer must justify any deviation.

Evaluation consists, on reception of the deviationsanalysing its importance and the
justification given with respect to the correspargdiequirement (s).

This means, for each deviation, taking the decisioraccordance with the elements
contained within the evaluation guidance sheet.

Specific consultation must take place with the giesi for each deviation.

Acceptance/ refusal criteria
Refusal:
- absence of justification.

The other criteria depend on the requirement irstjoie, the extent (full or partial non
respect of a requirement) and the category of rement (eliminating or not).

3.2 REQUIREMENTS FOR SOFTWARE PRODUCT

3.2.1 Presentation
The software product requirements concern :

- Interface with system architecture

- Software Specification

- Software that can be parametrized by the user
- Pre-existing Software

- Software Design

- Development Languages

- Coding

3.2.2 Requirements to be evaluated relative to the softwa product

The corresponding requirement evaluation guidaheets are presented below.

12

13

SUBJECT : INTERFACE WITH SYSTEM ARCHITECTURE Requir ementn® 1.2

Requirement

Software safety requirements as well as the determation of expected events should
arise from safety analyses at system, functional drhardware level, etc.

Aim of the evaluation

Verify traceability between the safety requiremergsulting from the system and the
software safety requirements as expressed in the@ae specification document.

Preferential evaluation phase and supports necessary for the evaluation

The evaluation can be conducted just after the adnithe software specification. It is
based on the system specification documents (otraminal specification), on the
software specification and the system safety arsati@cuments.

Recommendations/ techniques for the evaluation
Verification is undertaken with the help of a trab#ity matrix, which brings the system
safety requirements and the functional and nontfanal requirements of the software
together. Examples are:

- safety functions covering a safety requiremenhefdystem

- fault tolerance functions

- periodic tests

- software function performances in order to meetesyssafety requirements

-V &V requirements with regard to software funcsdn order to check that the safety)
requirement of the system have been met

Expected events at the software level must be cteised from expected events at the
system level and functional, hardware and softwleomposition (example: fault tree
analysis, analysis of the failure causes etc.).

Acceptance/ refusal criteria

Refusal:

- Safety requirement at the system level not cal/bsea safety requirement in the softwalre
as expressed in the specification document

14

SUBJECT : INTERFACE WITH SYSTEM ARCHITECTURE Requi rementn® 1.3

Requirement

The list of constraints imposed by hardware architeture on software should be
defined and documented.

Consequences of any hardware/software interactionnothe safety of the machine or
system being monitored should be identified and elsated by the designer, and
taken into account in the software design.

Aim of the evaluation

The evaluation consists first in ensuring that ¢bastraints are known (identified and
documented) by the developer. It serves as theemsfe for the other requirements
covering the development process (hardware/softwateraction). The evaluation
consists to obtain the confidence that the safétthe system is not downgraded by
unforeseen interactions between the hardware dhwlase.

Preferential evaluation phase and supports necessary for the evaluation

The evaluation of the list of constraints can beduwted just after the end of the
software specification. It is based on the systpetiication documents (or contractual
specification) and on the software specification.

For the consequences of any hardware/softwareattten, several phases are possible :
- preliminary theoretical analysis at the systemcsration,
- analysis at the software design,
- software error analysis at the coding.

Recommendations/ techniques for the evaluation

The documentation can take any form facilitatingnpoehension : text, dictionary of
interfaces, interface diagrams, timing (input stimudata/events, system state, actions
performed).

The justifications supplied can be :
- feedback from similar hardware,
- a theoretical analysis (feared events, poss#uses, consequences),
- test results.

The evaluation is to be carried out at system lelgelftware + hardware). The
consequences of software errors must be in confpmmiih the class of equipment.

The following points are also to be evaluated :

- erroneous software command,
- failure of a sensor (stuck at a logic state, geaof state, erroneous measurement).

Acceptance/ refusal criteria

Refusal :
- absence of documentation on the interfaces,

- documentation incoherent or insufficient to allewaluation of the hardware/software
interfaces,

- absence of a system analysis of the consequeheesoftware or hardware error.

15

SUBJECT : SOFTWARE SPECIFICATIONS Requirementn® 1.4

Requirement

a)

b)

Software specifications should take the following @nts into account:

safety functions with a quantitative description & the performance criteria
(precision, exactness) and temporal constraints (sponse time), all with tolerances
or margins when possible,

non safety functions with a quantitative descripton of the performance criteria
(precision, exactness) and temporal constraints (sponse time), all with tolerances
or margins when possible,

system configuration or architecture,

instructions relevant to hardware safety integrity (programmable electronic
systems, sensors, actuators, etc.),

instructions relevant to software integrity and thesafety of safety functions,
constraints related to memory capacity and systemesponse time,

operator and equipment interfaces,

instructions for software self-monitoring and for hardware monitoring carried out
by the software,

instructions that allow all the safety functions tobe verified while the system is
working (on-line testing).

Aim of the evaluation

This evaluation :

- verifies that the software specification is botimgbete and correctly defined,

- ensures that the specification is characteriseguiaytified magnitudes that can therefpre

be tested or verified,

- ensures that the system has mechanisms verifyaigttftemains capable of carrying out

its task and that any fault is detected,

- ensures that the safety functions have indeed bergired while the system is operating.

Preferential evaluation phase and supports necessary for the evaluation

This evaluation can be carried out as from thedrabftware specification. It is based on th

software specification and the safety analysis dwmnis.

1%

Recommendations/ techniques for the evaluation

The evaluation is carried out by documentary amalgad appraisal of the specification
documents.

The evaluator verifies that the information corsging to each of the required headings
is present in the specification documents.

If there is information missing, the evaluator canaden the scope to earlier documents
(preliminary design principally).

The objectives must be defined and able to beigdrifThe memory size and CPU load
are provisional measurements made during the sgetodin that can be refined over the
course of the developme

16

Possible margins (free memory, available CPU) pl®eviscope for unforeseen
development and system behaviour modelling incglefibhey can also be provisionally
employed for future system changes.

These measurements on the final system (memoryGR¥ load, performance) must be
carried out by the designer.

The self monitoring facilities must be adaptedh® dperating constraints :

- continuous operation : is the system still capatlcarrying out its task ?

- environment : can external influences (tempeggtaelectromagnetic disturbances)
perturb the integrity of the system ?

The following events must have been taken into aetby the designer :
- sensor : stuck at fault, erroneous of state @asurements,
- actuator: stuck at fault, emission of erronecoummands.

Analysis of Software Failure Modes and of theirdéts from a functional model resulting from
the software specification can be carried out adeoto check the non-application of expected
events in the software when confronted with fagusach as:

- sensors

- actuators

- support hardware for the software

- networks

- parameter setting

- common mode failures (libraries, global data, etc).

Acceptance/ refusal criteria
Refusal :

- the safety objectives have not been defined®nat in conformity with the task
required of the equipment.

- absence of quantitative description (precisiacugacy, response time).
- safety objectives and operating constraints petisied.

- self test facilities poorly adapted or inefficien

- existence of safety functions not verified in gi®n without justification.

17

SUBJECT : SOFTWARE SPECIFICATIONS Requirementn® 1.5

Requirement

Functional requirements should be specified for edcfunctional mode. The transition
from one mode to the other should be specified.

Aim of the evaluation

This evaluation ensures that all the possible apgyanodes have indeed been taken into
consideration.

Preferential evaluation phase and supports necessary for the evaluation

This evaluation can be carried out as from the ehdoftware specification, and is
conducted primarily with the specification docungent

Recommendations/ techniques for the evaluation

- analyse the justification for the absence of ddgd mode : the system has a mode of
safe stop, the operator knows that the systemtisfaaperation.

- analyse the feedback and the errors detectedgluniegration of the software
product.

Acceptance/ refusal criteria
Refusal :

- incompleteness of the definition of operating m®dnaking analysis of the system
impossible,

- operating modes not specified without justifioati

18

SUBJECT : SOFTWARE THAT CAN BE PARAMETRIZED | Requirementn® 1.6
BY THE USER

Requirement

The parameters should be formally specified (typerelations, ...) in the form of
memory arrays. Moreover, the software and the paramaters should be capable of
independent evolutions.

Aim of the evaluation

This evaluation aims to check the completenesh@fparameters specification and the
separation between parameters and the softwarenby@peaking.

Preferential evaluation phase and supports necessary for the evaluation
The evaluation can be conducted in two phases:
1) just after the end of the software specificatibrs based on the software specification.
2) during production of the code

Recommendations/ techniques for the evaluation

- Check the completeness of the parameter spdaiiicéexhaustiveness of parameters, min
and max, data type, ordering between the parameters

- Determing, by examining the parameter speciftcatiocument if a parameter elaboration
strategy has been adopted and analyse if thiguéltantee the independence of parameter
relation to the software.

- Check the independence of parameter data inoal&tithe code by static analysis or critic
reading of the code.

al

Acceptance/ refusal criteria
Refusal:
- incomplete nature of parameters specification,
- absence of effective separation between paramatersoftware.

19

SUBJECT : SOFTWARE THAT CAN BE PARAMETRIZED | Requirementn® 1.7

BY THE USER

Requirement

Software specifications should define mechanisms d@h can be used to prevent the
possibility of any parameters set by the user canfi@ct the system safety. In so far as
modifiable parameters are concerned, these mechams should provide protection

against :

- undefined or invalid initial values,
- values falling outside functional limits
- data alteration.

The definition of software parameters by users shdd be kept within the limits
established by the system specifications approved the analyst.

Aim of the evaluation

To ensure that the user, by modifying parameteas, o possibility of rendering the
system unsafe, and that the parameter settinglplisss of the software correspond to
the specifications and in turn to the verificatiohat will be conducted.

Preferential evaluation phase and supports necessary for the evaluation

End of specification review at the earliest, fieghluation review. Specification
documents, design, and source code are necessary.

Recommendations/ techniques for the evaluation
- analyse the mechanisms described in the speaiinsa

- verify the test strategy of these mechanismstfese mechanisms indeed activated ? ;

has software operation been tested in differerdmater-setting configurations ?),

- verify the traceability between specificationsidg and code with respect to
parameter setting, and analyse the coherence @fygegta with parameter setting
capability, maximum and minimum values),

- verify, if possible through tests, that it is mpatssible to exceed the limits set by the
specification (modification of an unforeseen valéalentry of an out of limit value),

- analyse the tests carried out : do they indesdrcihe parameter variation range and
has the influence of all the parameters been siutlie

20

Acceptance/ refusal criteria

Refusal :

absence of protective mechanisms against theteféd parameter setting on system
safety,

insufficient validation of the operation of thasechanisms,
inefficiency of the mechanisms proposed,

incoherence between the specification and thenpetex settings possible leading to
non validated operating domains,

possibility of modifications by the user goingybed the authorised limits.

2

1

SUBJECT : PRE-EXISTING SOFTWARE Requirementn® 1.8

Requirement

The designer should indicate the use of pre-existersoftware to the analyst, and it is
the designer's responsibility to demonstrate that ge-existent software has the same
level as the present requirements.

Such a demonstration should be done:

- either by using the same verification activitieon the pre-existent software as
on the rest of the software,

- or through practical experience where the pre-dstent software has functioned
on a similar system in a comparable executable emenment (e.g. it is
necessary to evaluate the consequences of a chaofghe compiler or of a
different software architecture format).

Aim of the evaluation

To ensure ahead of development that consultatiestplace with the analyst to identify
difficult points and to deal with them approprigtelnd that the pre-existing software
product satisfies quality criteria equivalent t@sh of the software developed by the
designer.

Preferential evaluation phase and supports necessary for the evaluation

First review or contacts with the designer befagealiopment or at as early as possible in
the evaluation. All the documents relative to these-existing software products are
necessary.

Recommendations/ techniques for the evaluation

The analyst conducts interviews with the projechagger to determine the origin of all
the software products used. In the pre-existingwsot category, the following must be
classified :

- software products purchased commercially (secgreneal-time monitor, programme
library, etc.),

- software products stemming from an earlier priofetether developed by another
team, a subsidiary, a sub-contractor, etc.).

Conduct the evaluation of this type of softwaredwuat in an identical way to the rest of
the software : verify that all the documents eXd#sign, code, tests) and that the test
level of this software is comparable with the &fsthe software.

When difficulties arise in the demonstration (aleseof certain documents, unknowns in
certain phases like the unit test), it is possibleave recourse to the in-service experience
other projects. Attention should then be paid orépresentativeness of this experience : d
it indeed involve the same software product ? ésetkecution environment comparable ?

pes

22

Acceptance/ refusal criteria

It is advantageous for the designer to establiskaaly as possible a consultation on the
subject in order not to put back the evaluatiomulgh the late discovery of significant
obstacles due to the absence of certain documantise’se software products.

The absence of notifying the use of pre-existinfgsre products is therefore a priori not
grounds for refusal.

Refusal :

- absence of control of the behaviour of thesensft products (no experience, no tests
for example).

- associated documentation insufficient, not allaywletermination of the exact content
(no design documents for example).

23

SUBJECT : PRE-EXISTING SOFTWARE Requirementn® 1.9

Requirement

Pre-existent software should be identified using # same configuration management
principles that were applied to the rest of the sdivare.

Aim of the evaluation

To ensure that it is known how to identify changefs versions of pre-existing
components integrated into the software.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. The evaluation is basedtm documents associated with the
pre-existing software, supplemented by source imkdedition files.

Recommendations/ techniques for the evaluation

- verify that the documents include an identifioatof the version and that this is
coherent with the source used.

- verify the versions of modules, possibly by enyplg the link edition files.

Attention: this requirement does not impose that the prstiag software identifiers are
identical to the rest of the software. It is ordyjuired that it is known how to identify the
versions It should be ensured that all the necessaryigatibns (impact analysis, tests,
etc.) have been carried out again when the versidime pre-existing software product is
changed.

Acceptance/ refusal criteria
Refusal :

- total absence of pre-existing software versi@nidication making it impossible to
control the content of the software to be evaluated

- changes to versions of pre-existing software evithmpact analysis or minimum non-
regression tests.

24

SUBJECT : SOFTWARE DESIGN Requirement n® 1.10

Requirement
Description of the software design should includetdhe very least:

- a description of the software architecture that @fines the structure decided on
to satisfy specifications,

- adescription of inputs and outputs (e.g. in théorm of an internal and external
data dictionary), for all the modules making up thesoftware architecture,

- sequencers and interruptions,

- global data,

- a description of each software module (inputs/oputs, algorithm, design
particularities, etc.),

- libraries used,

- pre-existent software used.

Aim of the evaluation

The evaluation must determine whether the desigrbkan described completely and
coherently, and in such a way as to satisfy thenswé specifications.

Preferential evaluation phase and supports necessary for the evaluation

At the end of the design phase. The evaluatiomaset on all the software specification
and design documents.

Recommendations/ techniques for the evaluation

- verify that one element of design documentatiomesponds to each point laid down
in the requirement.

- analyse the possible links between the operdtimodes and the periodic test
(absence of common failuregxample: use of identical sub-routines that coeddl
to the periodic tests not detecting certain fadltee periodic test must contribute
effectively to detecting faults.

Analysis of software Failure Modes and of theirdefs from a functional model resulting

from the design documents can be carried out tokctiee potentially dangerous expected
software events when confronted with software medailures and in particular failures

in the common modules (analysis of common moderks)

Acceptance/ refusal criteria
Refusal :
- software design does not exist or is very inadégu

25

SUBJECT : SOFTWARE DESIGN Requirement n® 1.11

Requirement
Software should be modular in order to facilitate is maintenance:
- each module or group of modules should correspond possible, to a function in

the specifications,
- interfaces between modules should be as simple asspible.

Aim of the evaluation
The evaluation must ensure:

- the effective modularity of the software
- the links between the modules and the functiorniberspecification
- the limited number of exchanges of data betweenubesd

Preferential evaluation phase and supports necessary for the evaluation

At the end of the coding phase. The evaluatioragel on the detailed design documents
and the source code.

Recommendations/ techniques for the evaluation

- analyse with the help of a traceability matrixigéhbrings the modules, the
specification functions, the distribution of furarts and the completeness of the
modules into correspondence.

- analyse the modularity of the software architectuunctional cohesion of the
modules.

- analyse the modularity of the code :
. coupling of the compilation units (by sub-pragraes, by data),
. Size of the compilation units,
. humber of sub-routines per compilation unit.

The analyst can have recourse to the static asalgsults supplied by the designer (if the
latter has carried out this type of analysis).

Otherwise, the evaluator carries out sampling aadual analysis.

Acceptance/ refusal criteria
Refusal :
- size of sub-routines too high (>150 lines withjustification),
- excessive depth of in call graph (> 5 calls peduaie),
- traceability “function/ module” impossible.

26

SUBJECT : SOFTWARE DESIGN Requirement n® 1.12

Requirement
Software should be designed to limit those parts asciated with safety:
- data/functional architecture: strict limitation of global variables,

implementation of operators on state variables (vibility),
- control of the layout of arrays in memory (riskof array overflows).

Aim of the evaluation

This evaluation ensures that the parts associatbdsafety have been limited.

Preferential evaluation phase and supports necessary for the evaluation

The evaluation can take place at the end of so#twlasign. It is based on the software
specification and design documents, and on theysaf@alysis.

Recommendations/ techniques for the evaluation
- analyse the functions provided by the systemthadunctions not linked to safety,
- analyse the possible interactions between thetifums :
. risk of CPU capture by a non safety related tiong
. risk of wiping out common data,
. risk of modifying common data.

- study whether different development principlesdaimentation, tests, etc.) have been
employed for the different parts of the software ?

- at the final review, analyse the problems encenaat during integration and validation
to ensure the relevance of the solutions retained.

Acceptance/ refusal criteria
Refusal :

- absence of partitioning between parts linkedafety and parts not linked to safety
although different development principles have bemployed.

27

SUBJECT : DEVELOPMENT LANGUAGES

Requirement n°

1.13

Requirement

The selected programming language should correspontd the characteristics of the
application, and should be fully and clearly defind or at least limited by clearly
defined characteristics.

Aim of the evaluation

This evaluation ensures the adequacy of the larguaigh the application to be
developed and the maturity of the language employed

Preferential evaluation phase and supports necessary for the evaluation

First evaluation review. The programming and codiranuals of language are necessary.

Recommendations/ techniques for the evaluation

The characteristics of the application encompabgetis evaluation are :
- its size,

- its type : industrial, scientific, managementtaaire, etc.,

- its real-time performance constraints.

The evaluation ensures that the language is ada&pitxicharacteristics :

- capabilities of establishing data types: positybdf data description adapted to the
complexity (structure, tables, index, etc.) anthiatypes represented (float, long
integers etc.)

- existence of error processing mechanisms supplied

- existence of real-time primitives adapted to sef@aterruption management, task
management, etc.).

This evaluation depends on the type of programranguage :
- Assembler :

verify that the instructions have been defined.
- high level language :

verify that an international standard definingxists (example : C ANSI),
the case of "dialects" (extension or limitatiofh @an internationally defined
language) must be studied in detail.

Remark: by programming language is meant the languageé hg the designer to write the

source code of the programme. It does not inclugepassible language placed at the dispd
of users to set parameters or programme the systezh,as is the case with a PLC. Besideq

this latter category of system does not fall witthiea scope of the * Software Quality
Requirements ” document.

Acceptance/ refusal criteria
Refusal : non documented and non validated ma@todiction based language.

sal

28

SUBJECT : CODING Requirementn® 1.14

Requirement
The source code should:

a)be readable, understandable, and subject to tests,
b)satisfy design specifications of the software model
c)obey the coding manual instructions.

Aim of the evaluation
This evaluation ensures the quality of the codeitncbnformity with the design.

Preferential evaluation phase and supports necessary for the evaluation
End of coding. Design documents, code, and codiagual are necessary.

Recommendations/ techniques for the evaluation

analyse the relevance of source comments by sagrgdurces (that they are not too
close to the code),

analyse the conformity of the detailed designdwforeseen in the development
process).

analyse if the coding rules have been respeate@l@tion to the coding manual of the
designer).

If there is no manual, the evaluator refers toch@ing rules proposed in the annex of
the document “ Software Quality and Safety Requéei® ” in order to evaluate the
quality of the code.

The absence of a detailed design at the end ola@@wvent is not grounds for refusal (it cg

for example, be included in the source code if thifereseen in the development process).

in,

N—r

Acceptance/ refusal criteria
Refusal :

numerous cases of incoherence between the akthakgn and the code,
non respect of the coding rules.

29

SUBJECT : CODING Requirementn® 1.15

Requirement

The coding rules applicable to a given software pauct should be outlined in detail in
a coding manual and used to develop the softwareh& coding manual should :

- indicate what programming principles should be appkd and prohibit any
uncertain language aspects,

- describe rules for source code presentation and dementation,

- include conventions used in naming components, sulutines, variables and
constants.

Aim of the evaluation
This evaluation ensures :

- that a reference set of coding rules existsnmai to the developers, and is being applie

- that the unsafe characteristics of the languaye Ibeen identified in the coding manual i
that they are not being used.

- that the rules of source code presentation andrdentation are adequate and have indsg
been respected to produce the source code.

- that the coding manual includes the conventionsiéming, and that they are being
respected to produce the source.

d.
hand

ed

Preferential evaluation phase and supports necessary for the evaluation

The evaluation of the coding manual must take piacpreference before the coding
phase. The source code at the end of the codingepisathe support to verify that the
coding manual is being applied.

Recommendations/ techniques for the evaluation

On the basis of the coding rules of the annex efdbcument “ Software Quality and
Safety Requirements 7, it is recommended to pro@seidllows :

- have recourse to the results of the verificatiarried out by the designer (inspection
reports, etc.), if they exist.

- see if the coding manual contains protectionrejainsafe characteristics of the
language.

- compare the coding rules with the coding rulethemannex of the document
“ Software Quality and Safety Requirements ”,

- verify the existence of source code presentaimhdocumentation rules in the coding
manual (structuring of IF ... THEN ... ELSE, comnsgmodule identification, etc.).

- verify the existence of conventions (haming ofdules, subroutines),

- by sampling on the source modules, choosing ieseptative sample. Main criteria :
programmer, types of functions, language when s¢lamnguages are used, and
modifications carried out in the case of a new eatabn.

- verify respect of the coding manual rules by slamgpon the source modules,

- the use of software tools can be justified ogdascale projects or in firms with
numerous projects. The investment does howeverinetoasiderable, and manual
verifications can suffice on the types of projdeling within the scope of this
document.

The absence of written rules is not grounds fangaff:

- for a small team (1 to 2 people). The rules progose annex in the document
“ Software Quality and Safety Requirements” thgaplg by default and must be
respected.

- if all the sources in fact respect a common prediemt at the end of development. The
designer must then foresee formalising this ruleality plan for example) to ensure
its future application.

30

Acceptance/ refusal criteria
Refusal :
- absence of coding rules and use of unsafe lamgcia@racteristics.
- non-respect of the coding manual on several nesdul
- unjustified non respect of coding rules importimtsafety.

3.3 REQUIREMENTS FOR SOFTWARE DEVELOPMENT PROCESS

3.3.1 Presentation
The software developpement process requirementeoon

- Development Process

- Organisation

- Documentation

- Configuration and Software Modifications Manageine
- Tools

- External Sub-contracting

- Reproduction, delivery.

3.3.2 Requirements to be evaluated relative to the softwa development process

The corresponding requirement evaluation guidaheets are presented below.

31

32

SUBJECT : SOFTWARE LIFECYCLE Requirementn® 2.1

Requirement

The software development lifecycle should be spei@fi and documented (e.g in a
Software Quality Plan). The lifecycle should include all the technical actities and
phases necessary and sufficient for software develoent.

Aim of the evaluation

To ensure that all the development activities Hasen foreseen, that the phases are of a
realistic duration, and that the main documentehmen laid down.

Preferential evaluation phase and supports necessary for the evaluation

First evaluation review. The evaluator employs thk planning elements available
(planning, development plan or quality plan if xiss, etc.) and finishes off with
interviews.

Recommendations/ techniques for the evaluation

Verify the presence of all the phases (specificatatesign, coding, tests), ensuring that
the test phases have not been minimised (nothass30% of the total time).

If several evaluations have taken place over tha&rseo of development, ensure that
activities are planned and that there is no redoata the duration of phases in order to
“ stick to deadlines ”.

Ensure the coherence of the software developmenhttive hardware development (will
the hardware be available for the validation) @ development of specific test facilities.

This requirement is of the utmost importance adlaws a structured development to be
required.

Acceptance/ refusal criteria
Refusal :

- no description of the development cycle duringeaaluation at the start of
development.

33

SUBJECT : SOFTWARE LIFECYCLE Requirementn® 2.2

Requirement

Each phase of the lifecycle should be divided intiis elementary tasks and should
include a description of:

- inputs (documents, standards etc.),

- outputs (documents produced, analytical reportsetc.),
- activities to be carried out,

- verifications to be performed (analyses, tests, etk

Aim of the evaluation

To ensure, in detail, of the content of each plodiske development cycle.

Preferential evaluation phase and supports necessary for the evaluation

First evaluation review, the development planningcuiment(s) should be used,
completed with interviews.

Recommendations/ techniques for the evaluation

Verify that each phase indeed has got documertteabutput, and that the verifications
required for the corresponding level have beerstea.

If the evaluation has taken place in several stagagfy that the activities already carried
out are in conformity with the descriptions.

Acceptance/ refusal criteria
Refusal :

- no description of the development cycle duringeaaluation at the start of
development.

34

SUBJECT : SOFTWARE QUALITY ASSURANCE Requirementn® 2.3

Requirement

The programme used to guarantee software quality shuld be well-documented (e.g
in a Software Quality Plan)and include at least:

- the organisation, the people who are responsibléor quality assurance,
development and tests, and the required independeagc

- the quality assurance activities included in thesoftware lifecycle éxamples of
methods, reviews, inspections),

- any documents producedrigports, etc.).

Aim of the evaluation

To ensure, a priori, that adequate arrangements beagn described and that they have
subsequently been respected.

Preferential evaluation phase and supports necessary for the evaluation

First evaluation phase to verify the arrangemerdgdenAll the other phases to check that
they are being applied. The evaluator employs tlaity plan or procedures if they exist,
and the proof of activity (reports, etc.) as theiba

Recommendations/ techniques for the evaluation

Ensure that these arrangements are described mjecpdocument (for example the
Software Quality Plan) or that a project documenkes reference to the procedures to
be applied. Verify by means of both reports andriviews that they are being applied.

Lowest arrangements are acceptable when the prtgect is very limited (1 or 2
people).

Acceptancerefusal criteria
Refusal :

- no arrangement has been laid down although thelalement team comprises more
than two people.

35

SUBJECT : SAFETY SUPERVISION AND MANAGEMENT Requir ementn® 2.4

Requirement

Safety supervision should be a permanent activity kle the software is being
produced.

Aim of the evaluation

The evaluation must be limited to project contrbhve all the foreseen activities taken
place ?

Preferential evaluation phase and supports necessary for the evaluation
Evaluation review over the course of the project.

Recommendations/ techniques for the evaluation

The aim of this evaluation is neither to determwvigether the project is profitable nor
whether it has fallen behind the development scleedu

On the other hand, the evaluator must ensure Hhthieaactivities foreseen have been carried
out and, in particular, the final phases of the tifcle (tests).

Acceptance/ refusal criteria
Refusal :
- missing or shortened phase.

36

SUBJECT : DOCUMENTATION MANAGEMENT Requirement n° 2.5

Requirement

The list of documents to be produced should be defd at the outset of the project
(e.g in a Software Quality Plan)

Aim of the evaluation

To ensure that this list exists and it is complete.

Preferential evaluation phase and supports necessary for the evaluation
First evaluation review.

Recommendations/ techniques for the evaluation

This list of documents serves as the guide to bewpnaware of the project
documentation during the evaluation.

It is desirable to obtain it at the start of thealenation, for example in the Software
Quality Plan, and to employ it as a support to fferdocuments that already actually
exist.

This list will be the basis to verify :

- that all the foreseen documentation exist,
- the references of the documents,
- the revision indexes.

Acceptance/ refusal criteria
Refusal :
- no list.

37

SUBJECT : DOCUMENTATION MANAGEMENT Requirement n° 2.6

Requirement

Each document should at least:

- be identified in a unique way (reference, versigrrevision index),

- be dated,

- carry a title that indicates the scope of its caent and that sets the document
in the context of the documentation as a whole. (spification, design, etc.),

be written in the language mutually agreed byhe applicant and the analyst.

Furthermore, any subsequent changes to the documenshould follow established
guidelines (management of revision indices, etc.pnd all documents should be
available in their definitive version when the find software evaluation is undertaken
by the analyst.

Aim of the evaluation
To ensure that :

- that the documents are subject to configurationagament

- that all the documents likely to be consulted arthe agreed language(s)

- control of changes to the documents

- at the final evaluation, the real state of the im@rsubmitted for evaluation and, in
particular, of all the documents.

Preferential evaluation phase and supports necessary for the evaluation

All the development phases and all the documentfulidor the evaluation are
concerned.

At the final evaluation review, all project docunt&tion can be consulted.

Recommendations/ techniques for the evaluation
Note the identification of each document presented

- reference,

- version,

- date/revision index,
- title.

The status of the documents must be clearly estaddli: rough, internal re-reading, applicable.
This status can, for example, appear on the doctsleemselves, or a “ master ” list stating

the version of applicable documents can be esteadalis

Remark: there is no obligation to have a “ paper ” vensof all the documents available
systematically.

The analyst can accept all the languages that dilglésto evaluate (analysis of the
documentation and interviews).
Care should be taken with |-existing software products, particularly those pasec

38

commercially, which could include documents in laages not falling within the initial
agreement. It is necessary to translate a minimiutmeodocumentation.

If the agreement on the languages employed isaspiected, the translation is the
responsibility of the designer.

This evaluation is conducted by surveying, whenesquired, the documents presented to
verify the other requirements.

Trace a document modification :

- date of the modification request,
- nature of the correction carried out,
- date of the document later than the modificatequest date.

Over the course of the evaluation, the evaluatastrpay attention to all the elements
presented, and ensure that they are for the haesion. This work is facilitated when the
designer has developed a directory of documenasfite listing the documents for the
version to be evaluated.

During the final evaluation, all the documents musterminated and finalised. In the
case of specific difficulties, a waiver is possibleissuing a decision “ with
reservations ”, the reservations covering the da(s) to be sent to the analyst at a
date set to finish the evaluation.

Acceptance/ refusal criteria
Refusal :

- several sets of documents present on site dgétsing in content and not in their
identification,

- documents with no identification or no version,
- the documents or proof of activity are in a laage other than that (those) foreseen,
- non respect of the rules for changing documents,

- absence of several documents or documents mtetsio far removed from a final
version at the time of the final evaluation.

39

SUBJECT : DOCUMENTATION MANAGEMENT Requirement n° 2.7

Requirement

The necessary documentation should be establishetl each phase of the lifecycle to
facilitate verification and validation, and the sofware safety requirements should be
traceable and capable of being verified at each sia of the process (traceability
matrix for each definition document).

Aim of the evaluation

This evaluation ensures that the documentatiorsé@e has been established and allows

for the checking of the traceability of the safedguirements in the different definition
documents.

Preferential evaluation phase and supports necessary for the evaluation
Intermediate reviews. All the project documents lbarctonsulted.

Recommendations/ techniques for the evaluation

This evaluation can only take place when the ah@iggicipates in evaluations over the
course of the development.

The review reports allow determination of the doeuis actually available at each
review.

All the documentation must exist and be verifiedthg designer before presentation for
evaluation (except in the case of a specific agesegnfior the intermediate reviews :
documents in provisional versions, etc.).

It is necessary to check the presence and the etemglss of the traceability matrix in the
documents established for each software developpiesge.

Acceptance/ refusal criteria
Refusal:
- document absent not allowing for evaluation

- traceability of the non-demonstrated requiremaheach software development
phase.

40

SUBJECT : CONFIGURATION AND ARCHIVING | Requirementn® 2.8
MANAGEMENT

Requirement

A procedure for configuration management and modiftations management should be
defined and documented. This procedure should, asrainimum, include the following
items:

- articles managed by the configuration, at least :

software specification,

preliminary and detailed software design,

source code modules,

plans, procedures and results of the validatioressts.
- identification rules (of a source module, of a $tware version, etc.),
- treatment of modifications (recording of requestsetc.).

For each article of configuration, it is necessaryo be able to identify any changes that
may have occurred and the versions of any assoal elements.

Aim of the evaluation
This evaluation :

- ensures that a configuration management systerbdesestablished,
- ensures that the configuration reference systeadaesguate,

- contributes to estimating the control of the coafggion management system.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. All articles managed ie ttonfiguration system and their history
can be consulted. Configuration management proeeduticles subject to configuration
management.

41

Recommendations/ techniques for the evaluation

The identification of the configuration managemetcedure (name, date, edition, etc.)
and its scope of application must be noted.

Remark : how efficiently the procedure is beinglagapis evaluated through the other
requirements.

It must be ensured that all these articles areeididmanaged by the configuration
management system :

- control of modifications since the preceding ¢guifation,
- coherence of articles of the same reference isyste

The specification, the design, the source andesierésults must correspond to the same
product state (identical version).

The supplier must be capable of tracing these awafag each of the articles either by mean
the tool used or by using the manual managemenegtres foreseen.

Acceptance/ refusal criteria
Refusal :
- absence of procedure,
- unrecorded request for modification (quoted by dlevelopers but not recorded),
- configuration article missing with respect to theimum required,

- incoherence between the articles subject to gardtion management for the software
version undergoing evaluation,

- identification not allowing the changes of versio be traced,

- modifications made without changing the idenéfion after entry into the
configuration management system.

42

SUBJECT : CONFIGURATION AND ARCHIVING | Requirementn® 2.9
MANAGEMENT

Requirement

Software configuration management should allow a pecise and unique software
version identification to be obtained. Configuration management should associate all
the articles (and their version) making up a softwee version.

Aim of the evaluation

This evaluation ensures the control of a softwansion.

Preferential evaluation phase and supports necessary for the evaluation
Final evaluation review. All the configuration atés can be consulted.

Recommendations/ techniques for the evaluation

The version of the software is the identificatiorotvn by the configuration management
system. It can be different from the “ brand ” namh@ customer version. In this case, the
explicit link must be provided.

Remark: the evaluation report should always state thisioe of the software undergoing
evaluation to avoid any ambiguity.
There in no obligation to use a tool. For a smabjgct, it is possible to employ
“ minimalist ” management :
- file identification and location rules (name afetttory) ,

“master " list providing the files falling withia configuration (date/version, etc.),
- manual links with the documentation.

Acceptance/ refusal criteria
Refusal :

- no configuration management established, makiegrate identification of the
software version undergoing evaluation impossible.

43

SUBJECT : CONFIGURATION AND ARCHIVING | Requirementn® 2.10
MANAGEMENT

Requirement

All articles in the software configuration should ke covered by the configuration
management procedure before being tested or beingequested by the analyst for
final software version evaluation.

Aim of the evaluation

This evaluation ensures that the developer hasidaththe reference system before the
start of the evaluation.

Preferential evaluation phase and supports necessary for the evaluation
Final evaluation review. All the project documeo#s be used.

Recommendations/ techniques for the evaluation

Particular attention should be paid to these poihtseveral presentations have been
necessary:

- verify that the date of entering the configuratfrecedes the start of the evaluation.

- verify that the reference system presented ig@ft (all the articles must correspond to tH
same software version).

Acceptance/ refusal criteria
Refusal :

- article not managed by the configuration systéhmagh forming part of the
minimum necessary for the evaluation.

e

44

SUBJECT : CONFIGURATION AND ARCHIVING | Requirementn® 2.11
MANAGEMENT

Requirement

Procedures for the archiving of software and its aciated data should be established
(methods for storing backups and archives).

Aim of the evaluation

This evaluation ensures the control of back-upsanbives.

Preferential evaluation phase and supports necessary for the evaluation
Final evaluation review. All the configuration atés can be consulted.

Recommendations/ techniques for the evaluation

- verify the existence and application of a backpupcedure. This procedure can have
recourse to central facilities or much more baaailities (simple floppy disk correctly
identified and protected).

- it may be advantageous to verify the efficien€yhe procedures employed to request
restoration of the last version from the back-umgsiaes.

Acceptance/ refusal criteria
Refusal :
- absence of software product back-ups.

45

SUBJECT : SOFTWARE MODIFICATIONS MANAGEMENT Require mentn°® 2.12

Requirement

Any software modification is subject to the rules stablished for modification and

configuration management, and requires that the deslopment process be
recommenced at the highest "upstream” point neededo take the modification into

account.

Aim of the evaluation
This evaluation ensures that modifications arerodiet.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. All requests for modificets and the project documents must
be accessible.

Recommendations/ techniques for the evaluation

It is advised to proceed by analysing the tracagbdf modifications. Take a few
modifications and follow their treatment with a wieto answering the following
guestions:

- has the modification procedure been applied ?

- have the modifications been carried out ?

- have the documents been updated ?

- have the earlier development phases been camuteagain (unit tests, etc.) ?

In the case of a software product being presergeéral times for evaluation (failure of a
previous evaluation or new evaluation following ihes to a software product having
previously been granted a favourable decision)jqudar attention should be paid by the
evaluator to modifications stemming from the dewias noted during a previous evaluation,

Remark: with this in mind, all the evaluation reportsredo be archived to be able to use them
at a later date (reconstructing evaluation hisgptist of observations, etc.).

Acceptance/ refusal criteria
Refusal :

- earlier activities not carried out again (docutserot updated, absence of non
regression tests without justification, etc.).

46

SUBJECT : SOFTWARE MODIFICATIONS MANAGEMENT Require mentn® 2.13

Requirement

The description of software modifications should iolude details of each modification
made. This should include at least the following &ms for each modification:

- the modification request,

- the report detailing the analysis of the impact othe software modification, the
decisions made in this respect and their justificabn,

- the version of the software to be modified as wedls the configuration articles
and their version.

Aim of the evaluation.
The aim of this evaluation is to ensure contrahef modifications management process.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. Documents used : requéstsmodifications and associated
analyses, all project documents.

Recommendations/ techniques for the evaluation

proceed by tracing a modification :
- request for modification,
- impact analysis (documentation, code, tests, etc.),
- modification made (source/documentation), test&, With the configuration
management system.

In the case of a software product being presergeéral times for evaluation (failure of a
previous evaluation or new evaluation following ihes to a software product having

previously been granted a favourable decision}jqudar attention should be paid by the
evaluator to modifications stemming from deviatioited during a previous evaluation.

Remark: with this in mind, all the evaluation reportssbao be archived in order to be able
use them at a later date (reconstructing evaludiigtories, list of observations, etc.).

[0

Acceptance/ refusal criteria
Refusal :
- modifications carried out not in the modificaticegquest circuit,

- the modifications carried out since the precedingluation presentation were not
traced (which implies carrying out the entire easilon again).

a7

SUBJECT : DEVELOPMENT TOOLS Requirementn® 2.14

Requirement

Optimisation of object code performance options aréorbidden.

Aim of the evaluation

To ensure the coherence between coding and thegewdated and the non-introduction
~ during the generation of the executable code instfuctions contrary to safety or
leading to dysfunction.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. The compilation / constior files of the executable code are
necessary.

Recommendations/ techniques for the evaluation

The evaluator verifies whether compilation optitiase been used and that optimisation
of object code performances options have not bsed.u

Acceptance/ refusal criteria
Refusal :
- use of optimisation of object code performanqesons.

48

SUBJECT : DEVELOPMENT TOOLS Requirementn® 2.15

Requirement

If a new compiler or a new linker is used during tle development procedure, the

validity of the testing activities already performad should be analysed by the
designer.

Aim of the evaluation

To ensure the validity of the verifications carriedit on the software when the
development tools have been modified.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. The versions of the toaitsl the utilisation options must be
communicated by the designer.

Recommendations/ techniques for the evaluation

The introduction of a new compiler (or linker) chgitest activities is always inadvisable

and, in general, is a case of force major (comactf a bug by the constructor of the
compiler).

To evaluate this requirement, the tools and optised are identified, and by analysing
the command files (compilation, linkage) it is ereglithat they have not been modified
over the course of the development. Corroboratentieemation through interviews with
the developers.

In the case of changes (tool or version), an impaelysis must be conducted if all the
tests are not carried out again.

Acceptance/ refusal criteria
Refusal :

- changing a software tool or utilisation optiorridg development without a precise
impact study.

49

SUBJECT : DEVELOPMENT TOOLS Requirementn® 2.16

Requirement

Tools used during the development procedure (comgit, linker, tests, etc.) should be
identified (name, reference, version, etc.) in theocumentation associated with the
software version (e.g. in the Version Sheet).

Aim of the evaluation

To ensure that the development environment has defamed.

Preferential evaluation phase and supports necessary for the evaluation
Final evaluation review.

Recommendations/ techniques for the evaluation

- verify (for example in the Version Sheet) that ttevelopment tools have been
referenced in the documentation associated witlsdfftevare.

- then verify (for example in the Version Sheegttthe references indeed correspond to
the tools used. If the tools have been modified tive course of the development,
refer to requirement 2.15.

Acceptance/ refusal criteria
Refusal :
- absence of references of the tools used,
- tool references incorrect.

50

SUBJECT : EXTERNAL SUB-CONTRACTING

Requirement n°

2.17

Requirement

In the event that any part (even partially) of the software development is
subcontracted to a third party, the present requirenents should also apply to the
subcontractor. They may possibly be adapted to redkct the importance and nature of

the subcontracted tasks.

Aim of the evaluation

To ensure that software products not directly dgwedl by the designer respond to the

same quality criteria.

Preferential evaluation phase and supports necessary for the evaluation

First evaluation review. The contract signed wilk sub-contractor (only the technical

part) is the principal supporting document.

Recommendations/ techniques for the evaluation

- verify that the quality requirements are laid cow the contract signed with the sub-

contractor, possibly only in part depending onwloek sub-contracted.

- internal sub-contracting is not concerned by taguirement as it is assimilated with

the designer from the point of view of the quaéityd safety principles applied.

- if there is no mention of the quality and safedguirements in the sub-contract

(forgetting of the designer or late knowledge & thquirements for the contract), the

evaluator should pay closer attention to the sutiracted parts.

- over the course of the evaluation, the evaluaéats the sub-contracted parts no

differently from the others, bearing in mind thiag¢ entire software product must

satisfy the software quality requirements.

Refusal :

- requirements not respected for the sub-contresdéidvare product (Cf. requirement

criteria concerned to formulate the final decision)

51

SUBJECT : EXTERNAL SUB-CONTRACTING Requirementn® 2.18

Requirement
The designer should ensure and demonstrate that theequirements have been
respected by the subcontractor(s).

Aim of the evaluation

To ensure that designers have undertaken actiiiagerify the respect of the quality
requirements by their external sub-contractors.

Preferential evaluation phase and supports necessary for the evaluation

End of evaluation review. The evaluation supporésraade up of the reports of reviews,
meetings and audits at the premises of the subramiot.

Recommendations/ techniques for the evaluation

- on the basis of the reports presented, verifyttitedesigner has ensured respect of the

quality and safety requirements.

- when deviations come to light, also go into theeywhe designer ensures that they are
resolved. Determine the unresolved deviations.

- carry out a number of verifications directly dr tsub-contracted software product,
modulating the effort in accordance with the extarthe verifications carried out by
the designer, the problems observed by the desitireecomplexity of the software,
etc.

Remark: the absence of requirement respect checks bydbgner does not, a priori,

justify a negative decision on the sub-contraciftivare. The sub-contractor may well
indeed have respected the requirements by applyatgfactory quality and safety

principles. The objective encompasses the finalsse product, the requirements being
a mean of minimising software faults.

In the case where the designer has carried outenification on the sub-contracted
software, the evaluator should pay very close #@tterto the sub-contracted software
during the evaluation.

Acceptance/ refusal criteria
Refusal :

- requirements not respected on the sub-contractiddare product

52

SUBJECT : EXECUTABLE CODE PRODUCTION

Requirement n°

2.19

Requirement

Any option or change in the generation, during thesoftware production should be
recorded (e.g. in the Version Sheet) so that it igossible to say how and when the

software was generated.

Aim of the evaluation

This evaluation ensures control of the softwaredpation environment and the relevance

of all the verifications carried out.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review.

Recommendations/ techniques for the evaluation

Over the course of interviews, the following queists may be asked :

- have the tools used (compiler, assembler, lintogcetc.) to create a product been

archived ?

- have the generation procedures (which files, wiols with which options) been

archived ?

- has the software been recompiled several timestte course of the development
depending on the test phase ? (example : useiobanmentation-based code in unit

tests). Verify the validity of the verificationsreged out in this case.

- if the development tools are still available, gvaluator will have a better idea by
requesting the version to be regenerated fromdhecss.

Acceptance/ refusal criteria
Refusal :

- absence of the necessary development environhuamtol allowing it to be ensured
that the software product verification was apprateri

53

SUBJECT : SOFTWARE INSTALLATION AND | Requirementn® 2.20

EXPLOITATION

Requirement

All failures linked to safety and dependability furctions brought to the attention of
the designer of the system should be recorded andalysed.

Aim of the evaluation

This evaluation ensures that the failures linkedafety functions brought to the attention
of the designer are dealt with.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. The following documents dee used : anomaly reports, mail
from users, customer claims, etc.

Recommendations/ techniques for the evaluation

- identify, by looking through anomaly reports, ifedm users, etc. the failures linked
to safety functions.

- evaluate these possible failures with respect to
- corrective actions to the software product,

- corrective actions of the quality system (quadiyystem corrective action
established to detect any other anomaly of the sanee),

- feedback (enriching of a list of feared events,)e

- ensure that the anomaly has been corrected othihdack of correction has been
justified by means of an analysis.

Acceptance/ refusal criteria
Refusal :

- unjustified existence of an uncorrected failuagihg an impact on system safety.

54

3.4 REQUIREMENTS FOR SOFTWARE VERIFICATION AND VALIDATION

3.4.1 Presentation

The verification and validation activities are imied to demonstrate that the software
products stemming from a phase of a developmeneaye in conformity both with the
specifications established during the earlier pkasad with the applicable rules and
standards.

They are also intended to detect and deal withrettat may have been introduced over the
course of the software development.

The software verification and validation requirenseconcern :
- Software Verification :

. reviews
. code verification

- Software Tests :

. Validation Tests
. Integration Tests
. Module Tests.

3.4.2 Requirements to be evaluated relative to the softwa verification

The corresponding requirement evaluation guidanies fare presented in the following
section.

55

SUBJECT : GENERAL VERIFICATION AND VALIDATION Requirementn® 3.1
REQUIREMENTS

Requirement

The analyst should be able to carry out the evaluain of software conformity to the
present requirements by conducting any audits or eertises deemed useful during
the different software development phases.

All technical aspects of software lifecycle process are subject to evaluation by the
analyst.

The analyst must be allowed to consult all verifickon reports (tests, analyses, etc.)
and all technical documents used during software delopment.

Aim of the evaluation

This requirement is intended to guarantee the ahéhe possibility of conducting audits
or expertises to verify the respect of the softwguality and safety requirements and the
access to all the technical information necessaryhie evaluation.

The analyst can have recourse, during the evahjatm consult any element of proof
concerning the activity undertaken by the designer.

Preferential evaluation phase and supports necessary for the evaluation
All the development phases and activities are yiked be audited, expertised or
evaluated.

The evaluation is carried out at the end of a pi{agample : end of design, end of
integration test, and so on) on the basis of allréports available.

Recommendations/ techniques for the evaluation

This requirement is to be employed when particdificulties arise in verifying certain
requirements (activities of the designer unclearefaample) or when doubts exist on the
reality of certain activities of the designer :this case, go into more depth on one or
several subjects by an audit (half to one day marijn

It is recommended to group audit/ expertise subjact minimise the number of
intervention visits to the premises of the designer

These audits can also be the opportunity to preesatuation failure by proposing
corrective measures to the designer at an earlyginstage in the development process.
This activity must not, however, lead to a transfieresponsibility to the analyst.

The evaluation must be strictly limited to the teickal aspects of the software product to
be evaluated and only to the software. In particuday considerations on the general
organisation of the firm (ISO 9000 quality systdor,example), and human or financ

aspects are out of bounds.

In the case of difficulties in relations with theesigner, the principles of the
independence, no competition, and objectivity efanalyst can reminded.

The evaluator should not hesitate to question #sggder on existing elements in all their
forms (computer files, folders, data sheets, etc.).

Hand-written documents are acceptable provided #neyclear and identified according
to the principles of configuration management.sltimportant to be able to determine
unambiguously which software version the activipshaken place on. If there is any
doubt, evaluators themselves can, by means of sampbnduct certain verifications.

Difficulties can arise in the case of distributioh the software development between
several industrialists, between subsidiaries of $hene group, and between several
establishments of the same firm. The case of eateub-contracting and the use of pre-
existing commercially available software also ceetdifficulties of access to documents.

A presentation of the industrial framework of tloftware development by the designer
will ensure the evaluator access to all the docusaen

The evaluation can, if required, be conducted engremises of a sub-contractor or in a
subsidiary having developed the software if thiglitates access to all the documents.
Access via computer link (company network for exlappo certain information is also
acceptable.

The designer is not required to make paper codiedl the documents available, and a
computer consultation is acceptable with the pdggibf printed copy on request. In this
case, the designer must definitely provide anystmste necessary to the evaluator for
the electronic consultation.

56

Acceptance/ refusal criteria
Refusal :

- the designer refuses the intervention of theyatdbr the audit or expertise on the
software development.

- restriction of access of the designer to purethhical information (on the grounds of
industrial confidentiality). These restrictionsrigihe feasibility of the evaluation into
guestion.

- absence of proof of verification on the final sien of the software.
- the impossibility to access certain documentgagsinds for stopping the evaluation.

57

SUBJECT : GENERAL VERIFICATION AND VALIDATION Requirementn® 3.2

REQUIREMENTS

Requirement

Evaluation of software conformity to the present rguirements is performed for a
specific, referenced software version. Any modifid@n of previously evaluated
software which has received a final opinion from tk analyst should be pointed out to
the latter in order that any additional evaluation activities can be carried out to
update this opinion .

Aim of the evaluation

The analyst must ensure that he or she evalugtescegse and clearly identified version
of the software.

Preferential evaluation phase and supports necessary for the evaluation

This requirement is primordial at the final evalaat All the configuration management
documents are concerned.

Recommendations/ techniques for the evaluation

When the evaluation takes place in several stageshould be ensured that the
modifications carried out since do not bring presiconclusions into question. If they
do, the evaluation must be gone through againriogndn the modifications made.

When a decision has already been formulated (tbe chthe evaluation of a new version
of a product), the deviations between the two waisimust be accurately identified
otherwise the entire evaluation may have to be gbneugh again. The analyst can
modulate the additional evaluation in accordancth whe extent of the modification
(example : a modification of a few observationsaofew lines can be dealt with by
sending justifying documents defined by the analgt no new on-site evaluation).

Acceptance/ refusal criteria
Refusal :

- impossible to identify the precise content of sétware product (software modules
with no version, etc.),

- modifications introduced into a software prodizt has already been evaluated and
distributed to end users without informing the gstl

58

SUBJECT : GENERAL VERIFICATION REQUIREMENTS Require ment n°

3.3

Requirement

A verification report should be produced for each ‘erification activity, and should
identify and document all distortions (non-conformties) with respect to:

- the corresponding specifications,
- rules or standards (design, coding),
- any quality assurance procedures that may exist.

Aim of the evaluation
To verify that the verification activities carriedit have indeed been formalised.

Preferential evaluation phase and supports necessary for the evaluation
Final evaluation review. All elements of proof efts are necessary.

Recommendations/ techniques for the evaluation
- verify the existence of records for all the vieation activities

- these elements of proof can take many forms (tvenitten files, folders/data sheets,
computer files), as long as they provide the olpéthe verification, the results and
the exact state of the software verified.

Acceptance/ refusal criteria
Refusal :
- no proof that the foreseen verifications havenbesaried out.
- absence of the results of these verificationsréo or incorrect).

59

SUBJECT : REVIEWS REQUIREMENTS Requirementn® 3.4

Requirement

An external specification review (with the analyst)should be held at the end of the
software specification phase.

Activities involving analysis and software specifiation verification should:

- verify the exhaustiveness and adequacy of the sw@hre specifications with
respect to the system specifications,
- verify the traceability with respect to the systen specifications.

Aim of the evaluation

This evaluation ensures that this review has indaken place and that the objectives of
the review have been achieved and that the softegeeifications have been verified.

Preferential evaluation phase and supports necessary for the evaluation

The evaluation can take place at the end of theifsgstion phase. The basis of the
evaluation is the review report and the system iBpatton documents (or contractual
specification) and software specifications are ssagy.

Recommendations/ techniques for the evaluation
- examination of the review report (versions of ulments, participants, etc.).
- comparison of the date of the review with thejgrbplanning.

- examination by sampling of how the decisionshef teview have been taken into
account.

- analyse the results of the verifications caroatl(reports, traceability matrix).
- verify by sampling :
. the coherence between the system and softwatentents,
. the traceability between the two documents.
- verify the inherent quality of the software sgieations (completeness, internal
coherence, etc.).
General comments on evaluating all reviews

- the requirement covers the existence of a revigwre is no requirement for a review
to be carried out for each new version of the damis The review must, however,
cover a version that is sufficiently representatf¢he final version.

- grouping of several reviews (example : specifaratnd design) is acceptable if the
aim of each of the review has been achieved.

60

Acceptance/ refusal criteria

Refusal :

absence of a specification review.

significant incoherence between the documenttéay functions not foreseen in the
software, etc.).

significant incoherence in or incompletenesshefsoftware specifications (no
description of the hardware interfaces for example)

absence of “software specification / hardwarecgation” traceability matrix.

61

SUBJECT : REVIEWS REQUIREMENTS Requirementn® 3.5

Requirement

Analysis activities and software design verificatin should verify the conformity to
specifications.

Aim of the evaluation

To ensure that verifications have been carriedlguthe designer and that there is a
coherence between the design and specificatiotiedoftware.

Preferential evaluation phase and supports necessary for the evaluation

End of detailed design. The documents necessartharspecifications and the design,
together with all the reports of the verificatiaregried out by the designer.

Recommendations/ techniques for the evaluation

- verify the existence of proof of verificationscanote the versions of the elements that
the verifications covered (are they indeed forlést versions ? ; if not, have
additional verifications been carried out after thedifications ? Check the dates of
documents as an indication.

- by sampling, verify the coherence between docusnego in both directions (from the
specifications and from the design). Take sevaftdrdnt functions.

- the absence of proof of verification must pusthélialuator to step up the sampling
effort.

Acceptance/ refusal criteria
Refusal:

- significant incoherence between the softwaregiheand specifications noted by the
evaluator

- absence of “design / specification” traceabifitgtrix.

62

SUBJECT : REVIEWS REQUIREMENTS Requirementn® 3.6

Requirement

An external validation review (with the analyst) stould be held at the end of the
validation phase.

Aim of the evaluation

This evaluation ensures that this review has indaken place and that the objectives of
the review have been achieved.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. The evaluation centresh@nreview report.

Recommendations/ techniques for the evaluation
- examination of the review report.
- comparison of the date of the review and thequtogchedule.

- examination by sampling of how the decisionshef teview have been taken into
account.

(Cf. general remarks : requirement 3.4).

Acceptance/ refusal criteria
Refusal :
- absence validation review.

63

SUBJECT : REVIEWS REQUIREMENTS Requirementn® 3.7

Requirement

The result of each review should be documented aratchived. It should include a list

of all actions decided on in the review process, drthe review conclusion (decision on
whether or not to move on to the next activity). Tl activities defined in the review
should be monitored and treated.

Aim of the evaluation

The evaluation ensures that the actions deciddteaeview have been recorded and can
be monitored and that all the actions decided wveew have indeed been taken into
account.

Preferential evaluation phase and supports necessary for the evaluation

Final evaluation review. All the review reports aatl the project documents are
necessary.

Recommendations/ techniques for the evaluation
- verify the dates of the reviews with respecti®e development plan.
- verify that each report accurately identifies :

. the actions to be undertaken,
. who is responsible for these actions,
. the deadlines for these actions.

- examination by sampling of how the decisionshefiteviews on the final software
version have been dealt with. Unresolved decisiust be justified.

- possibly have recourse to the monitoring faeitof the designer (recapitulative table,
etc.).

Acceptance/ refusal criteria
Refusal :
- unjustified absence of proof that reviews haverbeonducted.
- non respect of a major action decided at review.

64

SUBJECT : CODE VERIFICATION (SOURCE CODE AND | Requirementn® 3.8
DATA)

Requirement

Code verification (static analysisshould ensure that the code conforms to :

- the software design documents,
- coding rules.

Aim of the evaluation

To ensure the coherence between the detailed dasdythe source code.

Preferential evaluation phase and supports necessary for the evaluation

Unit test phase or final evaluation review. Usedbtailed design, source code and
corresponding verification documents (review, irgsjo® reports, etc.) to conduct the
evaluation.

Recommendations/ techniques for the evaluation
- verify the coherence between code and desigraimpbng,

- study the results of the verifications carried loythe designer if they exist, and
ensure that the actions or points raised by themeats have been followed up and
dealt with.

Remark: the design can be included in the source filesthis case, ensure that the
detailed design and the source comments are cléiatlpguishable.

Acceptance/ refusal criteria
Refusal :
- multiple cases of incoherence between the detdigsign and the code,
- absence of design documents.

65

SUBJECT : GENERAL VALIDATION REQUIREMENTS Requireme ntn® 3.9

Requirement

The software verification strategy used at the difrent software development steps
and the techniques and tools used for this verifiteon should be described in a Test
Plan before being used. This description should, asminimum, include:

identification of the software and its safety-relaéd components that will be
submitted to validation procedure before use,
organisation of the verification activities (integmtion, validation, etc.) and any
interfaces with other development activities,
independence of the verification (if applicable): e verification strategy should
be developed and implemented, and the test resultshould be evaluated
independently (by an individual, department, or orgnisation) in relation to
the size of the development team,
verification methods and tools used (types of teststc.),
environment of the verification (test equipment, eralators, etc.),

* manner in which test results were verified,

» atraceability matrix demonstrating the correspondance between the tests to be
undertaken and the objectives of the tests defined.

Aim of the evaluation

To ensure that a verification strategy exists #ad it is described in a project document. Th
descriptions allow the evaluator to verify at a@tadate that they are being respected.

To ensure that independence has been plannedefeptiducting of tests.

Preferential evaluation phase and supports necessary for the evaluation
First evaluation review, the strategy must be deedrat the start of the project. The evalua
employs the document(s) describing this strateghasbasis.

First evaluation phase for the arrangements foreséral review to verify that the
arrangements have been applied.

Recommendations/ techniques for the evaluation
The assessor must verify that :

- a strategy has been specified ;

- the strategy really exists : the tests are indedttured in sub-sets with clear objectives

- it is coherent with the pre defined objectived #me desired test coverage,;

- it is well integrated into the general verificatistrategy ;

- verifications on models are only complementary ;

- the parts of the software subject to evaluatieniadeed validated before being put into
service or delivered to end users ;

- all the verification phases required have beeedeen ;

- the scheduling of stages is coherent (for exanifpllee test of a function relies on data

ese

Lor

provided by another function or on the behaviouamdther function, this other function

66

must be tested first) ;

- the responsibilities for verification have begedfied (previously when developing the

tests or simply recorded in the test reports) ;

- as a minimum, they respect requirement of inddaeoe ;

- the facilities have been specified and traced ;

- they are coherent with the envisaged strategynaettiods, and that the whole (strategy
method / means) represents a feasible testing agipro

- the tests are identified ;

- the tracing system between the objectives antefite has been established (matrix) ;

- the foreseen tests conform to the envisagedceglyand indeed cover the objectives of the
specified tests ; for this assessment, he showld teourse to the specified objectives and
to the documents serving as the reference, in gebeing the software specifications ;

- verify that the verifications will be formaliseds will the results, and that these results will
be verified manually (the case of test tools witkoanatic result generation facilities).

At the first evaluation review, the evaluator respgethe designer to complete the
arrangements if they are inadequate. At the fiteajes the evaluation will be based on the
results of the verifications (do they exist forthik phases ? are they correct ?, etc.).

Verify that the verification strategy foresees tmdependence of the verification, and
obtain explanations of its practical applicatiorhfcarries out design/coding, who tests ?

).

Proof that this independence is being applied nigstprovided (example : name or
initials of the members of the team in the soulséiny document sand in the test
procedures, etc.).

When the team is reduced to only one person, tpécagion of independence is more
delicate, because of requesting an external intéo/e in the project. The absence of
independence in this case can be tolerated : veérdgoughly that the development has
indeed been carried out by only one person (nocsulractor, etc.).

Acceptance/ refusal criteria
Refusal :
- no verification planning or description of the ame of verification.
- independence not applied although the team isathitced to only one person.

67

SUBJECT : GENERAL VALIDATION REQUIREMENTS Requireme ntn°® 3.10

Requirement
Verification of a new software version should inclde non-regression tests.

Aim of the evaluation

To ensure that non-regression tests exist andhbatesults of their execution are correct
when several versions of a software product haee bleveloped.

Preferential evaluation phase and supports necessary for the evaluation

First evaluation review of a new version or finghkiation review. The test documents
(unit, integration, validation) are the basis of #valuation, supplemented by documents
allowing identification of the modifications.

Recommendations/ techniques for the evaluation

For the unit tests, non-regression consists inycegrout all the module test cases again
(intervention on a source module can introduceresr @t any point in the module).

For the other test phases (integration, validatidhg important point is more the
determination than the existence of non-regregsisis. : does an impact study exist ? on
what basis have the non -regression tests beetrtextl®, etc.

It should be borne in mind that the requirementsdoet impose carrying out all the
existing tests, but the designer must be abledtifyjuthe sub-set done again with respect
to the extent of the modifications carried out.

Acceptance/ refusal criteria

This requirement does not apply to an initial depetent of the version that must
include the entire range of tests.

Refusal :

- the non-regression validation tests do not callehe functions modified or affected
by the modifications carried out.

68

SUBJECT : GENERAL VALIDATION REQUIREMENTS Requireme ntn°® 3.11

Requirement
Directives for drawing up test procedures should inlude :
- adescription of the input data to be usedvélue),

- adescription of the expected outputvalue),
- criteria on which test results will be judged aceptable tolerance).

Aim of the evaluation

To ensure that the written arrangements have bkemegd in such a way that the tests
are correctly formalised.

Preferential evaluation phase and supports necessary for the evaluation

First evaluation review. The documents planning téet activities are necessary (test
plan or quality plan, etc.).

Recommendations/ techniques for the evaluation

Verify that the instructions for drafting a testopedure require the description of the
inputs, outputs and the results acceptance critiéribe tests are already in progress, the
evaluator will get a better idea by examining extmor each of the test phases.

Acceptance/ refusal criteria
Refusal :
- no description of inputs and outputs has beesstn,

- the test results acceptance criteria have nat described for aspects of the
performance or complex algorithmic calculations.

69

SUBJECT : GENERAL VALIDATION REQUIREMENTS Requireme ntn°® 3.12

Requirement

The tests formalised in reports should be able toecarried out again (e.g., in the
presence of the analyst).

Aim of the evaluation

To ensure that the tests presented by the deshptbrexist and supply the expected
results.

Preferential evaluation phase and supports necessary for the evaluation

End of a test phase or final evaluation review. Tast facilities must still be available.
The evaluation has recourse to test proceduresesnits.

Recommendations/ techniques for the evaluation

It is preferable that the evaluator warns the design advance (before the evaluation or
at the start of the evaluation) of his or her ititnto conduct certain tests again so that
the argument of delays in setting up the testitaslis not put forward.

The evaluator takes samples (a few tests for eage s modular, integration, validation)
and verifies the results obtained.

Indirectly, the evaluator can verify the principlesconfiguration management applied
by the designer (can the software version and tineesponding tests be found again ?,
have all the files necessary for the test indeeh laechived ?, etc.).

If the test facilities are no longer available, malty verify a number of tests.

Acceptance/ refusal criteria

The total impossibility to conduct tests again & grounds for evaluation refusal (for
example, the facilities no longer exist), but miistw the attention of the evaluator to the
reality of all the elements presented and not @&ela manual verification of a few test
results.

70

SUBJECT : SOFTWARE SPECIFICATIONS VERIFICATION |Req uirementn® 3.13

Requirement

The test coverage should be made explicit in a traability matrix and respect the
following requirements:

- each element of the specification, including sdfe mechanisms, should be
covered by a validation test,

- it should be possible to verify the real-time bedwiour of the software in any
operational mode.

Furthermore, the validation should be carried out n conditions representative of the
operational conditions of the system.

Aim of the evaluation
To ensure that the test coverage sufficient, tredma the validation tests allow to verify :

- that all the functions foreseen in the softwarecsfications behave as expected,

- that the validation carried out is meaningfuthe real operating conditions of the syster

- that the constraints necessary for verificatignidsts have indeed been taken into acco
when designing the architecture of the software.

>

int

Preferential evaluation phase and supports necessary for the evaluation
This requirement can be dealt with as soon asdbmgder has set a validation strategy.

Recommendations/ techniques for the evaluation

analyse how the designer has ensured validafiah the functions (existence of a
"validation tests / specification elementsiceability matrix).

verify by sampling if the functions have indeexth validated (consider degraded
modes and specific operating modes).

The representativeness of the validation is infbeehby :

the hardware: is it identical to the target systelf not, have the differences been
evaluated ?

the software execution conditions : is the exiecufrequency identical ? are the input
events alike ? are the interruptions identical ?

the software : is it indeed the final versiona lthe software been recompiled with
different options ?

the use : are the conditions of use those ofitla¢ system (behaviour of users, etc.) ?
Particular attention should be paid to hardwartstest carried out on account of their
destructive nature for the hardware (hardware tasls by fault injection). On the
other hand, the simulation of system failures saleways instumentable.

Moreover, the people in charge of the verificatstiould:

analyse the possible operating modes and vérdtygach of the modes will be capable
of being tested (except if it leads to hardwardrdeton).

verify that the foreseen test environment (sofemaols, simulator, etc.) has
characteristics compatible with the foreseen safvpeerformance.

at the final review, ensure that all the modeshadeed been verified as well as the
transitions between modes if such transitions gttiat the foreseen test environment
is indeed available, and that its characteristiescampatible with the verifications to

be carried out.

71

Acceptance/ refusal criteria

Refusal :

absence of a “validation test/ specification edaith traceability matrix.
safety-related functions not validated.

validation conditions unrepresentative of thefinse of the system that could lead to
unsafe behaviour in the real environment.

existence of operating modes that cannot beigdriexcept if this involves degraded
modes that cannot be checked without destroyinganéware.

existence of transitions between non-tested modes

72

SUBJECT : SOFTWARE SPECIFICATIONS VERIFICATION Requ irementn® 3.14

Requirement

Validation results should be recorded in a validatn report that should cover at least
the following points:

- the versions of software and system that were vdated,

- a description of the validation tests performed ifputs, outputs, testing
procedures),

- the tools and equipments used to validate or euvate the results,

- the results showing whether each validation testas a success or failure,

- avalidation assessment: identified non-conformigs, impact on safety, decision
as to whether or not to accept the validation.

A validation report should be made available for eah delivered software version and
should correspond to the final version of each delered software product.

Aim of the evaluation

To verify the content of the validation report amal,particular, the description of the
results and to ensure that the validation has ohdmeered the final version of the
software delivered to users of the system.

Preferential evaluation phase and supports necessary for the evaluation

End of validation phase or final evaluation revieBath the validation report and the
source code are necessary.

Recommendations/ techniques for the evaluation

- verify the content of the validation report :
has the software version been correctly idemtifie is the software version covered
by the validation known exactly ? ; have there besry modifications to the
version during the validation and, if so, how Haes validation been completed ?
has each test carried out in the validation biedy described ? The evaluator
proceeds by conducting certain tests to ensurethbeough description of the
inputs/outputs/results, the action to be taken, thedmeans of testing (version of
tools used, etc.).
has the appraisal of each test been clearlydstatiehave the problems detected
been well identified (either by mention of a demator by reference to an anomaly
file) ? ; how have problems encountered in valwatbeen followed up ?; do
uncorrected anomalies still exist ?

- verify the coherence of versions between valatateport and source software.
Complete the evaluation by verifying the dateshefdocuments and the dates of the
last modification of the source files.

- also have recourse to the documents formalisiagrodifications to verify that
modifications were not introduced subsequent tosdiiglation.

- examine the validation reports of the differeatsions if the last validation is partial
(the case of modifications introduced) and therifyénat all the functions have been
validated in their final version.

73

Acceptance/ refusal criteria
Refusal :

- absence of validation results allowing both titm®sth running and scope of the
validation carried out to be corroborated.

- functions not validated in the final version delied to users,
- modifications introduced after the validation lratit non-regression verification.

74

SUBJECT : SOFTWARE DESIGN VERIFICATION Requirement n° 3.15

Requirement
Software integration tests should be able to verify

- correct sequencing of the software execution,
- exchange of data between modules,

- respect of the performance criteria,

- non-alteration of global data.

The test coverage should be given explicitly in @aceability matrix demonstrating
the correspondence between the tests to be underaakand the objectives of the tests
defined.

Aim of the evaluation

To verify the content of the software integratiests.

Preferential evaluation phase and supports necessary for the evaluation

End of the integration phase or final evaluatiorie®. The supports required for the
analysis are the preliminary design documents hadntegration test report.

Recommendations/ techniques for the evaluation

software sequencing : ensure tthet module is correctly called amdrified, that
processing is carried out on coherent data (nonrediate acquisitions which could
mean that all the modules do not process the satag, @nd that the outputs are
achieved after processing and are coherent witfect$o each other.

verify that all the modules are called by meainthe tests, and that the order and type
of calling parameters has been verified (by remgaér example).

verify that performance tests exist, these tegssibly being carried out during
validation on the target system. Verify how thddem the accuracy of an algorithm
employing several modules are carried out.

for the global variables, study how data logsresvented (multiple access to the same
data).

check or carry out an “integration tests / cogereequirements” traceability matrix
(e.g. of the following types: functionality of eanofodule, interfaces between modules,
performances, module input and output limits.

Acceptance/ refusal criteria

Refusal :

- significant shortcomings in the content of thegration tests

- non-existence or impossibility of easily constig a traceability matrix for tests

undertaken.

75

SUBJECT : SOFTWARE DESIGN VERIFICATION Requirement n° 3.16

Requirement

Any modification of the software during its integration should be analysed to identify
the impact on the relevant modules and to ascertaivhether certain verifications
should be repeated.

Aim of the evaluation
To ensure the effective representatives of thgymateon tests.

Preferential evaluation phase and supports necessary for the evaluation
Final evaluation review. The supports requiredthesintegration documents.

Recommendations/ techniques for the evaluation

- analyse the integration reports and verify thisland the versions of the documents
to ensure that the integration covers the finasioer of the software,

- if modifications were introduced during the intation or at the end of integration,
verify that an analysis has been carried out tatifleany possible tests to be redone.
If this analysis has not been formalised (which nikely be the case), carry out
verifications by sampling : on a number of modifioas, analyse the impact of the
modification and the integration tests that shdwdde been redone: verify that they
have been.

Acceptance/ refusal criteria
Refusal :

- modifications introduced subsequent to integratithout redoing the integration
activities or providing justification of no impaeh integration.

76

SUBJECT : SOFTWARE DESIGN VERIFICATION Requirement n° 3.17

Requirement

Integration test results should be recorded in a dtware integration test report, which
should, as a minimum, contain the following points:

- the version of the integratedsoftware,
- adescription of the tests performed (inputs, oyduts, procedures),
- the integration tests results and their evaluatio.

Aim of the evaluation

To ensure that the integration tests have beenuobed and that they are appropriate.

Preferential evaluation phase and supports necessary for the evaluation

End of the integration phase or final evaluatiomie®. The evaluation is conducted
primarily on the basis of the integration test mp.o

Recommendations/ techniques for the evaluation

- verify that the tests indeed correspond to teevarsion of the software ; if not, ensure
that a minimum of integration tests are carriedagain in accordance with the impact
of each modification.

Acceptance/ refusal criteria
Refusal :
- unjustified absence of certain integration tests.

77

SUBJECT : DETAILLED DESIGN VERIFICATION Requiremen tn° 3.18

Requirement

Each software module should be submitted to a seseof tests to verify, using input
data, that the module fulfils the functions specitd at the detailed design stage.

The test coverage should be given explicitly in agceability matrix that demonstrates
the correspondence between the tests to be underaakand the objectives of the tests
defined.

Aim of the evaluation

To ensure that the unit tests exist, and that #meyappropriate to verify the functions laid
down in the detailed design of each software maodule

Preferential evaluation phase and supports necessary for the evaluation

End of the unit test phase or final evaluation eevi Detailed design, code and
documents related to the unit tests are necessary.

Recommendations/ techniques for the evaluation

- for each module, verify that a unit test or afigation corresponding to the objective
of a unit test exists;

- verify that all the functions of the detailed dgsare activated by the applied input
data (logic functions, algorithmic calculations;.etMake use of the comments
associated with the test procedures (if they exist)

- verify that the inputs applied indeed activate threseen function;

- check or carry out a "unitary test/ cover requirataétraceability matrix(e.g. of the
following type: function of each module, executjgeth, module input and output
limits.

Use these evaluations as the opportunity to carragarallel evaluation of the coherence

between the detailed design and the code andabedlility between them .

Acceptance/ refusal criteria
Refusal :
- modules not verified singly without justification
- functions of the detailed design not activatedh®yunit tests without justification.

- non-existence or impossibility of easily consthug a traceability matrix for tests
undertaken.

78

SUBJECT : DETAILLED DESIGN VERIFICATION Requiremen tn°

3.19

Requirement

Module test results should be recorded in a repotthat contains at least the following

points:

the version of the module tested,

the input data used,

expected and observed results,

an evaluation of the results (positive or othervge).

Aim of the evaluation

To verify the level of formalisation of the moduksts and the results of these tests.

Preferential evaluation phase and supports necessary for the evaluation

End of unit test phase or final evaluation revidWe unit test documents are necessary.

Recommendations/ techniques for the evaluation

The verifications are carried out by sampling (dedlifferent functions, and possibly

different developers if there are at least two Imgd in the project).

- verify that the tests have been conducted offinlaéversion of the source module (by

sampling).

- verify the presence of the results obtained aqpeteted, and the conformity between

them.

- examine how cases are dealt with when the resbtined are incorrect.

Acceptance/ refusal criteria

Refusal :

- modules not tested in their final version,

- absence of results or unjustified incorrect rssul

79

4 APPENDIX B : GENERAL PRINCIPLES FOR DETERMINING THE

4.1

4.2

SOFTWARE REQUIREMENT LEVEL

PRESENTATION

This chapter presents the general principles faerdening the software requirement level (1,
2) in function of the classification (with respéotthe EN-954 and IEC 61508 Standards) of
the safety related parts of the control system.

An error in the specification, design or coding cause the failure of a system. The level
therefore determines the degree of rigour requicedthe software development to avoid
faults where the software could be the cause.

Determining the level and establishing a relatigmdietween this level, the safety integrity
level of the system and the category dependenh®mrtea of application, the type of system,
the damage it can cause to its environment (humaauiticular), the people it is intended for,
and the structure of the system itself (architexfor example) : a specific evaluation of each
system is necessary.

The current state of the art regarding softwaresdus provide clear rules. A few guidelines
for the software products that this document appte are, however, provided to help
determine the requirement level to be employed.

GENERAL PRINCIPLES FOR DETERMINING THE REQUIREMENT LEVEL

The process of classification to set the softwaggirement level is made up of two stages :

Adjustment factors

Adjustment factors
—_—

Software Requirement

Classification o Classification of
Level

Risks Environment —————the system Sl » software

Consequences of system ™1
breakdowns

- classification of system: as the structure of the system and both theatipeal and
environmental conditions have been defined, thislires identifying the types of dangers of
this system (in all its operating modes) as welthesfailures or erroneous use of the system
and their consequences. This classification mkst ii@to account adjustment factors such as
the architecture of the system, hardware redundaran possible restrictions of use. The SIL
or category is allocated to the system on the lzdgtse highest risk of the system.

- software classification: as the software product intended to ensure thegdain) system
functions has been defined, this involves detemgirihe software requirement level to be set
in accordance with the classification of the system

As for the system aspects, certain system archredr software design decisions should be
taken into consideration to determine whether thffgct the software requirement level
retained.

In practice, the software requirement level is equwialent to the SIL system, unless
acceptable justification has been given allowing fothe reduction of the software

4.3

4.4

80

requirement level in relation to the system (hardwee architecture or use of a particular
piece of software, etc.).

For example, software with multiple diverse versigar N-versions programming), a design
technique that consists in creating two or seveddiware components ensuring the same
functions in a way that can prevent certain soursesommon errors (introduction of
heterogeneity through programming by different peppise of different languages, etc.)
allows limitation of error impact or fault deteatio

No precise rule exists, however, to deduce from thia reduction in the software
requirement level, and a case by case analysis,afitdelicate, is necessary.

CLASSIFICATION OF SYSTEMS : CURRENT STATE OF STANDARDISATION

As indicated in the presentation paragraph, systi&ssification is dealt with differently
depending on the industrial sector and the stamsiion authority. As an example, for the
machinery, two types of classification can be aggplthe EN-954-1 and IEC 61508.

These draft standards, in their current state dhitien, do not highlight the immediate
relationship between system classification. Thisealbe of a relationship is based on two
observations :

» the bases of evaluation are different : presenciauwfs and system behaviour in the
presence of a fault for the EN-954 Standard, pritibabf a dangerous failure occurring
in the case of IEC 61508,

» the target covered by these two documents is reots#ime. The EN-954 Standard is
dedicated for all technologies, whereas CEIl 61%@8$ed on E / E / PE systems.

THE CASE OF MACHINERY

Given the preceding observations, and the need fase by case analysis of systems to set
the software integrity level, the following infortnan is only provided as an indication.

Account taken of the machinery context, the dabnitof the software quality requirements
has directly targeted systems with important sadetystraints but which are less critical than
those of certain on-board avionics systems or obotmmand automation systems of
nuclear power stations. This hypothesis has, in ymaases, led to moderating the
requirements either with respect to the IEC 615@&&ard or with respect to the state of the
art in the other industrial sectors for more catisystems (level A or B of DO-178B for
example)

It should also be noted that the graduation in irequent levels for the software does not
stem from precise rules, but result from curreands in the graduation of the importance of
different aspects of a software development agireedveral industrial sectors.

Provided that the system in question does not incile specific arrangements(system
architecture or software design levaiined at lowering the software requirement levelthe
following relationship between categories and safeavrequirement levels for the software
could be proposed :

81

Categories of EN 954-1 Requirement levels for the&ware
2 1
3 2
4 2

It should be noted that the development of a sottvpaoduct at a given level does not imply
that a failure rate has been allocated to it. Tdfetg analysis cannot therefore use reliability
rates based on the requirement level, as can befdohardware failure rates.

