RV STSARCES

Standards for Safety Related Complex Electronict8yss

Annex 4

Tools for Software fault avoidance
Task 2: Guide for the construction of software tests

Final Report of WP1.2

Philippe Charpentier
INRS

(INRS

European Project STSARCES
Contract SMT 4CT97-2191

Contents

. INTRODUCTION 5
.. AIM OF THE DOCUMENT 5
.2. SCOPE OF THE DOCUMENT 5
.3. PRODUCTS CONCERNED 5
.4. INSTRUCTIONS FOR USING THE DOCUMENT 5
I.5. PRESENTATION OF THE DOCUMENT 6
1.6. SOFTWARE TESTING OBJECTIVES 6
I.7. THE TEST PROCESS 7

1.7.1. Initial definition of tests t0 be UNdertaken......... ... 8
[.7.1.1. Definition of teSt ODJECHVES e e e e e e e e e e e 9
[.7.0.2. TESHNG SITAEOY ... eeeeeiiiiiieaeeaaeeee e ettt ettt e e e e e e e e e e e e s e naaebeebeseeeeeeeeeaaeaaaaaaaeaeesaaaaannnns 10
[.7.1.3. Testing methods and techniques : DasiMgOESooeiiiiiiiiiiii e 10
[.7.0.4. TeStiNG fACIlItI®Sccee ittt e e e e e e e e e e eaeaaaaaaeeas 10

1.7.2. T ST EXECULION <.ttt ettt e e e e e e e e e e e e e e e e oo aaaatbee e et eeeeeaeaaaaaeeaeaaesaaaaaannnsbnbeeeaaeas 10

1.7.3. LI Y= 1 o= 11T o TP TR PP 11

. SOFTWARE LIFE CYCLES AND VERIFICATION SUPPORT D OCUMENTS 12
[I.1. REFERENCE MODEL 12
I1.2. SUPPORT DOCUMENTS AND THEORETICAL DELIVERABLES 12

11.2.1. Using the "theoretiCal delVErabIES" v o et e e e e e e e e e 41

lll. VALIDATION TEST PHASE 15
l1l.1. P HASE RESPONSIBILITIES 15
1.2. | NPUT ELEMENTS OF THE PHASE 16
I11.3. P HASE ACTIVITIES 16

1.3.1. Validation teSt PIANNINGeammmmeeeeerreriereeeeeeeeies s s rrrereeeaeaeesessassasassnsrnnrnnenees 16
11.3.1.1. Definition of validation teSt ODJECHVES........ccuviiiiiiie e 16
11.3.1.2. Validation teStING SITALEQYuuuiuiiriiieiiiiiiieieeee e e e ee e s ie s s e e ereeaaee e e e e s s e s sassnnnnenrrnrrnnneeereesd 61
[11.3.1.3. Testing methods and techniques: baSIBHEIUESooiii s 17

111.3.2. Definition of validation teSt PrOCEAUIES...........uuiiiiiiiieiiie et e e e e e e 18

111.3.3. Coverage and relevance of the validatEBISccooiiii e 18

111.3.4. Relationship with the configuration and dification management..............ccccuviieieeeeneeeen s 19

I1l.4. P HASE PRODUCTS 19

IV. INTEGRATION TEST PHASE 21
V.1 PHASE RESPONSIBILITIES 21
V.2 INPUT ELEMENTS OF THE PHASE 21
IV.3. PHASE ACTIVITIES 21

IV.3.1. Integration tESt PIANNINGccemmcceeeeeeiee i e e e e e e e e e e ee s s e e errereaeaaeeeeeeesesanaanns 21
IV.3.1.1. Definition of integration test ODJECHIVES..........cccoiiiiii i 21
IV.3.1.2. Integration teStING SIrAtEOY ceueariiiiiiiiiiiiiea e e e e e e e e e e e e b bbb eeeeeeeeas 22
IV.3.1.3. Testing methods and techniques : DaSITMBUEScoveeiiiiiiiiii e 22

IV.3.2. Definition of the integration teSt PrOCEERL............cuuiiiiiiiiiiiiee ettt et e s e e e e e aaees 23

IV.3.3. Coverage and relevance of the iNtegratBmibSt............cooiiiiiiiiiiiiiiit bt e e e e e e e e e 24

IV.3.4. Relationship with the configuration and rifadtion management..........ccccccciieiii s 24

V.4, PHASE PRODUCTS 24

V. UNIT TEST PHASE 26
V.1. PHASE RESPONSIBILITIES 26
V.2. INPUT ELEMENT OF THE PHASE 26
V.3. PHASE ACTIVITIES 27

RV 70 I U o 11 (=] A o] = oV 1T T ST TSR 27
V.3.1.1. Definition of UNit teSt ODJECHIVES .. cceeeiiiiiieee e 27
V.3.1.2. (0 1 (S 1] o Y (= (T PRSP 27.
V.3.1.3. Testing methods and techniques: basiatguBscccviviiiiiiiiii e e 28

V.3.2. Definition of the UNit t@St PrOCEAUIES. ccae et 29

V.3.3. Coverage and relevance of the validatiotBtes.............uuuvriiiiiiiiiiiieee e 29

V.3.4. Relationship with the configuration and nfamition management...........ccccvvvveiviiereeeceereeeeeeeeeeeeenn 29

V.4. PHASE PRODUCTS 29
VI. CONCLUSION 31

VIl. REFERENCE DOCUMENTS 32

SUMMARY:

This document covers the tests of embedded softvtai® a guide to assist the assessor in
constructing his own technique, and in adaptirig the specific context both upstream of and
during the development process. This is a set sicb@chniques and reference points that
help the assessor both to collect and analysenfloemation provided by the development

process.

It has been drawn up from a pedagogical point@wand not from the contractual viewpoint
of a supplier / assessor organisation relationship.

It completes the document: “Software quality antetsarequirements” which defines the
quality and safety requirements adapted to the magh and the document: “Guide to
evaluating software quality and safety requiremientsch is intended to assist the analyst in
assessing the respect of these requirements.

l. INTRODUCTION

.. AIM OF THE DOCUMENT

This document completes the document: “Softwaraliyuand safety requirements” [1]
which defines the quality and safety requiremendspted to the machinery, and the
document: “Guide to evaluating software quality ssafety requirements” [2] which is
intended to assist the analyst in assessing tpecesf these requirements.

It is coherent with these two documents and with BN 954-1 Standard: “Safety of
machinery - Safety-related parts of control systdpast 1. General principles for design” [3].

It includes certain (but not all) of the elementdhee IEC 61508 Standard “ Functional safety
of E / E / PE safety-related systems ” [4] by adapthem to the products in question (cf. §
1.3).

.2. SCOPE OF THE DOCUMENT

This document is intended for the manufacturessteam.

The activities described in this document are tabdertaken by this test teakdnder no
circumstances are they the responsibility of the cgfying body which may, nevertheless,
require that complementary testing be undertakeraeth phase. The manufacturer's test team
will, henceforward, be termed "the assessor".

This document has been drawn up from a pedagogigiat of view and not from the
contractual viewpoint of a supplier / assessor misgion relationship.

[.3. PRODUCTS CONCERNED

This document only covers embedded software tests.

Highly critical systems (aeronautics, nuclear, etg.are excluded from the scope of this
document, as are applications softwarsuch as application programmes for PLCs

The scope of documents [1] and [2] is limited toa#lireize software. It is extended in this
document to software of all sizes.

[.4. INSTRUCTIONS FOR USING THE DOCUMENT

The assessor must have basic knowledge regardifiswase quality and/or software
development.

It is a set of basic techniques and reference pdirdt help the assessor both to collect and
analyse the information provided by the developnm@icess.This is not a verification
checklist, but in reality a guide to assist the asssor in constructing his own technique,

1 PLC : Programmable Logic Controler.

6

and in adapting it to the specific context both upseam of and during the development
process.

[.5. PRESENTATION OF THE DOCUMENT

In addition to this introductory chapter, which geats the general aspects of the software test
in particular, this document comprises the follogvahapters:

= Software life cycles and verification support do@nts (chapter Il)
= Validation test phase (chapter III)

» [ntegration test phase (chapter IV)

= Unit test phase (chapter V)

= as well as one appendix presenting referenceg$ting strategies.

.6. SOFTWARE TESTING OBJECTIVES

Software testing is a dynamic verification methodcheck that the software indeed has the
characteristics required for its context of useisTleads to a preliminary remark that the
context of use (expected functions, environmentaistraints, adverse conditions) must be
described and indeed correspond to the real world.

The first aim of the tests is to detect possible ¥iergencesbetween the expected behaviour
and the behaviour encountered during the tests.td$teng techniques allow detection of a
great many of the faults present in software.

The second aim of the tests is to obtain the necasg confidence before operational use.
Unfortunately, the number of detected faults carbetmployed to calculate the number of
faults remaining to be discovered. Field experidme® shown that, at a constant technical and
industrial complexity, a high number of errors déte compared to other “standard”
projects can only be interpreted as an indicataa ebftware containing a great many faults
and not as the achievement of a high rate of deteof the faults present. It is therefore very
difficult to obtain the necessary confidence intwafe when a large number of faults have
been detected.

Let us also bear in mind the risk attached to #maesteam defining the specification, the

design, the testing strategy, and the test cades.aim of the tests is rather to demonstrate
that it has worked in an unsatisfactory way, whghot a natural mental process. In addition,
common mode failure exists; what has been badligded risks being badly tested by the

same person through making the same error of reason

Furthermore, correcting software errors is alwasigcdte:

» not injecting new errors during correction cannetguiaranteed: the correction may not
be satisfactory or perturb the correct parts alyaasted.

= correction can activate an inaccessible part ofstifevare and therefore cause a great
many new faults not yet noticeable before thisexiron.

Reliability growth models must therefore be emptbyeth the utmost caution in the domain
of software.

7

Every software must be considered as a complexersysvhose behaviour cannot be
guaranteed in the real domain of use. The evalaifoa software cannot be stated on the
single observation of a software under test. Téds$ &ssessment can be completed by:

= analysing the architecture of the software ancptiogramme code,
= continuous assessment throughout the developmect:$s.
These investigations answer the question: hasoftvwaze been well made?

Indeed, to cover the subject thoroughly at systewell from the safety point of view, the
following question must also be able to be answedeés the software produced indeed
correspond to the problem to be resolved?

Only system-level analyses allow this questiondastudied. This is beyond the scope of this
study which is limited to software tests.

To concludejt must be emphasised that it is an illusion to qudy a complex system on
the single observation of its behaviour in a restated number of test sets Tests are
essential to detect errors and to improve confidendhe ability of the system to accomplish
its task, but are insufficient to “ prove ” the la@four of a system.

I.7. THE TEST PROCESS

Three test phases are involved during softwareldpaeent. These are:
= Validation tests (VT);
» [ntegration tests (IT);
= Unit tests (UT).

The activities linked to these three types of tastidentical. Moreover, the test process must
follow the same principles used in all other cr@aticonstruction or design processes if
quality is to be ensured. This requires:

» initial definition,
= execution according to the previously defined pdoces,

= verification according to fixed modalities.

[.7.1. Initial definition of tests to be undertaken

The tests are prepared immediately after validatiothe corresponding specification/ design
phase.

Test definition requires the drawing up of TestrnBldor validation, integration and unit
testing along with the associated sheets or proesdu

The diagram below supplies the test definition pkdsr a "V" life cycle.

Software Validation Test Plan and
associated procedures

Specifications

A 4

Validation tests

\A Software Integration Test Plan /

Initial design and associated procedureg Integration tests
\ Unit Test Plan
and associated
Detailled design| Procedures Unit tests
Coding

Figure 1: Test Definition Phases for a "V" Developnent Cycle

Definition of the tests (unit, integration and daliion) is undertaken in two stages:

1/ The first task to be undertaken in the prepanaibf the tests is to identify theest
objectives.

This involves defining the objectives for each f@sase, taking into account:
= dependability requirements, (robustness, maintdihgtavailability, safety, etc.),

= functional and performance requirements expresseabea software product definition/
design documents,

= all identified implementation constraints (use oData Base, use of real numbers,
programming language, real-time software).

The types of testto be undertaken (functional paths, input / oufpata at limits , beyond
limits , robustness, performance) and the justificaof the choices made result from such
definitions.

For each type of test defined, tleguirement concerning the test coverageate is 100% by
default but this rate can be reduced under cectses when there is sufficient justification.

Example

9

If the choice of testing functional paths is addpte coverage rate of 100% means that after

tests have been undertaken, each of the functpatbt of the software must have been tested

at least once. It is, of course, necessary to Ip@asession of the means to be able to measure
the real coverage rate by comparison with the dlgcoverage rate (here 100%).

Case under which a reduction of the rate of coveram be justified:

The software environment represents a case undehwlre objective of coverage rate may
be reduced. Indeed, during site validation tedts, software could be in an environment
which might prevent testing of certain functionsideed for a different environment. These
functions are not, therefore, to be tested for s$hiss and the coverage rate is not 100% of the
functions described in the specifications, but falhctions except those functions just
mentioned above. The justification for this chomast nevertheless be set down in the test
file.

Similarly, certain tests concerning real-time asp@annot always be undertaken during unit
testing. Appropriate justification will allow fohe limiting of objective coverage of real-time
test aspects during unit testing.

Remark concerning the coverage rate for structass:

The parameters necessary to measure the covetageara not independent and can lead to
adverse effects. For example, to impose a covaiagein branches or in function calls can
lead the designer to degrade the code to reaabbijbetives more easily during the test phase:
for example, duplicating the code (less sub-ros)iner extending the average size of
subroutines and procedures. Any objective apprtmchbverage rate must be accompanied by
programming rules to prevent this mode of bypassing

2/ The second task to be undertaken consists inidgfthe meansemployed in testing and
then in defining the linking together of test tasksich is to say thplanning procedure.

The means and the planning procedure taken togetistitute theest strategyadopted.
The definition of the tests leads to the drawingtiphetest sheets.

The three following paragraphs present the aspeetsnon to the three test phases (VT, IT, UT)
concerning the definition of Test objectives, tbsttstrategy and testing facilities.

[.7.1.1.Definition of test objectives

The effort put into testing software (VT, IT and J&an be as much as is desired. The
combinations of input data, utilisation scenariggerating modes, operating parameters, the
variety of verifiable aspects (conformity to spesations/ design, user and operating manuals,
robustness requirements, performance, ergonomiecsinal behaviour, behaviour on failure,
etc.) are such that an infinite number of testslmaoarried out, without ever being absolutely
certain of total conformity with the requirements.

In practice, the effort put into testing must thiere be adapted to what is at stake, and it is
necessary to set objectives prior to giving thougtihe tests.

Defining these objectives allows for maximum e#mecy in undertaking tests whilst
guaranteeing full coverage of the requirementsnéeffiand hence:

» avoids devoting useless effort to pointless adtisjt

10

= focuses on essential aspects.

[.7.1.2. Testing strategy

Whatever the requirement level, the test must Istggded and developed on the basis of a
strategy. This strategy reflects the consideragioren to the tests by the assessor. It is
necessary prior to developing tests and desigreagdases. Its absence indicates a risk of
improvisation in the development of the tests.

The strategy must define what the assessor is dpatlly to ensure that the tests satisfy the
previously defined objectives. It must organise tbsts into a clear structure of units or
stages, each with clear objectives or respondingrézise environmental constraints (for
example, availability of a specific tool).

[.7.1.3.Testing methods and techniques : basic techniques

This chapter concerns testing strategy. The basitniques are divided into two categories,
depending on whether or not they authorise thersbsen of the internal behaviour of the
tested component:

= Black box: no visibility of the tested componenheTinput data and the expected results
are expressed in terms of the behaviour of thesy$ftom an external point of view.

= White box: visibility of the tested component.

[.7.1.4.Testing facilities

Whatever the level of requirement, the definitidriree testing strategy and methods must be
accompanied by the definition of the facilities esgary to apply them. Absence of this

information greatly reduces the credibility of tieategy and methods envisaged. It indicates
a risk of improvisation in the development and assiohg of tests.

As an example, the list below provides the faeitthat should be considered in advance:
= Tools: simulators, comparators, signal measurenoehd, testing tools, etc.
= Testing environments: different configurations yétem, in factory or on site, etc.
» Pre-recorded sets of tests, pre-defined paranadibast, etc.

In so far as unit tests in particular are concermstablishing strategynposesa use of tools
that is related to the size of the software. Thesés allow both automation of redoing, test
processing and measurement of the coverage rates.

|.7.2. Test execution

Test execution must conform to the procedures arttié conditions previously defined in the
test plans and test files (preparation activitigsgcedures used during testing, recording of
anomalies and test termination criteria activities)

Any failure to respect these constraints must b#-avgued. This will enable justification of
these divergences during test verification.

Test stop criteria reflect the policy adopted witlgard to the pursuit of anomaly detection tests.
Any event which prevents the correct follow-througthhe testing procedure must be considered
in the elaboration of the criteria. This might he tetection of a bug or a major non-conformity,

11

for instance. The detection of an event represgratitest stop criterion will lead to stopping the
group of tests currently being undertaken befasehds reached its end and moving on to the
following group of tests. The group of tests whitds been stopped will have to be undertaken
anew after correction.

Test stop criteria are to be defined beforeharatdier to avoid undertaking pointless tests which
will have to be undertaken anew in any case.

1.7.3. Test verification
Test verification must demonstrate that the objestiset have been met. It consists of:

= establishing the traceability of tests undertal@refich type of test defined given the
objectives in hand. It is strongly recommended treteability be established as tests
execution in order to optimise the test verificatghase for which such traceability is
necessary,

= evaluating the coverage rate attained throughnhéysis of test results,

= establishing the acceptance or refusal of resnlthe phase in question by taking into
account the justifications for divergence estalgésHuring test execution.

The table below gives the format of a traceabthdyle:

Elementary objective to be verified type of test
TN HL TR

Objective 1 1,2 4,5
Objective 2 6 3
Objective 3 7,8 9
Objective 4
Objective ...
Objective n m m+1

Table 1: Objective/ Type of test/ tests number tragability Table

TN : Nominal Test, HL : Outside limit ,TR : RobuseBs Test ...

12

. SOFTWARE LIFE CYCLES AND VERIFICATION SUPPORT
DOCUMENTS

I1.1. REFERENCE MODEL

This guide must have recourse to a model of thevaoe development process that is as close
as possible to the process normally employed byésggners. The “V ” cycle mode, which
serves as the basis of the definition of the regpénts [1] and their assessment [2], has been
employed again in the present guide to ensure eaherwith the preceding documents and
on account of its simplicity.

[1.2. SUPPORT DOCUMENTS AND THEORETICAL DELIVERABLES

The verification technique defined in the preseotuent is based on analysing the
intermediate results of the development proceskentlesigner.

For practical reasons, this document defines tisecheerification to be conducted on each of
the intermediate results of the process, in therattthat they are normally delivered.

A deliverable can concern product-definition aspdetg. specification, architecture, source
code), verification aspects (e.g. review repodst plans, test reports, etc.) or support aspects
(state of configuration management, project moimpstate).

The assessill pay particular attention to verifying the pesge of useful information and
its relevance rather than its distribution in &éaretical ” documentary tree.

13

“ Theoretical ” deliverable

Contents

Validation planning

Objectives, strategy, techngjaed methods, organisation and
responsibilities, necessary facilities, identifioatof tests and
demonstration of coverage for the validation tests.

Validation procedures

Detailed description of eaalidation test in terms of operational
mode, input data, expected results, and stoppiteyier.

Integration planning

Objectives, strategy, techagand methods, organisation and
responsibilities, necessary facilities, identifioatof tests and
demonstration of coverage for the integration tests

Integration procedures

Detailed description of datégration test in terms of operationa
mode, input data, expected results, and stoppiteyier.

Unit test planning

Objectives, strategy, techniqaed methods, organisation and
responsibilities, necessary facilities, identifioatof tests and
demonstration of coverage for the unit tests.

Unit test procedures

Detailed description of eathtest in terms of operational mode
input data, expected results and stopping criteria.

Unit test report

Conditions of carrying out thetussts, elements tested, tests
carried out, results obtained, interpretation efgeand report.

Integration report

Conditions of carrying out théegration tests, elements tested, t
carried out, results obtained, interpretation efgeand report.

BSts

Validation report

Conditions of carrying out thdigation tests, elements tested, te
carried out, results obtained, interpretation efgeand report.

5tS

Table 2: Definition of the “theoretical” deliverables

14

[1.2.1. Using the "theoretical deliverables”

A certain number of elements are necessary in otoleundertake each test phase. These
elements are to be found in the table "Input eldmehthe phase" situated at the beginning of
the chapters dealing with each of the three tessgh

Use by the developer.

The table "Input elements of the Phase" allows tlesigner to ensure that all the
documentation expected by the assessor is indesidlaie

The table can be used in the reviews preceding ptiogluction of the corresponding
“theoretical deliverables ” to define, in conjumcti with the designer and the assessor, the
elements expected at the test phases.

Use by the assessor.

The assessor begins by checking the availabilityhef elements listed in the table before
beginning the test phase.

For each element of the table, the assessor laokbe documentation available for the
information corresponding to it. To do this:

» he notes the references of the designer’'s docunienthich the element is found and
the location it is found (for example paragrapipage number).

» he indicates if the element cannot be found (cotaejyl®r partially).
He then requests the missing elements from th@ulesi

It should be noted that the existence of documematoes not prejudge the fullness of the

paragraphs designated to cover an entry of theptesse or the existence of any possible
incoherence.

15

VALIDATION TEST PHASE

11.1. PHASE RESPONSIBILITIES

Those responsible for the validation test phaset ineiglesignated following the requirement
3.9 laid down in document [1]: “ ... The verificatiostrategy should be developed and
implemented, and the test results should be ewuatidependently (by an individual,
department, or organisation) in relation to theesiaf the development team®. This
requirement is not required for levels 1 and rezpliiior level 2.

Standard CEI 61508 [4] is more demanding and requmore independence. The table below
gives the correspondence for levels 1 and 2 (¢fof2the definition of level).

Degree of independence required for the | Level 1 Level 2

validation
Independent person HR HR
Independent department - HR

Independent organisation

Table 3: Degree of independence required for valideon in relation to level
HR: Highly Recommended

16

[11.2. INPUT ELEMENTS OF THE PHASE

The elements listed below are necessary to comfiletphase correctly. The development team
should supply them to the assessor.

Input elements of the phase

Product definition documentation

- Software specifications

- User documentation

All documents (manuals, procedures, etc.) defittiegutilisation of the product.
It is a useful addition but is not vital to undenstl the tests. It is a necessary element if thectibe of the tests covers the conformity with|this
documentation.

- Operation, parameter-setting documentation, etc.

All documents (manuals, procedures, etc.) defialhgossible activities on the product beyond nalratilisation.

It is a useful addition but is not vital to undenstl the tests. It is a necessary element if thectibe of the tests covers the conformity with|this
documentation.

Configuration and modification management documentation

« Versions presented in validation
Precise identification of the product tested vifghversion and the version of the system in whiishincluded

« Requests for modifications stemming from the tests.
» Impact analysis reports, decisions made and joatiins concerning these requests.

« Software configuration history
List of modifications carried out between sucoesgipresented versions.

Organisation and responsibilities

Persons involved in the validation, roles and msgbilities.

Table 4: Input elements of the validation test phas

.3. PHASE ACTIVITIES

[11.3.1. Validation test planning

The aspects common to the three test phases (VJTUT) concerning the definition of test
objectives, the testing strategy and the testingjtias are to be found in Chapter 1.7.1

[11.3.1.1.Definition of validation test objectives

A priori, in validation, the objective of coverirgach element of the specification, including
the safety mechanisms, should be set.

The objectives should cover as a minimum (cf. neguent 3.13 in document [1]):

- each specification element should be covered vglidation test, including safety
mechanisms,

- it should be possible to verify the real-time @&e@bur of the software in any
operational mode.

[11.3.1.2.Validation testing strategy

As an example of a validation testing strategyshow what a strategy can be (a specific
strategy should be developed for each specificesxttrdnd for a given context, there are n

17

possible strategies), the list below provides eXempf typical stages. These stages are linked
to test type as well as to the constraints conogrihe manner in which the tests are
undertaken (test equipment, environment, etc.):

= astage of detailed test of each function in nohmmade;
= astage of detailed test of each function insiadithits;
= astage of detailed test of each function outdhddimits;
= astage of performance tests ;

= a stage verifying the behaviour in the case otifait

» a stage dedicated to parameter-setting aspects ;

= stages with simulated inputs and stages with re@uts from the operational
environment ;

= efc.

The strategy must be integrated into the overaitipct verification strategy. For example, if,

in practice, the tests cannot fully cover the ofiyes set (for example because certain faults
or certain failure modes cannot be simulated oabge certain states cannot be reached in the
environment of the target system), the strategytrelnsw what additional verifications will

be carried out to ensure that the risk of non conity is set to a reasonable level, for
example: reinforcement of certain tests at the onitntegration testing phase, theoretical
checks, behaviour analysis on the basis of diag@amsodels.

[11.3.1.3.Testing methods and techniques: basic techniques

Whatever the level of requirement, black-box fumadl tests must be carried out in the
validation phase. Here, as a general rule, thevaldtbe no white-box tests for the following
reasons:

= The validation tests must verify the conformity lwithe specifications, which are
normally a definition of the software from an exigrpoint of view.

» The validation must be carried out on the integratgstem and, therefore, with little
visibility of the internal behaviour of the softvear

When the designer foresees employing white-box tgpthods, it is necessary to demonstrate
that there is a real advantage to observing thenat behaviour of the software during this
phase, and that these observations cannot be makde preceding phases. Otherwise, he can
tolerate the use of this technique, with the folloywrovisions:

= This method is not the sole method: black-box tesist exist and cover the functional
specifications (these tests can also possibly decfuvhite box ” aspects).

» The observation of the behaviour of the system fesnminternal point of view does not
perturb this behaviour when it is observed fromeaternal point of view. In particular,
that there are no inhibited devices in operatidmehaviour (tools suppressed on the
operational system, inhibition of execution tracss,).

The mainbasic techniqueghat can be used in validation are:

» the Boundary Value Analysi@mits of the domains of definition of the inpat output
data) ;

18

» the Equivalence Partitioninfgefinition of the classes of equivalence for theut or
output data values).

Remark: Other techniques

Basic techniques can be added to by other techsidd@wever, either these techniques are
not simple to implement (tests based on Cause-E@eaphing or tests based on Finite State
Machine) or else demonstration of the coverage iddacan only be established with
difficulty (Error Guessing, Probabilistic Testing)heir use remains difficult.

These techniques are:

» |less formal, such as Errors Guessirflpoking for errors on the basis of
experience) ;

= more formal, for high-requirement levels (testsdoben Cause-Effect Graphing or tests
based on Finite-State Machine ;

= or requiring specific tools for particular objeas (for example, primarily focused on
reliability measurement, such as Probabilistic ihept

[11.3.2. Definition of validation test procedures

Requirement 3.11 in document [1] is : "Directives firawing up test procedures should
include : a description of the input data to beduéalue, a description of the expected
output {alue) criteria on which test results will be judged emable {olerancg”. This
requirement is required for level 2 and recommerfdetevel 1.

A correctly applied testing process must imply tthat testing procedures have been drawn up
before the beginning of the validation phase, andearly as possible in the development
cycle.

This remark is particularly important in the corttek assessment. Indeed, it is in the interests
of the assessor to assess these procedures kafieethan after they are applied. This avoids
bringing the validation phase into question andigiésg additional tests during the final
assessment.

It is necessary that these procedures contaihaihformation necessary for:

» their identification and their ability to be tracedth respect to the objectives and/or the
strategy ;

= carrying out the test during the phase. (prepanadictivities, procedures used during
testing, anomaly recording and test terminatiotedd activities).

[11.3.3. Coverage and relevance of the validation tests
The objective is to ensure adequate test coverage.

A traceability table (cf. chapter 1.7.3) is to sablished in order to demonstrate that:
» the matrix-referenced tests are indeed documentedpbocedure ;

= no tests exist that are not matrix referenced.

19

If a traceability matrix does not exist, the conteheach testing procedure must be analysed
afterwards to establish the matrix. This action ningsrefined by in-depth examination of the

procedures to ensure that:
= the tests are valid, relevant and can be reproduced
= the tests covering a given objective are indeedlosive for the objective ;

= the testing methods specified when planning thts ta® indeed being employed.

[11.3.4. Relationship with the configuration and modification management

The Configuration and Software Modifications Managatis of prime importance in this

phase. Indeed, it must be verified that the test® lindeed been carried out:

» in conformity with that foreseen (in other wordglwiespect to a referenced version of

the test planning and test definition documents) ;

= on the version of the softwatleat the test process covers.

.4. PHASE PRODUCTS

The result of validation is made up of the follogielements as established by the assessor:

» Test planning documentation
= Validation reports

The table below presents the main information whialhst figure in each product of
phase.

the

Phase products

Validation test planning documentation

« Organisation, responsibilities
Persons involved in the validation. Organisati®esponsibilities.
- Generic objectives of the tests

For example:

- Coverage of all the functions; of all the opémgtmodes; of safety requirements in the casefatily; of the performance
requirements;

- Conformity with the user and operation documgotg

- Verification of endurance, etc.

« Testing strategies

Approach retained, with scheduling in stages aimtespecific objectives or with recourse to speafivironments or techniques, rample
Test of certain groups of functions; Test of anrafieg mode; Test of logical sequences; Paramegttirg) tests; Endurance tests; Simulat
tests in certain environments, etc.

- Testing methods and techniques

Methods and techniques employed: manual or auiorteathniques, analytical or statistical tests, Bglence Partitioning, boundary tests,
etc.

on

20

Phase products

Testing tools and environments

Identification of the testing tools employed (datnrs, measurements tools, comparators, etc.).
If the software environment is not the same atitfferent stages, description of each of theséremments.

Validation reports

There must be as many reports as successive vesipplied.
Objective of the tests

Must be defined with respect to a defined refezdnequirement identifier, paragraph of a documett,) and form part afne of the gener|
objectives of the test planning.

Testing environment and tools employed

Possibly with reference to previously defined emments.

To be supplied by reference to the test definiiocumentation. To be completed by information eoring the calibration of measuremer
apparatus (calibration data), where appropriate ddoy divergence from the test planning.

Input data and/or signals

To be supplied with their sequencing and theiugalf the tests are automated, this information take the form of digital recordings as
long as the rule and means to interpret it are &alde.

Output data and/or signals.

As above

Operating method

Following the activity required to carry out thest.
Success criteria

Obtaining the expected data and/or signals is ioithyi one of the criteria. This criterion must benspleted whenever necessary by other
criteria : response time, tolerance of output valugbsence or occurrence of a certain event befarertain lapse of time.

Tests carried out

Can be supplied by reference to the test proced(re be completed by divergence from the teshpignwhere appropriate (tests not
carried out).

Chronology of the tests
Effective dates of the different tests, test salivegl
Striking facts

Striking facts (divergence from the foreseen saliregl, abandon of certain tests, etc.). Can besthigiect of a separate document termed
“test log ".

Detail of the results obtained

For each test, output signals and/or data obselwatles and sequencing).
These results can take the form of digital reaagdias long as the rules and facilities for intetjmg them are available.

Links with the modification management

For each test having failed, a link towards theresponding modification request.
Report of non conformities

Synthetic list of non conformities detected, Witsir impact on safety.
Proof of test coverage

A list of elementary tests and a cross-referetimtdieen the requirements to be tested and theidestfied.

Table 5: Products at the output of the validation ést phase

21

IV. INTEGRATION TEST PHASE

IV.1. PHASE RESPONSIBILITIES

Those responsible for the integration test phasetrbe designated following the same
requirement with regard to independence as appligthg the validation tests (cf. chapter
IV.1).

IV.2. INPUT ELEMENTS OF THE PHASE

The elements listed below are necessary to thertakiley of the phase. The development team
must supply the assessor with them.

Input elements of the phase

Product definition documentation

« Software specifications
« Software design (software architecture alone)

Userdocumentation

All documents (manuals, procedures, etc.) defittiegutilisation of the product.

This is a useful but not indispensable additionrderstand the tests. It is a necessary eleméme ibbjectives of the tests is to cover the
conformity of this documentation.

- Operation and parameter-setting documentation, etc.

All documents (manuals, procedures, etc.) defipipssible activity on the product beyond normal use

This is a useful but not indispensable additionrderstand the tests. It is a necessary elemém iDbjectives of the tests is to cover the
conformity to this documentation.

Configuration and modification management documentation

» Versions presented in integration
Precise identification of the product tested viighversion and the version of the system in whiishincluded.

* Requests for design modifications stemming fromtéises.
« Impact analysis reports, decisions made and joatifins concerning these requests.

» Software configuration history
List of modifications carried out between sucoesgipresented versions.

Organisation and responsibilities
Persons involved in the validation, roles and mspbilities.

Table 6: Input elements of integration test phase

IV.3. PHASE ACTIVITIES

IV.3.1.Integration test planning

The aspects common to the three test phases (VTJT) concerning the definition of test
objectives, the testing strategy, and the testagdifies are to be found in chapter 1.7.1

V.3.1.1.Definition of integration test objectives

Defining these objectives allows for the preparawd the future validation of the product by
ensuring that all features have been white-boxiedrduring the integration.

22

A priori, the objective of the integration tests is to caaa@ch element of the design, including
the safety mechanisms that can be verified atsthige of the tests.

IV.3.1.2.Integration testing strategy

As an example of integration testing strategy,hows what a strategy can be, the list below
provides the typical stages:

» adetailed test stage for each hardware periphacheach functional blocks ;
= astage (or several) testing the interaction batviiee different functions ;
= a stage verifying the behaviour in the case oflar&,;

= an endurance testing stage. This allows verificatid aspects linked to memory
fragmentation (dynamical memory allocation is stignadvised against), changing
day/month/year/century, fault accumulation ;

» a stage dedicated to parameter setting ;
= stages with simulated inputs and stages with rgaltiin an operational environment ;
= etc.

As for the validation tests, the strategy must megrated into the overall product-verification
strategy. The following chapter deals with the stsitegy.

IV.3.1.3.Testing methods and techniques : basic techniques

As a general rule, the integration tests are piilgnarhite-box tests. Indeed, the integration
tests must verify the conformity of the design, @amnd normally a definition of the software
from an internal point of view. To integrate largige software, several integration stages
should be planned. At each stage of the integrakover-level components are considered as
black box, with only the exchanges between compisnaging examined in white box.

The possibilities of instrumenting the architecttesing the development environment,
installing software “ stubs ” replacing part of theftware) must be taken into account at the
design stage when defining the architecture. Otiservthere is a real risk of being confronted
with an architecture where all the components apessible at the same time or where it is
difficult to observe each part of the software. sTtype of integration must be reserved to
smaller-size software (for example less than 10|D@3) with a low level of interaction with
external peripherals.

Remark:

The concept of black-box / white-box tests is remu& the further the integration stages
progress. For example, with the architecture afregR:

23

Actuatol

K A

Componer Componer
A B

N\ /

Componer
C ftware

Figure2: Recursive tests

The first integration stage is carried out in whitex at each architecture component level (A,
B or C) or with a grouping described in the inteéigma strategy. The internal data of the
components are observed to ensure the behavidhe gbftware.

The integration tests, after this first integratistage, can be carried out considering each
component as a black box. The variables observed,ekample, for the Equivalence
Partitioning are the files, messages, and dataaggedd between the components. This can
correspond to representations of data externahéosbftware but also to data appearing
during the design of the software.

The validation tests are carried out in black banly the sensor data and the actuator
instructions are taken into account, for examplenduthe domain tests.

The mainbasic techniqgueghat can be employed in integration are:

= Boundary Value Analysidimits of the domain of definition of input or taut data) ;

= Equivalence Partitioningdefinition of classes of equivalence for input autput
values).

Remark: Other techniques

The “Errors Guessing”, “Cause-Effect Graphing" t@daes or tests based on "Finite-State
Machine”and “Probabilistic Testing” can be usedhwitiie same restrictions as applied during
validation testing.

IV.3.2.Definition of the integration test procedures

Requirement 3.11 in document [1] is : " Directiies drawing up test procedures should
include : a description of the input data to beduéalue, a description of the expected

24

output {alue) criteria on which test results will be judged em@able (olerancg”. This
requirement is required for level 2 and recommerfdetevel 1.

In principle, the method is similar to that presehfor validation (Refer to chapter 111.3.2:
"Definition of validation test procedures").

IV.3.3.Coverage and relevance of the integration tests

In principle, the method is similar to that presehfor validation (Refer to chapter 111.3.3:
"Coverage and relevance of the validation tests").

IV.3.4.Relationship with the configuration and modification management

As for validation, the control of configuration anfl modifications is of vital importance in
this part of the integration test phase verificatio

In principle, the method is identical to that prasel for validation in chapter 11.3.4.

The additional difficulty is to link up the intediran test tools and simulators employed with
the configuration management. Frequently, theraaslonger a written trace of the tests
actually carried out. The assessor must therefoaenme the version of the software used to
conduct the tests and compare with the modificafis (date) to ensure that the non-
regression problems have indeed been taken intuatc

IV.4. PHASE PRODUCTS

The result of the integration phase is made upeffollowing elements established by those
responsible for validation:

» Test planning documentation
= |ntegration reports

The following tables present the principal inforroat that must appear in each of the
products of the phase.

Phase products

I ntegration test planning documentation

- Organisation, responsibilities
Persons involved in the integration. OrganisatiBesponsibilities.

« Generic objectives of the tests

« Testing strategy
Approach retained, with scheduling in stages tirngespecific objectives or having recourse to #iizenvironments or techniques.
« Testing methods and techniques

Methods and techniques employed, for example: alamautomatic techniques, analytic or statistitethniques ; Equivalence
Partitioning ; Boundary Value Analysis, etc.

« Testing environments and tools

Identification of the testing tools employed (datars, measurement tools, comparator, etc.).
If the software environment is not the same irdifferent stages, description of each of theséremments.

« Proof of test coverage

For example, a list of elementary tests and asreference between the requirements to be testkthe tests identified.

25

Phase products

I ntegration reports

There must be as many reports as successive vesipplied.
Objective of the test

Must be defined with respect to a determined esfeg (requirement identifier, paragraph of a docnmetc.) and form part of one of the
generic objectives of the test planning.

Testing environment and tools employed
Possibly with reference to previously defined emments.
Input data and/or signals

To be supplied with their sequencing and theiugalf the tests are automated, this information tzke the form of digit recordings as lon
as the rules and means to interpret it are avagabl

Output data and/or signals

As above.

Operating mode

Activities required to carry out the test.
Success criteria

Obtaining the expected data and/or signals is iaith} one of the criteria. This criterion must bempleted whenever necessary by other
criteria : response time, tolerance of output valugbsence or occurrence of a certain event befarertain lapse of time.

Tests carried out

Can be supplied by reference to the test defimitiocumentation. To be completed by divergence tiertest planning, where appropriate,
(tests not carried out).

Chronology of the tests
Effective dates of the different tests, test salivegl
Striking facts

Striking facts (divergence from the foreseen saliregl abandon of certain tests, etc.). Can besthigiect of a separate document termed
“test log ".

Detail of the results obtained

For each test, output signals and/or data obselwatlies and sequencing).
These results can take the form of digital reaagdias long as the rules and facilities for intetjimg them are available.

Links with the modification management

For each test having failed, a link towards theresponding modification request.
Report of non conformities

Synthetic list of non conformities detected, Witkir impact on safety.
Proof of test coverage

For example, a list of elementary tests and asreferenced between the requirements to be tasigthe tests identified.

Table 7: Products at the end of the integration tds

26

V. UNIT TEST PHASE

At the outset, it should be noted that the conoépite unit associated to the unit tests has not
yet been defined as regards the programming lamguagployed. This can therefore be
interpreted as an item of code of varying size:

= a procedure or a function,

= a procedure or a function visible from the extedba compilation unit (for example, an
“ operator ”, “ a method ” for oriented object),

= a unit of compilation,

» a software component (tree structure of n compitatinit levels with B1.

V.1. PHASE RESPONSIBILITIES

The person responsible for the unit test must mgdated as early as the outset of the
detailed conception phase.

As much independence from the developer as posstioleld be established. However, in the
case of small-scale projects (software team mad# ope or two people, for instance) this is
rarely possible.

In such cases, those responsible for software dprednt and those responsible for software
validation will make every possible effort to ensuhat an external body (for example, the
assessor) can satisfactorily establish that thegohas been completed in line with software
safety requirements.

V.2. INPUT ELEMENT OF THE PHASE

The elements listed below are necessary to thertakiley of the phase. The development team
must supply the assessor with them.

Input elements of the phase

Product definition documentation

Software specifications
Software design (preliminary and detailed)

Userdocumentation

All documents (manuals, procedures, etc.) defittiegutilisation of the product.

This is a useful but not indispensable additionrderstand the tests. It is a necessary eleméme ibbjectives of the tests is to cover the
conformity of this documentation.

Operation and parameter-setting documentation, etc.

All documents (manuals, procedures, etc.) defipiogsible activity on the product beyond normal use

This is a useful but not indispensable additionrderstand the tests. It is a necessary elemém iDbjectives of the tests is to cover the
conformity to this documentation.

27

Configuration and modification management documentation

« Versions presented
Precise identification of the product tested viighversion and the version of the system in whiishincluded.

« Requests for design modifications stemming fromtéises.
» Impact analysis reports, decisions made and joatiins concerning these requests.

« Software configuration history
List of modifications carried out between sucoesgipresented versions.

- Organisation and responsibilities

Persons involved in the validation, roles and msgbilities.

Table 8: Input elements of the unit test phase
V.3. PHASE ACTIVITIES

V.3.1. Unit test planning

The aspects common to each of the three phasesITYTT) concerning the definition of test
objective, the testing strategy, and the testingifi@s are to be found in chapter 1.7.1

V.3.1.1.Definition of unit test objectives

A priori, the objective of the unit tests is to cover eatdment of the detailed design,
including the safety mechanisms that can be ver#iethis stage of the tests.

Each software module must be subject to testsvidfly, by means of data supplied at the
input, that the module fulfils the functions readrin the detailed design.

V.3.1.2.Unit testing strategy

Important: The unit tests must be distinguishednfrthe simple development debugging
carried out by the designer. The difference betweentests and the development debugging
lies in the following points:

* unit tests are planned,
» a strategy exists (coverage of the control or dlava of the unit),
» the result expected is described before the testsaaried out,

= a trace of execution and of the results obtainesdtrne recorded in a report comprising,
as a minimum, the software version, the inputsiegphnd the results both expected
and obtained.

Remark:

It should be borne in mind that it is preferableinsist on the choice of programming
environment rather than on the effort put intouhé test. These choices concern:

= the programming rules, which also allow the comiperf the items of code to be
limited. It is an illusion to carry out unit test® models that are too complex, poorly
structured or that manipulate digital data withpmecautions.

28

= the programming language: all the integrity cheoksred by the language limit the
explosion of the number of tests.

It is already too late at the start of the unit teanpaign to go back on possible poor choices.

The effort put into the unit tests must be adaptetthe criticity level of the software. Several
methods are employed to limit the effort requiredthese tests:

= limitation of the complexity of the data flow (ndobal variables, few variables
common to a component) and of the control flow (bamof decisions taken by the
software (if, as long as, etc.),

= focusing on the units where the integration tegtsdaot provide correct coverage of the
structure.

The following chapter concerns test strategy.

V.3.1.3.Testing methods and techniques: basic techniques

The unit test techniques are often complementaryedundant. For example, to test the
control flow of the following item of code:

Until condition_1 and condition_2 and (loop counter < n)
<instructions to be carried out>
increment the loop counter

end of Until

In this example, we have:
= branch testing
Two test cases to cover the branches: the looptésex into or not.
= decision testing

Eight test cases fRto cover the combination of three under decigionditions. These
tests are particularly important when the decisiares used to change the state of the
software.

= path testing

n+1 test cases are necessary to cover the diffpeghs if the loop counter is a positive
integer.

Conclusion:

= Branch coverage represents a minimum objectivea(isiinimum objective) to be
reached for the software important for safety.

= The path testing (and the decision testing) soaoes impractical for the unit test.
However, this type of test provides the best regtzgion of software behaviour and of
the real complexity of the code. As a result, & tiumber of unit tests of code paths is
considerable, it is no doubt preferable to attesnpplification of the code.

» The presence of loops in sections of the code itapbrfor safety is unacceptable
without justification.

29

Remark: An unattainable code can be tolerated @3 &3 it consists of processing for fault
tolerance allowing verification that the integrdgnstraints are still satisfied. Such processing
is only used for protecting against possible regjogson unintentional modification of the
source.

V.3.2. Definition of the unit test procedures
Requirement 3.11 in document [1] is required feele2 and recommended for level 1.

In principle, the method is similar to that presehfor validation (Refer to chapter 111.3.2:
"Definition of validation test procedures").

V.3.3. Coverage and relevance of the validation tests

In principle, the method is similar to that presehfor validation (Refer to chapter 111.3.3:
"Coverage and relevance of the validation tests").

V.3.4. Relationship with the configuration and modification management

As in the other test phases, the control of coméiton and of modifications is of vital
importance in this part of the unit test phasefigation.

In principle, the method is identical to that preeel for validation in chapter 111.3.4. It must
be verified that the tests have indeed been caouéd

» in conformity with that foreseen (in other wordglwiespect to a referenced version of
the test planning and test definition documents) ;

= on the software version that the test process sover

V.4. PHASE PRODUCTS

The result of the unit tests is made up of theofeihg elements established by the assessor:
» Test planning documentation
= Unit test reports

The table below presents the principal informatiwat must appear in each of the products of
the phase.

Phase products

Unit tests planning documentation

« Organisation, responsibilities
Persons involved in the integration. Organisati®esponsibilities.
- Generic objectives of the tests

« Testing strategy
Approach retained, with scheduling in stages ttirgespecific objectives or having recourse to #ijzenvironments or techniques.
» Testing methods and techniques

Methods and techniques employed, for example uatar automatic techniques, analytic or statistitechniques ; Equivalence
Partitioning ; Boundary Value Analysis, etc.

30

Phase products

Testing environments and tools

Identification of the testing tools employed (datars, measurement tools, comparator, etc.).
If the software environment is not the same irdifferent stages, description of each of theséremments.

Proof of test coverage

For example, a list of elementary tests and asregerence between the requirements to be testthe tests identified.

Unit Test reports

There must be as many reports as successive vesipplied.
Objective of the test

Must be defined with respect to a determined esfes (requirement identifier, paragraph of a doconmetc.) and form part of one of the
generic objectives of the test planning.

Testing environment and tools employed
Possibly with reference to previously defined emrents.
Input data and/or signals

To be supplied with their sequencing and theiugalf the tests are automated, this information tzke the form of digit recordings as lon
as the rules and means to interpret it are avagabl

Output data and/or signals

As above.

Operating mode

Activities required to carry out the test.
Success criteria

Obtaining the expected data and/or signals is iaith} one of the criteria. This criterion must bempleted whenever necessary by other
criteria : response time, tolerance of output valugbsence or occurrence of a certain event befarertain lapse of time.

Tests carried out

Can be supplied by reference to the test defimitiocumentation. To be completed by divergence tiertest planning, where appropriate,
(tests not carried out).

Chronology of the tests
Effective dates of the different tests, test salivegl
Striking facts

Striking facts (divergence from the foreseen saliregl abandon of certain tests, etc.). Can besthigiect of a separate document termed
“test log ".

Detail of the results obtained

For each test, output signals and/or data obselwatlies and sequencing).
These results can take the form of digital reaangdias long as the rules and facilities for intetjmg them are available.

Links with the modification management

For each test having failed, a link towards theresponding modification request.
Report of non conformities

Synthetic list of non conformities detected, Witkir impact on safety.
Proof of test coverage

For example, a list of elementary tests and asreferenced between the requirements to be tasigthe tests identified.

Table 9: Products at the end of the Unit Tests phas

VI.

31

CONCLUSION

This document has been drawn up for the manufatduest team from a pedagogical point
of view. It is intended to assist the assessopmstructing his own technique, and in adapting
it to the specific context both upstream of andrduthe development process.

A set of basic techniques and reference pointsvengthat help the assessor both to collect
and analyse the information provided by the diifiérphases of the development process:
validation, integration and unit test phases

The presented test process follows the same plasciysed in all other creation, construction
or design processes if quality is to be ensureat,dte:

= initial definition

= execution according to the previously defined pdoces

= verification according to fixed modalities.

The use of such a process allow to construct efficsoftware tests that will detect possible
divergences between the expected behaviour andetha@viour encountered during the tests
and will give the necessary confidence before dmeral use. However, these software tests
are essential to detect errors and to improve denfie in the ability of the system to
accomplish its task, but are insufficient to “ pedvthe behaviour of a system.

V

[1]

[2]

[3]

[4]

32

REFERENCE DOCUMENTS

SOFTWARE QUALITY AND SAFETY REQUIREMENTS
STSARCES Project - WP 1.2 / Aspect 1 — Final ReptiRS — Feb 2000

GUIDE TO EVALUATING SOFTWARE QUALITY AND SAFETY
REQUIREMENTS
STSARCES Project - WP 1.2 / Aspect 2 — Final ReptiRS — Feb 2000

SAFETY OF MACHINERY - Safety-related parts of control systems; Part 1:
General principles for design
EN 954-1 - December 1996

CEIl 61508: SURETE FONCTIONNELLE : systemes reldifs a la sGreté - Version
1998

Partie 1 : Prescriptions générales

Partie 2 : Exigences pour les systemes électriékestroniques / électroniques
programmables

Partie 3 : Prescriptions concernant les logiciels

Partie 4 : Définitions et abréviations

Partie 5 : Exemples de méthodes pour la détermimates niveaux d'intégrité de
sécurité

Partie 6 : Guide pour I'application des parties 2 e

Partie 7 : Bibliographie des techniques et des nessu

33

APPENDIX : REFERENCES FOR TESTING STRATEGIES

The following works can be useful if one wishe®biain more precise information on the constructba
software testing method. The list presented belomiains some relevant work. The references arepres
by order of interest, from the point of view of sedire testing, and a brief summary is presenteédach one.

Joe ABBOT Unit and integration testing manual, NCCPublications, 1988.

This work describes a module and integrationngstiethod, which is presented in the form of
procedures and steps to follow. For each actidrettaken, a clear and precise description is
given. Following this, a basis of some experieramuaed in the area of software testing is
presented.

Joe ABBOT Software testing techniques,
NCC Publications, 1988.

This work deals with how to ensure that a systenctions as specified.

It introduces the concept of software testing withpect to the quality assurance portion
lifecycle and the review of the documentation.

The author then describes the methods and teasiurrently used to this end.

Stephen J. Software Validation Verification, Testig and Documentation
ANDRIOLE Petrocelli books, 1986.

This work presents a variety of structural testimgthods. It defines and develops a complex
measurement programme, and then describes theacetel procedures for implementing the
structural testing process, as well as the mamehich these techniques can be used during
the maintenance phase.

The author also presents a reference guide tethmiques and tools that can be used for
validation, verification and testing. This guidentains approximately thirty case descriptions,
outlining for each one which input and output dat& necessary, an example and an estimation
of the learning time and necessary resources.

Martin L. Software engineering, design, reliability and management,
SHOWMAN McGraw-Hill, 1983

A single chapter deals with software testingskemmbles the techniques and observations
dealing with tests by presenting the use of stegistiata in the testing process, the types of
tests, and a comparison of these tests througspéagliof the results in different arrays, sorted
according to qualitative criteria and efficiency.

It also presents different debugging proceduresiadels of control graphs, and a
classification of tests in five different groups.fact, the goal of the author is to reduce testing
to a collection of software techniques and to dketlae art of the evaluator to the level of a
scientific discipline.

G.J. MYERS The art of software testing
John Wiley and Sons, 1979.

This publication brings together all methods ahhiques used in the area of software
testing.

It offers an open and very wide view of softwaesting, which allows it to be used as a
practical reference by anyone obliged to deal itk issue.

Additionally, the author tries to instil those olved in testing with the correct attitude.

Martin A. OULD Testing in software development.

Charles UNWIN

Norman
PARRINGTON
Marc ROPER

W.J. QUIRK

David J. SMITH

Kenneth B. WOOD.

Roger S.
PRESSMAN

34
Cambridge University Press, 1986.

This work is entirely consecrated to softwaregglstit seen from a different angle. The test is
first of all presented from the test managementtpafi view - i.e. the test is placed in relation
to the overall structure of the software projeahe then the organisation of tests and
personnel, the planning and the configuration mamamt are described.

Following this, the author treats testing fronfeiént points of view :

- the user : through requirements and specificatients, and the acceptation of the
test plan.

- the designer : through design, integration arstiesy tests.

- the programmer : the testing activity focusesymuule specifications, planning of
module tests and module tests themselves.

Understanding software testing.
Ellis Horwood Itd., 1989.

This is a work that tries to be practical, andsioet become lost in the description of methods
or techniques that are difficult to implement.

The authors bring the testing activity into playwearly in the software lifecycle. The
originality of this work resides in the fact thateey description of a technique or method is
applied to a case study throughout the work. Beststbased on requirements and design tests
are presented. The work finishes with tests orsylséem integration and validation in its final
environment.

Verification and validation of real time software.
Springer-Verlag, 1985.

In the first part of this book, a description oftsvare testing is given from a systematic point
of view. It mentions the methods that use inteamal external information (with respect to the
software), and then compares and evaluates trereliff methods and techniques presented.

Following this, statistical tests that complete flystematic verification of real time software
are presented. Several equations that can be asstinate the risk of errors are also given.

Engineering Quality Software.
Elsevier Applied Science, 1989.

This work gives an overview of different testirigasegies, and then presents statistical
analysers with a precise description of the MALPABADE and TESTBED tools. Dynamic
tests are then described by enumerating diffeexstl$ of tests and tools. The work finishes its
approach to testing by presenting test managensagaiag hand in hand with the activity of
writing the test itself.

Software engineering : a practitioner's ggroach,
McGraw Hill, 1982.

Software testing is presented in one of the chaptg a description of the testing phase,
including the test objectives, the test in a fldvinformation, black and white box testing.
After which the author develops the module tes,dteps in which testing intervenes, the
integration test, and finishes by giving a liscomputer tools.

