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SUMMARY

This document deals with the question of common eniadlures, inherent to the concept of
redundancy. Problems posed by these failures aatett at a global system level, without
focusing on aspects linked solely to software dikgr

Definitions are provided to adopt a common and urigoous language. Some bibliographic
data on the nature of phenomena at the root of cammuode failures are then presented.

Actions to be taken to fight against these phen@reme also proposed, that concern fault
tolerance, fault avoidance and fault forecastingn&al measures are given for each of these
headings, then measures specific to common moldedsi Although closely linked, software
and hardware are treated separately.

A check-list is given, that organises the pointbéochecked at the different phases of the life
cycle of a product, and hence to ensure the armeges made regarding the tolerance,
avoidance, and forecasting of common mode failures.



CONTEXT

Per spective of the problem

The benefits of processing power and flexibility usfe provided by microprocessors mean
that today an ever increasing number of these caemis are to be found in the control
systems of machinery. However, problems do arigmrdeng the question of processing
safety functions in addition to “normal” operatifighctions with these control systems. It is
necessary, as a result, to consider the Europeardastd EN 954-1 [EN954], the only

reference available at the moment for the safetyna€hinery. This standard, although it is
incomplete as it takes into account only those espeked to hardware faults (software is
not dealt with), subdivides safety-related parts cohtrol systems into five categories

according to their behaviour in the presence oftdalror category 4, corresponding to the
highest levels of risk, the designer must resgexfdllowing requirements:

The safety-related parts of control systems shall, as a minimum, be designed, constructed,
selected, assembled and combined in accordance with the relevant standards so that they can
withstand the expected influences.

The use of well-tried safety principles must be applied.
The safety-related parts of control systems shall be designed in such a way that:

* a single fault in any of these safety-related parts does not lead to the loss of the safety
function, and

» the single fault is detected at or before the next demand upon the safety function. If thisis
not possible, an accumulation of faults shall not lead to the loss of the safety function.

By laying down such a requirement, the standardiamly orientates the designer towards
redundant structures.

Remark Although redundancy is the natural route chosenrdspect the
requirements of category 4, single channel solsticen also be envisaged. The
coded monoprocessor developed for transport-rekgiptications is one example.
However, its specific nature and the difficultigtaehed to employing it make it
poorly adapted to the safety of machinery. It Wikrefore not be gone into in this
document.

The question of common mode faults, inherent tocthrecept of redundancy, then arises. The
example of compilation is very revealing. Two ideat source software products can produce
erroneous executable codes if these codes areagetidry the same erroneous compiler. The
common source of faults is therefore the compilkictv systematically introduces errors into
the programmes. These errors, if no precautioakisr, produce common mode failures that,
in certain cases, can diminish the safety of th@iegtion.

Standardisation bodies have therefore taken cadraw the attention of designers and of
those responsible for the evaluation to the problénked to these types of failures. Hence, a
note associated with category 4 lays down that :

If further faults occur as a result of the first single fault, the fault and all consequent faults
shall be considered as a single fault. Common mode failures shall be taken into account, for
example by using diversity or special procedures to identify such faults.
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Common mode failures (the result of a single ihfgalt) are equivalent to single faults, and
must therefore not affect the safety of the appbeca This is a very strong obligation as,
strictly speaking, only recourse to a diversifieehd validatedstructure satisfies the
requirements of category 4 for such failures.

In the preceding example, the designer would bettedise two distinct and validated
compilers if it turns out that errors can be introed on compilation.

Taking common mode phenomena into account

The standard proposes two ways of taking theseré&aslinto account: diversity or the use of
procedures to identify common mode failures. Thietds not open to question and must be
followed as soon as a redundant structure has leesployed, otherwise the benefits
stemming from it may be lost. In contrast, recouosdiversity must be studied carefully so as
not to lead designers to these complex means artain cases, they can consist of two
distinct developments and products. In additiom, gfficiency with respect to common mode
faults can sometimes be questionable if no pregasithave been taken.

Going back to the example of software, it can Inepteng to design two different software to
carry out the same function. The limitations osttechnique, a priori attractive, nevertheless
quickly become apparent. It is indeed very diffidol give a final guarantee of the absence of
common points between two such programmes : the saecification is often used which, if
erroneous, will lead to two programmes with similaifures for the same input data; both
programmes may have been designed and coded bypdawmeor two teams with a similar
culture, generating software errors with identm@hsequences, etc.

This example quickly demonstrates that the diveitaid down in EN 954 cannot be imposed
without precautions to deal with common mode phegrtan

Work schedule

The work initially foreseen for aspect 3 of WP df2STSARCES should have encompassed
software diversification only. However, the biblraghy consulted on this subject has
demonstrated that this technique quickly finds litsitations, the advantages provided -

simplification of tests, lower version reliabilitybeing minimised by the restrictions on the

true independence of the different versions offanswe product. This observation, added to
the difficulty of finding a redundant system in tfield of machine safety, motivated a

widening of the study initially planned. Problemsspd by common mode phenomena are
therefore treated at a global hardware / softwgstem level, without focusing on aspects

linked solely to software diversity.

Various definitions are provided in the interestasfopting a common and unambiguous
language. Some bibliographic data on the natuyghehomena at the root of common mode
failures, together with a classification allowirtgetoriginal causes of common mode failures
to be listed, are then presented.

The following chapters concern the action to bestako fight against these phenomena,
following the methodology proposed by J.C. LAPRIRAP95] to construct the dependability
of a system, namely :

» fault tolerancea set of methods and techniques intended to gecwiservice that ensures
the functions of the system despite faults affectits components, its design or its
interactions with man or other systems ;
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» fault avoidancea set of methods and techniques intended bathdace the presence and
to avoid the introduction of faults (in number asebverity) . Fault elimination and fault
prevention are parts of fault avoidance.

» fault forecasting set of methods and techniques intended to ediret presence, the
creation, and the consequences of faults.

General measures are proposed for each of thesdingsathen measures specific to
phenomena caused by common modes. Although cltis&lyd, software and hardware are
treated separately.

A check-list is provided to organise the pointbéochecked at the different phases of the life
cycle of a product, and hence to ensure the armeges made regarding the tolerance,
avoidance, and forecasting of common mode failures.

Important remark : This document is, to a great extent, the prodddheoretical analysis
based on bibliographical investigations. In orderconfirm its relevance and usefulness,
certain methods have been applied to the SAFELQffotype developed by the Swedish
institute IVF.




COMMON MODE FAILURES

1.1. DEFINITIONS

Defining common mode failures avoids any confustsnmisunderstanding relative to the
problems posed and their possible solutions. Indeshy use the terms common mode
faults, common mode failures, and common causerésl indifferently when referring to
common phenomena affecting several distinct estifidnis paragraph is intended to clarify
the concept of Common Mode Faillitey explaining the sequence of phenomena involred i
the lead up to these failures.

Fault/ Error / Failure

A reminder should first be given of what a failise [LAP95] and [MDCI] are in agreement

in defining the failure as being the transitionnfr@orrect service to incorrect service. The
failure occurs when the service provided no lorgeforms to the specification. The deemed
or supposed cause of a failure is a fault [MDCl]definition that constitutes a shortcut
compared to that given by [LAP95] who introduces ithitermediate concept of error.

This terminology is in everyday usage within théestific community. It is more accurate
than that found in the EN 954 standard which daggistinguish between failures and faults.
A fault is thus defined as the state of an entitgble to accomplish a required task but not
including incapacity due to preventive maintenamcether pre-programmed actions.

Failure mode/ Failure mechanism

With failure defined, the mode of failure can thes defined, something that should not be
confused with failure mechanism, which is the pbgsprocess (e.g. corrosion) that has led to
the failure [PECH]. To all intents and purposes£ (], [MDCI], and [LAP95] define the
failure mode as being the observable manifestaifdhe failure (e.g. short circuit, transistor
output stuck, cut in a circuit ).

This definition is of course relative to the lewélobservation of phenomena ; the failure of a
transistor can be considered as global system fault

Common Mode Failure

With this clarification made, the definition of Comon Mode Failures given by [TAYL]
clearly synthesises the different wordings foundthe bibliography [VILL], [LAP95].
Common mode failures are failures affecting mudtigintities, simultaneous and multiple,
dependent on a single initial cauddis definition has the advantage of applyingiaypes
of architecture, without involving the nature oétredundancy.

Simultaneity is an important point that should lmted when talking about common mode
failures. [EDWA] states that failures can take plat identical or distinct times but, that at a
given moment, the failure states coincide. The tlerg the time interval is crucial as it

indeed allows discrimination between correlatedufas and multiple independent failures
[VILL].

1 Common Mode Failure: CMF
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Remark: - When referring to this problem, [HSE] and [\Lemploy the vocabulary of
common cause failure. Although apparently moreieipthis definition will not be retained
as it is seldom employed.

- [STRIGINI] introduces the idea of coincidentléae caused by faults relative to
the input domains. This notion has been taken up[LU] with regard to software.
Coincident failures affect two (or more) functiolyakquivalent software components subject
to the same input.

Common mode failure appearance mechanism

The definition given by J.C. LAPRIE [LAP95] clearBhows the sequence of phenomena
leading to common mode failure. At the outset isoanmon cause capable of generating
correlated faults. These faults should be distisiged from independent faults, which are
attributed to different causes. Correlated fautes @ the root of similar errors that, when
activated or revealegrovoke a common mode failure. The following dayg (figure 1) is
therefore obtained :

Common cause (single)

™~

| Correlated faults Independent faults

\/

Similar errors

~

Common Mode Failure

Figure 1: Common mode failure appearance mechanism

The standard “ production” way of common modeuf@s is that which starts from a
common cause. In certain cases, it may be thatpement faults lead to similar errors.
[LAP95]. On account of their low probability of aggrance, these faults will not be gone into
in the remainder of this document.

1.2. IDENTIFYING COMMON MODE FAILURES

In very general terms, [TAYL] points out that theuses of common mode failures can be a
common property, a common process, a common emagohor a common external event.
These common influences [EWIC] can affect the syshefore it is put into operational
service : design, manufacture, installation. Irs tbése, the manifestations are not immediate
and the system is “ prone ” to failure. They casoahffect the system during operation, for
example in the case of erroneous design or envieatahdisturbances .

In practice, common mode failures only appearef¢his :

AN INITIATING SOURCE
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This is the common cause capable of causing ctecefaults, which is to sagne or several
internal or external events causing multiple fakiof elementary systems. The former point
has been confirmed by [BUCH] who points out anvation factor to trigger common mode
failures, as well as the accumulation of systemfatidts within the system. This latter point
can be excluded from analyses if sufficiently frequchecks have been executed to detect
any accumulation. Looking again at the terminolpgyposed by J.C. LAPRIE, several types
of initiators can be distinguished :

Degradation of electronic components

The faults are internal accidental physical fawitisether permanent or temporary.
It is, however, difficult to make the distinctioetiveen a fault appearing over the
course of development (wrongly dimensioned compt®eand in operation
(random failure of several components).

External perturbations

The increasing level of integration of electron@mponents means that they are
very sensitive to external, accidental, operatiophlysical faults such as
interference from electromagnetic sources.

External interference can cause either transieniltsia characteristic of
interference due to the physical environment, sma@ent faults, which involve
interference arising from the operating environmditte limits separating these
faults are, however, difficult to determine.

Human faults introduced at the different stages othe product life cycle

These are internal, accidental design faults linkethe development of systems.
On account of the systematic faults that they geeerhuman faults are most
certainly the largest source of common mode fasluBoftware faults are a typical
example of human faults.

AND

A CORRELATION BETWEEN ELEMENTARY SYSTEMS OR COMPONENTS

As the definition suggests, there can only be amom mode failure if a
correlation exists between several hardware omsoét “components” subject to
an initiator. The correlation can exist betweenmastary systems or between
components, the difference being in the level aicdption chosen [VILL]. They
can be linked to equipment used in common, to physnteractions or to human
intervention. [EDWA] distinguishes between two tgpd correlation:

Type 1:

— failure of an elementary system or of a componentraon to all the channels
of a redundant system.



Type 2:

— coincidence of failure of two or more than two itdeal components of
separated channels of a redundant system due ¢onm@n cause, the term
components having a very broad meaning ;

— failure of one or several components of a diffetgpe having a single initial

cause.

With these identification criteria, figure 1 becasnéor Type 1:

Component commd
to channels A and B

Channel A

/

Fault A
Correlated with Fault B

v

Error A,
Smilar toerror B

- ™~

AN

Channel E

T~

Correlated with Fault B

Fault B

v

Error B
Smilar to error A

/

Figure 2: Type 1 correlation

Common Mode Failure




Whereas, for type 2, it becomes
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INITIATING SOURCE:

Common Cause

Elementary / \
System
CORRELATIONS
Component A Component B
Fault A Fault B
Correlated with fault B Correlated with fault A
v \4
Error A, Error B
Smilar to error B Smilar to error A

Common Mode Failure

Figure 3: Type 2 correlation

Example of correlated faults: compilation faults

Let us consider two homogeneous redundant strigctuigentical source programme and
hardware - the former developed by means of a eiegimpiler C1, the latter with two
different compilers C1 and C2. All the correlatealulfs generated by compilation at
executable programme level of each microprocessobe represented by the figure 4 :

Case of a single compiler C1

Type 1 Correlation

Case of two compiel and C2

Type 2 Correlation

~__ Correlated Faults

»

Q

Correlated Faults

Figure 4: Example of correlated faults
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The initiator is the man, who introduced the comon faults. In the first case, the
correlation between the executable programmedas tohereas in the second case it is only
at the intersection of the faults introduced byheaicthe compilers.

It can therefore be noted that:

The entity (in this case compiler C1) is the patdnt
cause of correlated faults for the redundant strect
in question

No diversity —

Only the part common to both compilers is likely to

Diversity —” |cause correlated faults

In the case where two compilers are employed, tisysais of the common mode failures
therefore requires determination of all the errefative to each of the faults of compiler C1.
For each error produced, it must then be ensudlilre is no corresponding fault in C2.

1.3. FIELD EXPERIENCE

The first way that should be considered to gragpvan phenomena is to try to determine its
possible causes. Firstly, faults likely to causdufas within microprocessor-based devices
must therefore be looked for.

When tackling causes of common mode failures, titbaas of the consulted bibliography
systematically mention field experience, the orpparent means of obtaining information on
these phenomena.

Remark: Articles covering the causes and consequencesmimon mode failures are few and
far between, manufacturers certainly hesitatingublish their results and users only rarely
undertaking to understand the exact cause of &dfitheir equipment. The field experiences
mentioned in these papers are specific to the Béldpplication from which they stem, and

report information about given equipments workingniell defined operating conditions. In

addition, the only available elements mainly conceystems whose complexity has no
common ground with that of machine control systefige results stemming from them are
therefore very *“ specific ” and difficult to extéo any type of application.

The interest of the information of this paragrapbréfore lies more in the typology of the
fault encountered than in the figures provided, clvhinore often than not cannot even be
considered as orders of magnitude.

1.3.1. General

The various causes of failures given by [MILL] five field experience stemming from
the nuclear sector are very general. 14 causes lbeem identified including operating,
maintenance and test, design error, error regardengufacturing, construction or quality
control, faulty procedures, extreme environmengcteical or mechanical malfunction,
and component failure or drift.

In the same field of activity, the analysis of tield experience provided by [TAYL]
leads to the following distribution:

- 36% due to design,
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— 19% due to component failure,
- 12% due to maintenance or installation errors,
— 11% due to operating errors,
— 10% due to administrative or procedural errors,
— 12% of unknown origin.

In a paper covering the data stemming from fielgegience over 20 years in the avionics
industry, [PECH] was able to subdivide the failuirgs the following classes:

components,

— interconnections,

— mechanical and electrical design of the system,

— non repetition or disappearance of problems aéeetr(Could Not Duplicate),
— environment stresses,

— utilisation.

The results relative to components are more diffituinterpret because of the lack of
precision in the definition of these componentsalh, however, be seen that the number
of faults affecting the central processing univésy low (21 out of 2486), and that they
are mainly due to electrical malfunctions or to pament failure. It would also appear
that the faults mainly affect the input/output wterface components.

1.3.2. Faults specific to common mode failures

The data provided by [VILL] stem for the most p&ndm complex multi-technology
systems (mechanic, hydraulic, electric). They arengrily qualitative and are not
necessarily exclusive to common mode.

Environmental aggressioiihese causes are external to the system.

Design errorsThese errors are difficult to predict as theyassociated with the limits of
know-how. They notably concern :

— the inability of a component or a system to futsltask ; the impossibility to conduct
exhaustive tests or to simulate real conditions ost or planning reasons) can
prevent their detection during tests ; this, f@tamce, is the case with software ;

— inadequate or harmful periodic tests like, for amste, poorly designed periodic tests
likely to reveal common cause faults ;

— elementary system difficult to exploit ; this soeiie minimised at software level by
writing simple, structured and modular programmes ;

- elementary system difficult to maintain ; this l®etcase with poorly designed or
documented software products that cause problethe amodification phase ;

— poor optimisation regarding common cause failuréise protection against one
common cause failure can produce or favour angtki@s is the case with certain
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diversified structures which appear to protect mgfacommon mode failures while
promoting the development of other failures of tigfge through slackness ;

— lacks during design studies, the answer to whicly beaquality control ; this is the
main problem encountered with software.

Manufacturing errors More often than not these are non conformitieshwihe
manufacturing technical specifications or technmaherrors ; they can be encountered
on the software if the conditions of its “ manufaet” (compiler or other) change ; in the
case of hardware, they can appear if the techredogimployed for the components are
immature.

Exploitation errors This is a significant source of error when * gyst” aspects are
considered.

The results of [MILL] are provided for informatigrurposes, and indicate that the faults
at the source of common mode failures are causatépersonnel (57%), maintenance
or procedures. A very small proportion (<5%) is die extreme environmental
conditions. However, no further details are givegarding these environments and their
workings.

Finally, in the field of avionics, [TAYL] noted 88oupled failures (or CMF) which have
been subdivided into three main types:

— 16% of design failures, noted in certain seldom leygal operating conditions,

- 77% of failures resulting from the increase in fladure rates of each separate
components, which increases the probability of iggeveral components in a failure
state, broken down,

— 7% of failures due to operating maintenance ermara group of components.

1.3.3. Faults common to diversified software

A number of academic experiments give an idea efdbftware faults at the root of
common mode failures [KNIG], [BRIL], [ECK1]. Theyllaconcern N-versions
programming researches, which consists of indepelydéeveloping N programmes
from the same specification. They were conducteddata algorithm processing for
aerospace applications.

The authors of these experiments analysed thensraficommon failures on at least two
versions. The faults identified are closely linkedhe application, and mostly concern a
lack of understanding of the specifications. THeWing common faults were noted :

— programmers made the assumption of an equivalert@ebn the comparison of
cosines and of the corresponding angles; this faafinot be put down to the
specifications [KNIG],

- the calculation of a value of an angle was erroegptmarily because of weaknesses
in geometry on the part of the programmers [KNIG],

— the calculation of the angle formed by three aliyp®ints was erroneous : certain
programmers did not distinguish between 0 andthers did not take into account the
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order of points. This is a typical example of fauliat are in logic relation and caused
correlated failures [BRIL],

— common lack of understanding of the various propef non orthogonal co-ordinate
systems ; the faults were not completely identicat led to coincident failures
[ECK1],

— logic faults [ECK1]
— threshold calculation [ECK1],
— wrongly initialisation of a variable [ECK1].

It can be seen that none of the faults identifteths from a specification error, that they
are closely linked to the application, and that foe most part are due a lack of
understanding of the specifications. Other faulesewlisted which, however, did not
cause common mode failures, for example the onmdsyothe programmer to assign a
value to a function or the use of an erroneousesgion to index a table.

1.3.4. Conclusions on field experience

At the outcome of investigating data stemming frawionics, [PECH] made a number of
remarks :

— what is a major cause of failure for one studyasfar another ;

— no details can be given on the figures, which vargome cases within a range from
25 to 75% of the number of failures found ;

— a study focusing on avionics shows that only 3 % & system failures are due to
components, the remainder being due to CND (Cowd Duplicate), to man, to an
erroneous application, etc., which highlights tightand ever increasing reliability of
components ;

— the causes of failures vary with time, certain geduced by advances in technology
or in manufacturing processes ;

— the types of failures also vary with time ; the anaifficulty in understanding exactly
the failure mechanisms often leads to an “ unkniwmverified or other type of
failure typology ;

— the location and the mechanisms of failures must{daenined for specific cases.

These remarks summarise the problems encounteresh wthis required to exploit
rigorously the results stemming from field expecenSuch exploitation is extremely
delicate and can lead to premature generalisatibrise problem of confidentiality is
added, these restrictions emitted on the field B&pee certainly explain the little
bibliographic data available on this subject.

This lack of information is confirmed by the wor&lative to integrated-circuit failure
modes conducted by the MCDI group of ISDF. Thiskniadeed confirms the very great
difficulty, if not the impossibility, of knowing eactly the failures that can affect
integrated circuits.
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The problem of common mode faults must thereforeshelied without a perfect
knowledge of the phenomena involved. It must tleeefoe based on “ suspicions ”
stemming from certain field experience that thegles or analyst deems meaningful.

It is this reason that has led to the selectiveliegpn [LALA] of techniques and
methods to tolerate, eliminate and predict commodenfailures.

1.4. CONSEQUENCES OF COMMON MODE FAILURES

The consequences of common mode failures do ndiafuentally differ from failures due to
single faults. To a great extent they depend on :

— the cause of these failures ; transient electroe@gudisturbance would certainly not have
the same consequence as a software fault affdatittgchannels of a redundant structure ;

— the level at which these consequences is obseretzttiromagnetic disturbance would
have certain influences at component or bus levigich in turn would have consequences
at device output level ;

— the structure of the device which, in certain cabédes certain consequences which will
have been able to be dangerous.
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CORRELATED FAULT TOLERANCE

2.1. GENERAL

Fault tolerance has been defined by J.C. LAPRIEAP95] as all the constructive methods
and techniques intended to provide a service amdlfibthe function(s) of the system despite
faults that may affect its components, its desigitsointeractions with man or other systems.
These methods primarily concern the descendingepbéaghe system life cycle, from the
specification to the design. Aspects of interactth the environment are beyond the scope
of the work presented in this document.

Fault tolerance is obtained by employing constugcfacilities capable of detecting faults that
can affect the system. Once the faults have be&cted, the system must adopt a safe
behaviour, for example by recovery, pursuit or ecmampensation.

These latter types of behaviour allow the taskea#rried on, often in a degraded mode. In
the domain of machinery safety, the safe statemelly used, which leads to switching off
the power to the actuators .

Depending on the types of faults that have to kertanto consideration, several possibilities
are available to designers to produce a faultdolesystem. If correlated faults are to be
considered, [BOUR], [EDWA], and [EWIC] have set auhumber of rules and techniques
that should be applied during the design of antedaic device.

2.1.1. Fault detection mechanisms

Through construction it is possible to establistiedee mechanisms against common
mode failures within programmable electronic systd61508]. These mechanisms are
not unique to correlated faults, and are intendediétect faults before they cause
failures, thus increasing the robustness of theesysin which they are installed.

These mechanisms [CHAR1] can be subdivided intodlasses that depend on the time
of detection:

Periodic test These are generally software procedures, teathe correct operation of a
system resource at a given time. The periodicdest resource (processing or memory
facilities or input/output peripheral device) isaran power on and possibly at periodic
intervals during operation. As a result, it is gaflg unsuitable for detecting an
operating anomaly due, for instance, to a trangauit or a systematic software fault, or
to an error occurring between two tests. Periodstst are primarily intended to detect
potential accumulations of faults [HSE], [BUCH],NB54], the assumed cause of certain
common mode failures.

Memory and microprocessor checking are typical etamof periodic tests.

On-line monitoring These are hardware and/or software mechanisatgpdrmanently
monitor the task of all or part of a system. Erramns detected instantaneously or within a
very short period of time.
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The watchdog is the first level of on-line monitayi Combined with a effective system
of comparison, redundancy is able to detect, mottess in real time, the faults that can
appear in a microprocessor based system.

2.1.2. Separation

Separation [BOUR], [EDWA], [MOSL] is a constructiviechnique to stop failures
propagating from one function to another, therahbyting analyses to sensitive points.
Certain facilities employed for separation are @ borderline between fault tolerance
and avoidance. Two types of propagation are coab&\{UCRL].

Physical propagation

This involves the system hardware. The means ofbating this type of propagation
are :

» physical separation,

 electrical isolation of the different channels,

« power supply separation,

 electrical shieldering,

* no sharing of resources between safety functiodso#imer functions,
* no use of components common with several channels,

» avoiding grouping too many cables or sub assemblies

Logic propagation

This primarily concerns the software of the syst@ime means of combating this type of
propagation are :

* physical isolation of the software modules, whiale @xecuted by two different
MIiCroprocessors,

no interactions through shared memories,

no dual directional links between systems,

« employing safety protocols for transferring datanieyworks,

Remark: - Separation must be applied to each channel.

- As far as possible, separation is also appliethd every phase of the

product life cycle : installation, manufacture,.etc



19

2.1.3. Fail-safe design

A system is "Fail-Safe" if all failures are, to @tceptable degree, minor failures
[LAP95]. This is to say that their consequences @irédhe same magnitude as the
advantages gained by the service provided in teerate of failures.

This definition allows for a high degree of subjeetappreciation: "to an acceptable
degree”, "of the same magnitude". The definitionegi by the EN292-1 [EN292]
standard is undoubtedly preferable. The notion ail-Fafe is defined there as a
theoretical condition which is attained if a saféipction were to remain unchanged in
case of a failure in the power supply or in a congmi contributing to this function. In
practice, this condition is all the more satisfaityanet, the more the effect of failures on
the safety function is reduced.

For designing a Fail-Safe system [BOUR], [EDWA]WHC], it is necessary, therefore,
to at least ensure that short-circuits, open disciand the stuck at O or 1 on the cables,
tracks, discret or low integrated components doatier the safety function. Secondly,
dynamic signals are to be preferred to static $sgna

2.2. DIVERSITY

Diversity is a technique which consists in creatmgersions of an entity (hardware or
software) whilst introducing one or several diffeces into each entity or its development
process in order to avoid common mode failures.

Functional diversity is often quoted to overcomenomon mode failures [BOUR], [EDWA],
[EWIC]. It consists in acquiring different parammsteusing different technologies, different
logic or algorithms, or different means of actingtioutputs to provide several ways of
detectionfUCRL].

It is, however, difficult to justify diversity thigghout the processing chain, except for very
high safety applications. The most important adwges of diversity are at CPU, interface
memory, programme, and data format level [EWIC].

Diversity is seen as a solution to common modeuffed that cannot be predicted. It is
complementary to the concepts of independence gpatation.

Remarks - The contribution of diversity, whatever th@ey is difficult to grasp.
- Recourse to diversity must not constitute an g to reduce the quality
level of a system.

Six types of diversity must be considered [UCRL]:

2.2.1. Human diversity

The effects of man at every stage of the life cypéla system are very variable and at the
source of many accidents. Managed correctly, hudnagrsity is therefore an advantage
for the safety of a system.

Example: Different designers designing functionally drifat safety systems have little
chance of making the same design errors.

The factors increasing human diversity are, in@ekesing order of efficiency :
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different organisations for the design (two diffgrérms),

different teams from the same firm managing thgeggito

different designers or programmers,

different test, installation and certification $taf

2.2.2. Design diversity

This involves the use of different approaches (Waré and software) to resolve an
identical or similar problem. It is assumed thdtedent designs will not be affected by
common influences.

The factors increasing design diversity are in éasing order of efficiency:

« different technologies (analogue/ digital), cregtidifferent responses to the same
cause of fault.

 different approaches with identical technology (&@nhverter/ DA converter),
« different architectures (component assembly andection).

Remark This order (proposed by [UCRL]) remains open tscdssion. Architecture
diversity may indeed be a means of avoiding caredldaults arising from a human
origin as it is necessary to undertake distinanstudy for each part of the architecture.

2.2.3. Software diversity

This is in fact a subset of design diversity, whiglsolated on account of its importance.
It's the development and the execution of differeat functionally equivalent versions
(or variants) in order to detect eventual errorscbynparing in real time the results
attained. Following the identification of a stateearor recovery is undertaken by:

v' backwards recovery in which the system returnfécstate previously saved;

v' forwards recovery in which the system branchea mew state (usually in
degraded mode) in which the system is able to tgera

v' error compensation, based on an algorithm usingetthendancy built into the
system to furnish the right reply.

Error detection by verification of the results args from the different variants can be
undertaken by:

v' acceptance (internal) test to check the resultsthef execution of a
programme. The calculation of the checksum reptesetypical example of
an acceptation test;

v' external coherence, in which results are checkedmmans of external
intervention;

v/ automatic checking of numerical results. This ig terification of the
numerical accuracy of algorithmic results, for ex#sn for floating
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calculations for which a minor error in a resulultb propagate to take on
ever increasing importance.

More often than not, versions are designed by idiffeteams, to achieve the same safety
objective. As for design diversity, it is assumbdttdifferent designers will not make the
same mistakes. Neither the bibliography nor thél fexperience permit to know the
conditions of optimal software diversity (it may leaough to produce two different
designs from the same specification) [LYU]. In fdtte software must have sufficiently
diversified dynamic and logic parameters to be wered as diversified.

Nevertheless, [UCRL] proposes classifying the feciocreasing software diversity in
the following decreasing order of importance:

different algorithms, logic, and programme arcHitee,

different sequences and order of execution,

different programming languages,

different programming environment.
Two basic techniques are used for fault tolerahdeJ].
Recovery Blocks

Several blocks functionally equivalent (M1, M2, M&ic.) are created and executed
sequentially as long as an error is detected byrtbdules undertaking the acceptance
tests (A1, A2, A3, etc.) assigned to each blockRgure 5).
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M1 execution

Acceptance tesSk, OK
Al 4
Correct
Output
M2 execution END
Acceptance te§t\ OK
A2 4
Correct
Output
M3 execution END
Acceptance te§t\ OK
A3 v
Correct
Output
END
\

Figure 5: Example of recovery blocks

Proper application of this principle means that #iteeptance tests (Al, A2, A3, etc.)
should be distinct but in practice a single tesmewmn to all the blocks is often
developed. An extreme case consists in adoptingcaaptance test that is similar to the
blocks and then comparing the output from the nooed blocks with the results of the
acceptance test [LYU]One of the problems posed by this method in a magssor
environment is found in the sequential nature efdkecution of the versions [LYU].

N-version programming

N-version programming has been the subject of anadexperiments intended primarily
to ascertain the efficiency limits with respectctammon mode failures. This technique
consists in running multiple versions (N) of a s@fte product in parallel, and taking a
majority vote to determine the final result. Thember of versions depends on the
number of faults that are to be tolerated (3 versiwill be able to tolerate 1 faulffhe
assumption on which its efficiency is establishedbased on the following diagram
(figure 6)
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Assumption: Independen
of the versions

N

No correlation (or relations
between the software fault

N,

Failures appedr
independently,

\°24

Possibility of detectio
by a voter

Figure 6: Assumptions for N-version programming

In order to be fully efficient, this technique mu& carried out in line with the following
rules [LYU]:

v
v

v

v

requirements must be specified and analysed withdbmethods;

the specification documents must be debugged atdised before the
development of any components (for example by agwed) final code
prototypes);

a protocol must exist in order to know and soheghoblems. This protocol
should contain measures ensuring independenceseiagenent and should
not introduce correlated faults such as, for examyg@mmunication errors,
common lack of knowledge , or exchanges of erroa@wfiormation between
the development teams;

verification, validation and the test must all bemhalised and must show
absence of correlated faults;

the specifications, design and the code must ait&ied.

Remark: these rules concern fault avoidance esdlgnéind they are applied regardless
of the type of software structure installed.

The advantages of N-versions programming are:

— Simplification of the test as it is enough to runphbgrammes with the same inputs
and compare the outputs obtained.

— The reliability of each version can be lower, thentcibution at the global level
provided by the comparison. It must, however, b#icent not to degrade the
reliability level of all N versions.

— The higher development costs can be compensatadréguction in validation costs,
these advantages being linked to the assumptianrotorrelation of the N versions.



24

These advantages are minimised by the conclusioverious experiments :

The increases in reliability provided by N-versiggeegramming depend on the non
correlation of the failures of the different versso[BRIL], [KNIG]. Experience and
probabilistic calculations have shown that theraastrue independence between the
different versions developed [KNIG], [ECK2]. Theteaof appearance of correlated
failures obtained following the experimentationmsch higher than that calculated by
making the assumption of fault independence. $trindependent developments are
therefore not enough to guarantee significant beniefterms of reliability [BRIL].

Even if, on average, substantial benefits are plessising N-versions programming,
these benefits are so variable that it is stillgdde to combine several versions to
obtain a poor result [BRIL].

The results are relative to the experiments cardetl Extension to any type of
application is therefore difficult [KNIG].

The use of different languages to create diffevensions of a software product does
not have a major impact on reducing the causesrotlated failures [BRIL].

In addition to these conclusions, various lessas loe drawn from the experiments
carried out :

The different experiments were conducted on redatisimple modules of reduced
size. [KNIG] advises, when large programmes comgagenumerous interconnected
modules are involved, identifying and separating ¢htical parts and only applying
N-versions programming to these parts.

A general rule applies to the development of diies programmes : the earlier the
development teams come into contact, the greagecliance of introducing common
mode faults [ECK1].

At the outset of the software life cycle there ec@ssarily a common specification.
However, there must be a minimum of different degigocesses , to avoid errors at
this level being propagated throughout the softviggeycle [KNIG].

Diversity creates a dilemma that is difficult toha: not stating the algorithm in a
specification does promote diversity but may geteeiaults due, for instance, to level
of understanding of the programmers [KNIG].

2.2.4. Functional diversity

Functional diversity consists in creating differgatysical functions with similar safety
actions. In the case of microprocessor system, sliidrsity can lead for instance to
compute a signal or its complement or to test alresd its opposite ,. The designer
should, nevertheless, establish with certainty tveor not this technique is indeed
efficient in order to avoid the creation of anyifasial diversity which does not
correspond to a real problem.

The factors increasing functional diversity aregdétreasing order of efficiency :

difference in the subjacent mechanisms,

difference in function, control logic or means ofigation,
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« difference in the response time scales.

2.2.5. Signal diversity

This involves the use of signals coming from d#éf#r sensors that must be
independently capable of indicating abnormal coon# even if the other sensors have
failed.

The factors increasing signal diversity are, inrdasing order of efficiency :
 differences in the physical effects measured,
« differences in the parameters measured, with thie gainciple employed,

» redundancy of identical sensors.

2.2.6. Equipment diversity

This consists in using different equipment to eassmmilar safety functions ; the
differences should be sufficiently great to lesgeimerability to CMF. Attention must be
paid to false diversities (components sold by twferent sources). Computer diversity
can have a beneficial effect on software diversity.

The factors increasing equipment diversity arelaareasing order of efficiency :
 different suppliers of fundamentally different puwts,

» same suppliers of fundamentally different products,

« different suppliers of similar products,

 different versions of the same product.

In addition, on a highly technical level :

« different architectures for the microprocessors tlifference produces differences at
compiler and link editor level amongst others,

different versions of a microprocessor,

different printed circuits,

different bus structures.
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CORRELATED FAULT AVOIDANCE

3.1. GENERAL

J.C. LAPRIE [LAP95] defines fault avoidance as #pplication of methods and techniques
intended to obtain, as far as possible, a systenishfree of fault. These techniques are
essentially related to both hardware and softwasding. Unlike fault tolerance, fault
avoidance primarily encompasses the organisatiaspects and tests linked to system
development.

Fault avoidance methods are intended to reducevll probability of systematic failure to
a level that the experts of Standard IEC 61508 deguivalent to the probability of random
hardware faults.

3.2. METHODS OF HARDWARE FAULTS AVOIDANCE

¢ Protection against environmental aggressions

Environmental aggression is reputed to be a patesdurce of common mode failures in
electronic equipment.

Certain authors do take these aggressions intaiatemd propose a number of measures
to limit their effects, for example avoiding theeusf components such as line amplifiers
which are vulnerable to external perturbations [BQUEWIC].

¢ Other means

- use the standards and a well-tried design;

- avoid unnecessary complexity or difficulties;

- correctly size components, memory capacities aadgssing times;

- employ components below their limits of use.

3.3. METHOD OF SOFTWARE FAULTS AVOIDANCE

Table 1, as well as the experiments (cf. chapte3s3let 2.2.3) concerning the correlation
between the faults of various versions of the saféyreveals, were it not already known, that
software faults do exist and must be taken intmat; this being true whatever the structure
employed (homogeneous or heterogeneous).

These faults (single or common mode) are, in thprnita of cases, due to the difficulties of
the designers to control the development of inengis complex software. They are, as a
result, difficult to avoid and they require actioas each stage of the software life cycle.
Experience demonstrates that common mode softvearés fcannot be distinguished from
simple software faults [LYU]. There are, therefane, specific avoidance methods associated
with this category of fault.
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A means of software faults avoidance is to drawquplity requirements for each of the
lifecycle stages. The document “Software Qualityd &afety Requirements” [QUAL] drawn
up by INRS within the framework of the STSARCES jpod adapts the requirements laid
down in the IEC 61508 Standard to the domain ofhimecsafety:

- to set, with respect to the designer, requireswenicompassing all the technical activities
linked to software development, and to guide hinther in the activities to be undertaken to
develop the software,

- to serve as a frame of reference to evaluatevaodt under development, and to know the
aptitude of a software product to satisfy the safetjuirements applicable to the system
being analysed.

These requirements concern: the software prodisctiavelopment process, its verification
and validation as these are in turn divided intio-sections. Two requirement levels are to be
distinguished (1 and 2) in relation to the crifjaiif the software in hand. The application of a
requirement can be obligatory (O), RecommendeddRgft to the discretion of the designer.

Table 1 provides the objective of each topic alenth examples of the faults that it can
prevent. Due to hardware/ software interactionss ito be noted that certain faults, which
have been avoided, are not typical of the softwaueh as, for example, the interruption
processing .



TOPIC AND OBJECTIVE OF THE REQUIREMENTS

EXAMPLE OF FAULTS AVOIDED

Software product

Objective: Set up activities, organisation, principles etc. as early as possiblein the
development cycle in order to obtain a software product which satisfies quality and
safety requirements.

Faults due to:

interfaces with the system architecture which iraégythe software
the software specifications (limit cases, caserafreself tests, etc.)
the design of the software (erroneous algorithm)

the software coding,

the production of the executable (uncontrolled Ipatc

poor reuse of already existing software

erroneous parameter setting by the user

Software development process
Objective: to ensure that all the stages leading to production of the executable have
been undertaken correctly.

Faults due to:

poor management of versions

software regression subsequent to modifications

inadequate documentation that causes misunderstandi

poor synchronisation or incoherence between tHerdifit stages of the life cycle
(design started before termination of the spedifica coordination with the certified
body, etc)

compiler and test facilities

Software verification and validation

Objectives: to demonstrate that the software products stemming from a phase of the
devel opment cycle conform both to the specifications established during the
preceding phases and to the applicable rules or standards.

To detect and take account of errors that may have been introduced over the course
of the software devel opment.

Faults due to:

an incorrect interruption processing mechanism,

non respect of execution time requirements,

incorrect software response in transitory operagwitching on, input flow, switching
to degraded operation, etc.),

resource access conflict or memory organisatioblpros,
inability of the integrated tests to detect brealus,
software/hardware interface errors,

stack overflow,

incorrect initialisation of variables and constants

errors in parameter transfer ,

deterioration of data, in particular global data,
inadequate numerical resolution from end to end
incorrect sequencing of events and operations.
incapacity of an algorithm to satisfy a softwaredfication,
incorrect loop operations,

incorrect logic decision,

inability to process valid input data combinati@osrectly,
incorrect responses to missing or degraded inpat da
violation of the limits of tables,

incorrect calculation sequence,




— inadequate accuracy, correctness or performanae afgorithm.

Table 1: Faults avoided by safety and quality requements
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CORRELATED FAULT FORCASTING

4.1. GENERAL

Fault forecasting is one of the aspects that muestebcompassed to construct the
dependability of a system. Along with fault avoidanit constitutes one of the components of
fault avoidance. It consists in evaluating the baha of the system with respect to the
appearance of faults, and is based on a set ofosethnd techniques to estimate
presence, the creationandthe consequencesf faults

The forecasting of correlated faults at the origihcommon mode failures will be dealt
following the classification given in chapter 1&xistence of an initiating source and of a
correlation between two sub-systems or components).

The “fault presence and creation” aspects of the forecasting techniques allow the
determination of the initiators and correlation tae source of common mode failures,
whereas théconsequence’aspect is employed to ascertain the exact nafuhese failures.

Assessment of system behaviour in relation to gpearance of accidental faults, something
which is necessary to fault forecasting, may beeeitualitative or quantitative [LAPR]:

e Qualitative evaluation

Qualitative evaluation is intended to identify asldssify failures or the methods employed to
avoid them. It should be considered in relatiorthi® determinist requirements laid down in
EN 954 [EN954], which requires the analyst to wetihe behaviour of a system in the

presence of predetermined faults. It raises thestgpre of the definition of the faults to be

taken into account for the evaluation, whether thisarried out on the system in question or
on a model. This problem is more acute the morepbexrthe components employed.

Indeed, although the faults arising on discretoarintegrated electronic components (short
circuit, open circuit, stuck at 0 or 1) are knowmatsatisfactory degree, this is not the case for
complex microprocessor type components, and evendse for software. In such case, if we
want to carry out analyses at the level of the camept, assumptions regarding the failure
modes of these circuits have to be made. As sustimgstions quickly reveal their limitations,
the solution generally adopted is to go to a higegel and to consider the failures on a
functional level.

Paragraph 4.3 describes several methods suitednhdo qualitative evaluation of the
dependability of an electronic system with compierponents.

e Quantitative evaluation

The “ determinist ” evaluation provides an appregciaof the level of safety of a device
employing electromecanic, discrete or low integtatemponents whose failure modes are
known to a satisfactory degree. On the other h#@edcapabilities are more limited when
highly integrated components are employed, as tiheés impossible to ascertain the failure
modes of these components both thoroughly andaeittainty.

Other approaches must be envisaged, like the datiwvei evaluation recommended in Draft
IEC 62061 Standard, which takes into account randi@miware faults and, to a certain
extent, common mode faults. Several results capbbened by means of these calculations :
reliability, availability, safety. Given the scop# this document, namely the safety of
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machinery, only the calculations necessary to deter the probability of dangerous failure
are gone into.

4.2. ANALYSES PRIOR TO THE EVALUATION

The investigations to be undertaken prior to anwlwation, whether qualitative or
guantitative, are common to any analysis, whatekier types of faults in question. The
hazard and risk concept and analysis steps ara fedk@ the IEC 61508 standard :

¢ Knowledge of the system

This stage - still termed familiarisation by MosIpMOSL] or "concept” in the CEl 61508
standard - is not dedicated to fault forecastihgohsists in acquiring a general understanding
of the system to be analysed, the functions thaust fulfil, and the physical environment in
which it must evolve.

The different limit conditions will be examined jparticular: the system's physical and
functional limits, correlations and functional irfeces with other systems.

In the case of correlated faults, the elements esfigh, operation, maintenance and test
procedures likely to increase the chances of maltpmponent failures are looked for in this
phase.

¢ Hazard andrisk analysis

Firstly, system level hazards and the events cgubem are identified. This analysis must be
conducted for all reasonably foreseeable situatinalsiding failures and incorrect use. The

risks associated with the dangerous events idedtdre then determined. This stage, carried
out prior to any analysis, is closely related te #ipplication in which the system will evolve.

Methods to assist these analyses are indicatetiOfO] and [EN954]. They are based on a
gualitative analysis that encompasses the serisasofepossible damage and the probability
of such damage occurring: frequency and duratioexgiosure, probability of a dangerous
event occurring, and possibility of avoiding or iimg this damage. In addition to these
qualitative approaches, the CEIl 61508 standardesiggwo quantitative methods for risk
determination.

¢ Preparation for modelisation

The complexity of systems today means that modalisdés a necessary stage for evaluation.
Preparation in this respect consists in gathenf@mation about:

the processes and technologies employed,

the procedures and the frequency of the tests,

the failure modes and rates,

the coverage rates provided by the diagnostics,

the maintenance and repair procedures.
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In certain cases, the analyst can seek informatiothe following points to complete his or
her knowledge:

the type and the manufacturer of the components,

the utilisation mode of the components,

the internal and external (environmental) condgiohthe components,

the limits of use of the components and systenrfautes,

the location of components,

the initial states of the components and their afpey characteristics.

The information collected will serve as the basishighlight certain correlation, and to
identify the principle groups of common cause congmis [MOSH)]. This preliminary
identification may be achieved by seeking, for egkmby means of check lists, the attributes
common to several components and the failure mesmmanlikely to cause common mode
failures (in fact, the weak points regarding comnuaiuses or potential correlation of the
system). The following indications may be of agsise to the analyst :

- the identical, active, and functionally non divéesi components used for
redundancy should be considered as a common cauge g

— diversified components that have identical redungemts cannot be considered as
independent.

Remark The susceptibility of a group of common cause ponents does not depend solely
on their degree of similarity. It also depends be existence and the efficiency of the
measures to protect against common modes.

For reasons of model complexity and the time rexglufor the analyses, a selection could be
made to suppress common cause events that hawernlittence on the result at system level,
and to retain only what is significant. This sel@ctcan be based on a quantitative evaluation,
for example by means of a fault tree.

4.3. QUALITATIVE EVALUATION

Two methods are generally employed to predict commode faults [VILL].

4.3.1. Fault Tree Analysis (FTA)

* Overview of the method

This deductive method starts out from a dangerousdesn failure, determined for
instance by risk analysis, and looks for combinaiof events that could lead to this
failure.

The Fault Tree models the influences of the failofeone component or a series of
components on a dangerous event. The elementanysease connected by AND and OR
gates to view all the paths leading to the dangefailure.
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It reveals random, systematic and common modesfaultimately, all the logic branches
of a FTA must be developed through to the basiatsvén practice, the tree is developed
to be capable of analysing the effect of inputcpsesing and output failures.

To avoid any error of interpretation and to enstitat the basic events have been
correctly processed, the following must be verified

the dangerous events taken into account,

the failure modes of components,

the combinations of basic events,

the paths leading to the failure,

the common mode failures and systematic failures,

the possible interactions.

The Fault Tree Analysis is currently in widespreese to deal with hardware aspects. It
can also be applied to the evaluation of softwardts$, in particular to look for critical
functions or modules.

* Determination of theinitiators and correlation

The Fault Tree Analysis allows modelling of the retation between components
[VILL]. The initiators, for their part, are obtaideby extending the corresponding
branches until the component degradation, the maitgrerturbation or the human faults
is reached.

» Determination the consequences

The deductive character of the Fault Tree methodnsi¢hat it is not, a priori, a method
to look for the consequences of faults, whether thrggins be common cause or not.

4.3.2. Failure Mode and Effect Analysis (FMEA)
* Overview of the method

This is an inductive method that starts out frontufas of the functions or components
of the system to be analysed in order to detertmealangerous failures that could affect
it. It highlights failures due to single failure dws that affect the software or the
hardware. When considering function failures tHetang approach is employed :

» Determination of the failure modes of each of thactions considered for the
analysesThis is conducted after examining the specificagiof these functions,
more often than not distinguishing three classemction not fulfilled, incorrect
function, and result different from that expect€ertain authors [SERV] consider
five failure modes without giving further details.

» Determination of the local effects of failuréhis is generally limited to stating the
values taken by the outputs in function of the eetary failure modes.

» Determination of the global effect¥he local effects of failures are propagated to
system level.
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» Classification of global effects according to @illy. This classification is made
using the results of the risk and hazard analyamigsex out beforehand.

» Determination of dangerous failure# criticity threshold is set, the failures
producing effects above this threshold being carsidl dangerous.

FMEA is in widespread use for hardware systems.s Tigchnique can also be
encountered for software analysis (Software Erfdfscts Analysis) [THIR].

* Determination of theinitiators and correlations

FMEA is not a direct method of determining initiefoand correlation. In order to
contribute significantly to highlighting common nedhilures, the FMEA must be used
in association with other methods capable of deteng the initiators and the
correlations between components and sub-systems.

C. HOURTOLLE [HOURY], for example, suggests combgnAMDE with Fault Trees to
determine the critical software functions. Knowledyf these functions enables greater
focus in investigations aiming to detect common ensdftware faults.

« Determination of the consequences

Provided the correlated faults have been charaeicorrectly, FMEA is a method that
can be employed to look for the consequences sttfalts.

4.4. QUANTITATIVE EVALUATION

Introducing common modes into the quantitative ex@bn depends on the knowledge the
analyst has of them :

— The correlation have been clearly identified (emwment, human errors). They can
then be modelled, for example, in the fault treéhefsystem.

— The correlation have already been encounteredroitasisystems, a comparison is
then carried out.

— The original causes of the phenomena are diffitoltidentify. They are then
processed by parametric models relative to the comrauses.

Paragraphs 4.4.1 and 4.4.2 look at the third case.

4.4.1. Modelling common mode faults due to hardware

The proposed models only take into account commaades produced by random
hardware faults.

Among the different models that can be envisadgeel,niodel in most widespread use,
particularly for single redundancies, is fadactor [NUREG], [61508], [ISA], a single
parameter model intended to represent hardwartedeleommon causes. For more
accurate analyses on high degrees of redundanciplayparameter models can be
employed (multiple Greek lettem, factor and binomial failure rate). In the remaindé
this section, botlp factor and multiple Greek letter modelling areatdxed.

Bfactor
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This model corresponds to applications where passible to isolate one (or several)
group(s) of common cause components. For a groupreé components A, B, and C,
the total failure rat@ of a component of this group is, strictly :

A=Ai+2A2 +Ad
with : - Ai the rate of independent random failures,

- A2 the failure rate due to the influence of compaséaken two by two (AB
and AC are to be considered for component A), lgptdg the hypothesis
that the influences between components A, B andként two by two are
identical,

- Ad the failure rate due to three-component commases (ABC is to be
considered).

The B factor model assumes that all the components gfoap of common cause
components have failed, which leads to retaininty ¢ime failures affecting the three
components, i.e\d. Those affecting only two components are ignoamhcelling the
corresponding\2 factor. A fractionf3 of the component failure rate is associated with
common cause events of the other components ofgtbep, and the following is
obtained :

Ai=(1-B).A
A =B.A

Use off3 for calculation of the failure rate associatedwdgbmmon cause faults.

The IEC 61508 Standard describes a method of detegnthe failure rate associated
with common cause faults that is adapted to catioms using Markov graphs. This rate
takes account of the diagnostic capabilities offdrg the microprocessors which leads to
the breaking down of the preceding factor into mhstinct parts: the first attached to
undetected dangerous failurgy,(the second to detected dangerous failuges).(The
Acwr rate (or Dependent Failure Ratd) is thus expressed by the following formula:

Acvr =B . Apu +Bp - App
Where :
Apuis the rate of undetected dangerous failures ofgleschannel,
Aop is the rate of detected dangerous failures ofiglesichannel,

The factorsf and B p are determined empirically, primarily making usk field
experience and taking into account:

» the defence measures against the occurrence of eommode failures by
distinguishing those whose contribution is improv®d using diagnostic tests (X)
from those whose contribution is not improved bgsth same tests (Y). A weighting
Xi and Yi is assigned to each measure. These weggtre available in a table. The
values de X and Y are given by:

X= 2 Xi, Y= 2 Yi
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« testsdesigned to detect the faults in a channel, bt the detection capability and
test execution frequency points of views, whicmtgeves :

B = f(X+Y) etBp = f((Z+1) . X +Y)

The value of Z is given by a table. It dependshmndoverage of the diagnostic facilities
and on the time between two diagnostic tests. As s3 this time exceeds five minutes,
the value of Z for the control logic is zero, whigives3 =3 p. The value of Z is zero for
the sensors and actuators as soon as the timedretwe tests goes beyond one week.

Remark: The application of the method proposed to deteen® and Bp could be
discussed. Indeed, it can lead to the followingctusion:

* For a homogeneous redundant structure executimggaasktic test satisfactorily, i.e. a
test executed at least once per minute with a egeesiof 99%, the following is
obtained :

}\1CMF =0,02. Apy + 0,01. A\pp

» For a diversified redundant structure executingediocre diagnostic test, i.e. a test
executed less than once per minute with a coveyh§@%, the following is obtained :

}\ZCMF =0,02. Apy + 0,02. App

With Apy andApp identical, such equality means that with respeatattdom hardware
common mode faults, diversified redundancy can legient than homogeneous
redundancy. In practice, such an observation wapfakar highly unlikely, in particular
if all the components of one channel differ frorogé of another.

Multiple Greek letters for a defined series of components

This is an extension ¢ factor. It involves the possible influences of @oenponent on
the other components of the same common cause .giotipis case, the multiplication
factors ofA2 are no longer zero.

For a triple redundancy structure, the parametietiseomodel are :
A = probability of total failure due to independamid common cause events.

3 = Conditional probability that the common causeh# failure of a component is at
the origin of the failure of a second component.

y = Conditional probability that the common causehef failure of one components is at
the origin of the failure of two other components.

We thenhave: Ai=(1-B).A
AN2=(2/2) B.(1-y).A
Ad=B.y.A

4.4.2. Modelling common mode faults due to software

Recent literature published by B. Littlewood [LIT3hows that, by contrast with random
hardware faults, software faults are not subjetiadodelisation with the same ease.
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“... Clearly there remain large gaps in our underditagn of some of the basic issues
here. We know that we would like to have indeperdenf the failure behaviour of the
components in a redundant or diverse system, bedhiswould allow us to carry out
quite simple calculations to determine system lbdlig. If we cannot claim
independence, then we need to estimate the dedreependence achieved for the
particular system under examination in order to jgot@ its reliability. Unfortunately,
means of using information about system desigrrdieroto estimate this dependence are
very poor; and direct empirical evidence of comnfaiture is, by its nature, extremely
sparse. The poor general understanding is illestravell in literature concerning
software diversity for fault tolerance, where umétently, it was common to use words
like ‘independent’ and ‘diverse’ quite loosely: fexample, it was said that ‘independent
development’ of ‘diverse’ versions was a mean tdaiming ‘independent’ failure
behaviour in the versions. Before we can develepries and models that will allow us
to predict system reliability in the presence omooon cause failures, we need to have a
basic understanding of these fundamental conceytsleeir relationships. We need to
answer questions such as: What is diversity? Agectdesigns more diverse than those?
How diverse are these two designs what diversity lcaxpect by allowing designers
complete freedom, but forbidding their communicatiath one another? ...." [LITT]

This observation is confirmed by hypotheses conogrimdependence worked out in
order to attempt the modelisation of the reliapibf a multi-version structure [LYU]. By
contrast with hardware faults, the techniques fa mmodelisation of common mode
software faults are insufficiently mature to beraoluced in the evaluation of the
probability of a dangerous system failure.

4.4.3. Quantification using Markov graphs

Quantification by means of Markov graphs consistly in modelling the operation of
the system in the form of a graph. Common modeuresl are taken into account by
adding the corresponding transitions to this grdpte probabilities of dangerous failures
are then determined using matrix calculations fthenfailure rates determined by means
of the formulae given in paragraph 4.4.1 [ISA],$68], [DEACBr], [BOUS].

4.4.4. Quantification using Fault Tree Analysis

Fault trees are easily quantifiable if the basiergs are independent. In such cases, it is
possible to transform the tree into a Boolean esgpom, with as the rule:

Basic event-> Boolean variable
AND gate - Boolean product of the Boolean variables of tiputrevents
OR gate -> Boolean sum of the Boolean variables of the irgwants

The basic event independence condition requiresiapigeatment for common mode
failures [ISA]. The following example illustrates\ these failures are introduced:

Example:

Given an event E, resulting from the combination(Af, A2), two dependent input
modules and (B1, B2), two dependent output moddisnolependent of (Al, A2):
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Al

A2 Bl B2

Figure 7: Fault Tree without CMF

The Boolean expression of E is:

E=A1+A2+B1+B2

which leads to the probability:

P(E)=P(A1+A2+B1+B2)

P(E) = P(Al) + P(A2) + P(B1) + P(B2)

- P(A1.A2) - P(A1.B1) - P(A1.B2) - P(A2.B1) - P(A2) - P(B1.B2)
+ P(A1.A2.B1) + P(A1.A2.B2) + P(A1.B1.B2) + P(A2.HB2)

- P(A1.A2.B1.B2)

Given the independence of the input and output nesgduhe preceding expression can

be simplified as:

P(E)=P(A1) + P(A2) + P(B1) + P(B2) - P(A1.A2) - P(B?)

P(A1.A2) represents the part common to A1 and Ad aan be assimilated to a
"common mode" event Avr (as is the case for P(B1.B2)).

In practice, it is therefore possible to rewrite fireceding equation in the form of a tree
by introducing an event &= Which renders the events A1l and A2 independerg {$h
also true of the output module). The tree thus e
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A

, I I
Al ACMF A2 Bl BCMF B2

Figure 8: Fault Tree with CMF

Characterising the common mode failures between ) and (B1, B2) by factor8a
andpg the failure rate associated with the basic eveintiseotree will be:

(1-Ba)-Aa & (1-Bg).Ag for A1l and A2 & for B1 and B2
Ba-Aa & Bs.Ag for Acvr & Bewr

4.5. OVERVIEW

As previously indicated, common mode fault foreicasis an estimation of theresence and
the creation of these faults as well as of theonsequencegthe common mode failures).

Table 2 provides an overview of the main resullstiree to the forecasting of faults in order
to give the capabilities of each method for thedation / presence ” aspects of faults and for
their consequences.

The possibilities of quantitative and qualitatiwelkiation of common mode faults by means
of Fault Trees would appear to make it a method agdpted to the forecasting of common
mode faults. This capability should be confirmeddme or several applications on concrete
cases.



EVALUATION METHOD

ESTIMATED ASPECT

QUALITATIVE EVALUATION : FT, FMEA

QUANTITATIVE EVALUATION : FT, MARKOV

Presence and creation of CMF

Must cover:

+ the initiators at the source of CMFS

Deterioration of e ectronic components,
external perturbations, human faults
introduced into the different stages of
the life cycle of the product

Initiators at the source of CMFs

Yes, whatever the method. All that is requiredigxtend the
analysis until the component deterioration, theexl
perturbations or the human faults are reached

The FT explicitly reveals the initiators whereas EMmust
start out from these initiators.

Initiators at the source of CMFs

In every case, the evaluation of failure rates iregu
knowledge of the source initiators.

FT: same possibilities as for use in qualitativaleation.

Markov: No direct possibility of highlighting thesrce
initiators.

And

« the correlation at the source of CM

Correlation between elementary
systems or between components

Correlations at the source of CMFs

Graphic representation by Fault Tree allows a rajgd/ of
Fise principle correlations likely to produce CMFs

Correlations at the source of CMFs

The correlations are introduced into the modehefgystem.
They are therefore not revealed by a quantitatweguation,
but the calculations of the probability of dangerdailures
take account of this.

Consequences of CMFs

The consequences of CMFs are clearly highlightethby
inductive methods (FMER

The deductive character of Fault Trees means thétsi
approach, this technique is not intended to lookHe

consequences of CMFs.

Calculation of the probability of dangerous failsif@508].

Possibility of modifying the structure, the compotse and thg
self-test period to improve the results.

Table 2: Overview of the methods for Common Mode Ralt forecasting
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CHECK-LISTS

The check-list organises the points to be verifladng the different phases of the system life
cycle, and thus ensures the arrangements madedmgathe tolerance, avoidance and
forecasting of common mode failures [HSE]. The tjoesg serves as a framework for the
analyst or designer to take account of CMFs duittege different activities. It is intended to
highlight certain sensitive points, which shouldritbe the subject of detailed analyses.

The aim of check-lists is to promote a critical lssis with respect to CMFs for all the
following aspects :

» safety requirement specifications,

» specification, design, manufacture, test, mainteeaamd modification of the hardware,
» system test,

» operational,

» specification, design, coding, test, maintenanackraadification of the software.
These various phases of the system life cyclegmeed to inform the analyst on :

* a minimum design quality, design reviews, and qualontrol;

+ the establishment of a structure to co-ordinate rif@ntenance, test, and utilisation
activities;

 a verification, from the design stage onwardshefreliability obtained.

The following convention is employed to complete tolumn relative to the results of the
evaluation of each item ; the maximum score isiobthin the case of maximum diversity.

Example : For the question “ Have the safety-relagecifications been written in different
forms ? 7, the score would be 5 if the languagegleyed to draw up the specifications are
totally different and O if they are identical.

Certain items in the following check lists have ésken from [HSE].
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NO

| TEM TO BE EVALUATED

RESULT

COMMENTS

Have the safety specifications been writtgn CT—1

and developed by different people ?, If nq,
what are the links between these people?

The specification languages can be different..

Itisvery difficult, if not impossible, to introduce real
diversity at system specification level, links often
being necessary between the teams responsible for
drawing up the specifications.

Have the safety-related specifications beén——

verified by different people ? If no, what are

the links between these people?

This verification allows detection of specification
errors (CMF and others). As the specifications
generally congtitute the common point of any
development, even diverse, any fault at this level will
be passed on to all the channels. The comparison
systems being incapable of detecting such faults, it is
important to keep their number to a minimum.

Have the initiating sources of common mpd&cT—1

faults likely to affect the system been
determined ?
CMF determination is vital, fromthe design stage

onwards, to take these phenomena into account
correctly.

HARDWARE SPECIFICATIONS

NO

ITEM TO BE EVALUATED

COMMENTS

Have the hardware specifications been
written and developed by different people
If no, what are the links between these
people?

The specifications can be written in different forms.

It isvery difficult, if not impossible, to introduce real
diversity at hardware specification level, links often
being necessary between two teams responsible for
drawing up the specifications.

Have the common mode faults likely to
affect the hardware been determined ? W




are the potential sources of CMF at the
hardware level?

CMF determination is vital to take these phenomena
into account correctly.

In particular, the possible influences of any external
perturbations, systematic faults and possible common
points are to be analysed.

What is the level of human diversity at work?

» different organisations involved in theT——T—T1—714
design process (2 different companies),

» different teams from the same comparcI—T—_T 11
running the project,

 different designers or programmers,

« (different testers, installers or certificatioT—T—1T—11
personnel.

HARDWARE DESIGN

N° | ITEM TO BE EVALUATED RESULT COMMENTS

Have the different channels been developedc—T—T—T1T—T11
by different people ? If no, what are the
links between these people?

This diversity overcomes, in particular, design faults
of human origin

What are the physical means introduced {o
avoid the physical propagation of faults:

* physical separation? ) o i —

* electrical isolation of the different C—T—1—11
channels?

» Separate power supply ? T 1T T

» use of electrical shielding? I i —

 attribution of emergency equipment|toT—T—1—13
this function alone (no resource shared
with other parts of the system)?

e non-use of components common |tCT—T—T 11
several channels?

Due to the fact that they represent a common point,
the links are potential sources of CMF asthey are
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liable to propagate failures.

Links between channels are normally devoted to
information exchanges and synchronisations. shared
memories, serial or parallel buses.

What are the means which have been us
avoid the logical propagation of faults:

» physical isolation of software modules
executed by two different
microprocessors?

* interactions through shared memories

+ absence of bidirectional links between
systems?

» existence of protocols rendering safe {
transfer of information through buses?

d to

Where diversity in the use of equipment i
be found, this is based on:

« different suppliers for fundamentally
different products?

« the same suppliers for products that &
fundamentally different?

» different suppliers for similar products

- different versions of the same product

re 1

In the case where functional diversity exi
this is based on a difference :

* in underlying mechanisms?

e in functions, control logic or means
activation?

* inresponse time ranges?

The most efficient functional diversity has recourse to
different underlying mechanisms.

Where diversity in the signals is to be fou
this is based on:

+ difference between the measu
physical effects?

o difference between the measu
parameters with the use of the sg
principles?

nd,

reCI

reC

ime
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» redundancy of identical sensors? T T 11
Have the channels been designed with:
 different technologies ?
I N
Digital / analogue, TTL or CMOS etc..
 electronic components of differing I —— —
architectures ?
RISC or CISC microprocessors, which require the
use of different assemblers or compilers.
 electronic components of differing T T 11
versions ?
Different components guard against certain design or
utilisation faults.
 different printed circuits? I S —
 different bus structures? CL 1T 11
Are there shielding s and protective deviges

to protect against electromagnetic
perturbation ?
Shielding and protective devices forma barrier

against common faults likely to be produced by
external perturbation..

Do redundant channels have a common
clock ?

Distinct clocks create a temporal diversity useful in
avoiding CMF of external origin.

Are the different hardware resources test
periodically ?
Periodic tests avoid the accumul ation of faults, and

as a result have an effect on common mode fault
avoidance.

Is there a power supply common to all the

channels ?

Have state of the art rules been followed
during the design of the hardware ?

Respect of state of the art rules avoids the
appearance of certain operational faults. These rules
can be : employing standards and well-tried design,
avoiding unnecessary complexity and difficulties,
correctly sizing components, memory capacity and
processing time, employing components within their
limits of use.

HARDWARE REALISATION




a7

NO

| TEM TO BE EVALUATED

RESULT

COMMENTS

Is there sufficient independence between
creation of the different channels ?

Sources of common faults due to hardware
realisation are less numerous than for software.

theT—

Are the printed circuits of each channel
different ?
A difference at component layout and signal routing

level will improve immunity to common mode faults
of external origin.

HARDWARE TESTING

NO

| TEM TO BE EVALUATED

COMMENTS

Have the hardware tests been conducted
different people from those who specified
and designed the hardware ?

Tests are part of fault avoidance (whether common
mode or not).

The people who specified and designed the hardware
are not the best placed to detect faults during the test
phase.

As a minimum, the tests should be specified by people
other than those who designed and specified the
hardware.

Has there been sufficient independence
between the tests of the different channel

Identical or similar tests can be inappropriate for
hardware fault detection.

In the case of tests revealing a failure, haveCT—

possible common mode related causes b
looked for ?

SOFTWARE SPECIFICATIONS

NO

| TEM TO BE EVALUATED

RESULT

COMMENTS

Have the software specifications been
developed by different people ? If no, wha
are the links between these people?

The specifications can be written in different forms.

It isvery difficult, if not impossible, to introduce real
diversity, at software level, links often being

necessary between two teams responsible for drawing
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up the specifications.

Have the common mode faults likely to
affect the software been determined ? Wi
are the potential sources of CMF at the
system level?

CMF determination is vital to take these phenomena
into account correctly.

In particular, the possibility of introducing systematic
faults over the course of every stage of the software
life cycleisto be analysed.

Does the software redundancy chosen ta
account of common modes ?
Taking CMF into account can / must influence the

choice of structure : temporal, structural, functional
diversity, etc.

What type of diversity has been specified
the software :

* Human diversity ?

* Functional diversity ?

» Signal diversity ? Is so, Input signal
diversity ? Output signal diversity ?
Signal processing diversity ?

* Equipment diversity ?

The types of diversity chosen are determined by the
CMFslikely to affect the software. Of course,
software and hardware diversity are linked.

Homogeneous diversity does not guard against
design faults.

for

Has the software been developed in
accordance with a quality plan or quality
requirements ?

Following a quality plan for the development of a
software product contributes to fault avoidance
(whether common mode or not). Itisvital, in
particular when the software architectureis
homogeneous.

A minimum software quality must be ensured, even in
the case of a diversified structure. Quality avoids the
introduction of software faults, in particular at the
maintenance stage.

SOFTWARE DESIGN
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NO

| TEM TO BE EVALUATED

RESULT

COMMENTS

In the case of diversity, have the different
software products been designed by
different people ?

Be attentive to possible links between teams
responsible for designing different software versions.

Skills of the designers ?

A lack of designer skill can lead to the introduction of
similar faults in the different versions of a software
product.

Are the algorithms identical from one
channel to another ?

Are the development tools employed
identical from one channel to another ?

What logic separation is there between
redundant channels ?
Separation is a constructive technique that does not

propagate the failures of one function to another,
thereby limiting the analyses to sensitive points.

Are there shared memories that could
propagate a logic fault from one channel {
another ?

(0]

Is software execution desynchronised?

Desynchronisation of the execution of two
programmes creates an offset favourable to reducing
faults stemming from common external perturbation,
for example el ectromagnetic perturbation.




SOFTWARE CODING
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NO

| TEM TO BE EVALUATED

RESULT

COMMENTS

In the case of diversity, have the different
software products been coded by different
people ?

Be attentive to possible links between teams

responsible for coding the different versions of a
software product.

Have different programming languages beelI—1

used for each channel ?

Have different compilers or assemblers bperT—

employed ?

SOFTWARE TESTING

NO

| TEM TO BE EVALUATED

RESULT

COMMENTS

Have the testing specifications been
developed by different people ?

Links are often necessary between two teams
responsible for drawing up specifications.

Have the software tests been conducted by 1T—1

people different from those who specified
and designed the software ?
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6. CONCLUSION

The categorie 4 requirement of the EN 954 stanutapticitly orientates the designer towards
redundant structures, that poses the question wimmnm mode failures, inherent to this
concept.

Standardisation bodies have therefore taken cadraw the attention of designers and of
those responsible for the evaluation to the problenked to these types of failures.

This document proposes actions to deal with theméurés when constructing the
dependability of a system (fault tolerance, fauttidance and fault forecasting).

General measures, then measures specific to phe@ocagised by common modes failures,
are given for each of these topics.

A check-list organises the points to be checkethatdifferent phases of the life cycle of a
product, and hence to ensure the arrangements ragdeling the tolerance, avoidance, and
forecasting of common mode failures.
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