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Preface 
 
The European Research project STSARCES Standards for Safety Related Complex Electronic 
Systems aims to harmonise validation methods for safety-related parts of machine control systems. 
 
This is a draft issued to be subject of further discussions. Especially the requirements and the 
connection of requirements at specific categories (see chapter 4) have to be harmonised between the 
STSARCES partners. 
 

Revision Date Changes made Distribution 
0 26 August 1998 First issue BIA, INERIS 
1 4 December 1998 Chapters on coverage and validation 

methods added 
BIA 

2 23 December 1998 Changes to chapter 1.1 and 
requirements. 
Chapter 6 integrated into chapter 2. 
Coverage chapter is now chapter 3. 
Some other minor changes. 

BIA, INERIS 

3 24 February 1999 Chapter 1.3 added. 
Several additions to chapter 3. 
Requirements of chapter 4 updated 
Check lists in chapter 5 modified. 
Some other minor changes. 

All STSARCES 
partners 

4 10 September 
1999 

Addition to chapter 1.1 
Addition of figures to chapter 3 

BIA 
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24 September 
1999 

Changes to chapter 1.1 :  
DCN definition revised 
Changes to chapter 1.3 : 
new text added, rectification of the 
reference in last paragraph. 
Figures on applicable architecture 
configurations added. 
Changes to chapter 3 : 
Tables listing proprieties of methods 
for diagnostic coverage are slightly 
modified. 
Changes to chapter 4 

 
All STSARCES 
partners 
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29 February 2000 Summary and conclusion added. 
Page numbers included in the table 
of contents 

 
INERIS 
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Scope 
 
 
Work Package 2.2 ”Methods for Fault detection” of the European research project STSARCES has 
the objective to establish which techniques and measures that can be regarded as basic or well-tried 
safety principles for detection of hardware faults in machine control systems. It is part of the 
STSARCES WP 2 ”Hardware Safety”, which also contains WP2.1 ”Quantitative analysis of complex 
electronic systems using fault tree analysis and Markov modelling”. 
 
This document contains an introduction (chapter 1), a background description of the techniques 
(chapter 2), calculation and definition of diagnostic coverage (chapter 3), listing of the requirements 
(chapter 4) and validation methods (chapter 5). The introduction and the background description is 
regarded to be needed to harmonise the opinions of the STSARCES partners. The overall hardware 
architecture is not discussed in this document. 
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Summary 
 
The evaluation of hardware safety is an important factor when assessing the overall characteristics of 
a safety-related system according to the machinery directive. The increasing integration of 
programmable electronics in industrial equipment adds new aspects that need to be considered. The 
experience and knowledge gathered from existing systems and the modern approach in system 
development could contribute to the validation process. The present work is an attempt to lay down 
some reference marks on existing methods and principles considered as state of the art. It also 
clarifies the interdependency between architecture design, diagnostic coverage and category (i.e. the 
system behaviour at fault).  
 
The basic concepts of diagnostic coverage, test interval and architecture are explained. Measures for 
checking of processing units, memory, I/O units, interface, data paths, power supply and program 
sequence are described. These measures are then group into requirements for control systems to be 
used with safety functions of different category. 
 
Eventually, preliminary tables are presented in order to summarise the aspects related to the validation 
of safety-related systems. 
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1 Introduction 
 
 
Programmable electronic systems (PES) have the ability to detect faults within themselves before a 
fault is manifested as a failure of the system. The techniques and measures used focus on different 
parts of the electronic hardware and may require different amount of system effort. It is regarded as 
state-of-the-art to implement techniques for fault detection in PES used in safety-critical applications. 
 
It is easy to imagine some possible faults which can cause unexpected behaviour of the machine 
which is controlled. A bit in a memory cell may be stuck at ”0” or ”1”. The output circuits may be 
stuck at ”ON”. A software fault may cause a task to enter an ”eternal loop”. Perhaps interruptions in 
the supply power, or variations in the voltage level, may influence the execution of the software. Data 
transferred on serial communication lines may be distorted by interference. An internal CPU fault 
might cause incorrect execution. There are techniques and measures to detect such faults before the 
machine gets out of control. 
 
All safety critical systems should undertake basic measures to detect the faults, and possibly control 
the failures which might occur. The standard EN 954-1 specifies 5 categories for system behaviour at 
fault. Basic safety principles should be implemented for categories B, 1, 2, 3 and 4. For categories 1, 
2, 3 and 4 also well-tried safety principles have to be implemented. The presence and performance of 
the safety principles must be validated. 
 
It does not yet exist a common understanding if a certain measure fulfils the requirements for safety 
principles for a specific category. 
 

Catego
ry 

System behaviour Principles to achieve 
safety 

B The occurrence of a fault can lead to the loss of the 
safety function. 

Mainly characterised by 
selection of components 

1 As in category B, but the probability of occurrence is 
lower than in category B. 

" 

2 Faults are detected by periodic checks at suitable 
intervals. 
The occurrence of a fault can lead to the loss of the 
safety function between the checks. The loss of the 
safety function is detected by the check. 

Mainly characterised by 
structure 

3 When a single fault occurs the safety function is always 
performed. 
Some but not all faults will be detected. 
Accumulation of undetected faults can lead to the loss 
of the safety function. 

" 

4 When the fault (faults) occur the safety function is 
always performed. 
The fault (faults) will be detected in time to prevent the 
loss of the safety function. 

" 

 
Figure 1a.  Summary of categories for system behaviour at fault according to standard EN954-1. 
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1.1 Diagnostic coverage 
 
Simple tests will not detect all hardware faults. Elaborate tests will detect many hardware faults at the 
cost of much processing effort spent. The diagnostic coverage, DC, is defined as the fractional 
decrease in the probability of dangerous hardware failure resulting from the operation of the 
automatic diagnostic tests. [IEC 61508-4, clause 3.8.6] See formula 1. If the test detects all faults, the 
coverage is 100%. If no faults are detectable, the coverage is 0%. 

 

diagnostic coverage DC  =  
the probability of ected dangerous failures

the probabilty of total dangerous failures

det
     [1] 

 
Another definition of diagnostic coverage, DCN,  (see formula 2) relates to the fraction of total number 
of different failures that is detected during a particular test. There can be large differences between 
the two ways to define the diagnostic coverage. The probability based approach distinguishes between 
faults which occur with different probability, while the number based approach does not. A test 
technique which detects faults occurring with high probability is very well likely to have a high DC, 
but may have a low DCN if there is a large number of low probability faults which are not detected.  
 

diagnostic coverage DCN = 
the number of dangerous failures ected

the total number of dangerous failures

det
 [2] 

 
It may be hard to find numerical values for the probabilities of different faults. Sometimes the 
assumption is made, that all faults have the same probability. This is always an approximation of 
reality. 
 
It is possible to make a numerical calculation of the coverage of some methods. While the coverage of 
some other methods may have to be expressed in qualitative ways such as ”high/medium/low”. An 
estimation of the diagnostic coverage will be needed to be able to compare two diagnostic test 
methods. 
 
A translation from the qualitative definition “low/medium/high”, to a quantitative measure expressed 
as a percentage will be needed. This report has chosen to follow the definitions suggested by the IEC 
61508 standard. (See figure 1.) High coverage is used for techniques and measures with a probability 
higher  than 99% to detect a fault. Medium coverage means a probability less than 99%, but higher 
than 90%. Low coverage will correspond to a diagnostic coverage greater than 60%, but lower than 
90%. Techniques and measures offering less than 60% probability to detect faults are to be avoided in 
safety-related parts of control systems. 

Low

0 60 90 99 100

Medium

High

 
 

Figure 1. Diagnostic coverage defined as low, medium and high. 
 
When numerical values are needed in calculations, 60% is used for “low” coverage, 90% is used for 
“medium” coverage and 99% is used for “high” coverage. 
 
The quantification of the diagnostic coverage for different methods of fault detection in memory and 
I/O units (in chapter 3 of this report) is based on values extracted from the IEC 61508 standard. Those 
values are the results of theoretical studies based on a simplified probabilistic approach. The lack of 
data concerning the various types of memory chips, and the assumption that the potential faults are 
equally distributed introduce a number of uncertainties. 
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Similar uncertainties are introduced for other parts of the PES. The probability of different faults in 
the processing unit will depend on the type of processor, the manufacturer, the production process, the 
design etc. It is hardly possible to state a probability that will be valid in all cases. Assuming a normal 
fault distribution of possible faults, the previous expressions [1] and [2] for the diagnostic coverage 
become equivalent.  
 
Faults in the programme sequence will have different probabilities depending on the programming 
language, the experience of the programmer, the testing effort etc. It will not be easy to state a 
probability-based diagnostic coverage for the programme sequence monitor. 
 
The most valid estimation of diagnostic coverage for a fault detecting method should at this stage be 
limited to one of the three levels referred earlier in this section; low, medium or high. The level 
chosen may be different if probability, or numbers of errors, is used for the definition of diagnostic 
coverage. However, the level will be the same if all faults are equally probable. 
 
 

1.2 Diagnostic test interval 
 
Methods for fault detection can be used at power-up to establish if the electronic system is fit to start 
operating. Faults should be detected at start, and operation must not be allowed to start when faults 
are detected. Such a power-up test will not detect faults which occur during operation. Thus it will not 
be suitable for systems of high safety integrity with strict requirements for behaviour at fault. Power-
up testing is sometimes used in systems with moderate safety requirements, and short operating time 
between power-ups. 
 
Fault detection may also be performed at run-time to find faults occurring during operation. The 
diagnostic test interval will be of great importance to decide for which applications the system can be 
used. The test interval will be the maximum time during which an undetected fault may exist.  
 
The diagnostic test interval is defined as the interval between on-line tests to detect faults in a safety-
related system that have a specified diagnostic coverage [IEC61508-4, clause 3.8.7]. 
 
The application will decide the requirement for diagnostic test interval. It is not easy to define an 
exact requirement for a certain category. The failure rate being generally much greater than the 
diagnostic test interval, the diagnostic time interval should nevertheless not be longer than 1% of the 
mean time between operation demands.  
 
 

1.3 Architecture 
 
Different hardware architectures are possible for a PES intended to fulfil category 2, 3 or 4. Category 
2 is often realised by a single channel structure, which is called a 1oo1 system (1 channel out of 1 
provides the safety function). Category 3 may be realised by a single channel system in combination 
with auxiliary components such as an electromechanical module, or by a dual channel system. A PES 
intended to claim category 4 will probably be either dual-channel or triple-channel. Other more 
advanced architectures may certainly be used for any of the categories, but this is not state-of-the-art 
due to financial restrictions on the design. 
The safety principles required will depend on the hardware architecture chosen. A dual-channel 
system employing safety principles of medium diagnostic coverage may provide the same probability 
for failure of the safety function, as a single channel system using safety principles with high 
diagnostic coverage. Faults in the single channel will have to be more accurately detected to provide a 
high probability of failure-free operation. A dual-channel system may tolerate an undetected fault in 
one of channels, while the other channel still provides the safety function. 
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In a similar way, a triple-channel system will need less efficient safety principles, than a dual-channel 
system. These differences will be reflected in the requirements on which safety principles to be 
employed for a specific category. (See the tables of chapter 4.) 
 
 

PES

Components/ 
Parts of the 

safety-related 
system

PES

PES

PES

PES

PES

 Figure 1.3.a Single channel

Figure 1.3.d Tripple channel

Figure 1.3.b Dual channel

IN OUT IN OUT

IN OUT

Examples of block diagrams for cathegory  3 control systems

PES

PES

Figure 1.3.c Dual channel

IN OUT

Examples of block diagrams for cathegory  4 control systems
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2 Description of methods 
 
There are several aspects in a programmable electronic system which can be automatically self-
checked. The following chapter gives some background and explanations to the different techniques. 
 
 

2.1 Processing units 
 
The processing unit of the PES may suffer from faults which may cause malfunction. Examples of 
such faults could be bit errors in one of its internal registers, or malfunctioning of the instruction 
decoder.  
 
Self-testing is employed by designing software routines which test the functionality of the processing 
unit. Certain operations are performed, and there will be only one correct result of such a test. The 
principle of letting a processor which might be defect check itself, relies on the assumption that a fault 
will corrupt the result of the self-check. The self-test has to be designed in such a way that the risk for 
a fault corrupting the test itself is negligible. 
 
Some tests on the processing units are very hard to perform during run-time. A processing unit in full 
operation will make use of all registers, flags etc. It may be easier to perform exhaustive tests of the 
processing unit at power-up before the application software has been started. 
 
Another approach is to let two processing units exchange data, and then compare the result. A fault in 
one of the processors is supposed to be detected by the other processor. 
 
Following are examples of measures and techniques which are often employed to detect faults in 
processing units: 
- self test of the execution of the instruction set.  
- self test of registers by patterns or walking-bit [IEC61508-7, clause A.3.1, A.3.2]  
- reciprocal comparison by software between two processing units [IEC61508-7, clause A.3.5] 
 
 

2.2 Invariable memory ranges 
 
Semiconductor memories may fail to work as intended. A fault in the invariable memory will corrupt 
the source code and constants stored there. The instructions to the processing unit may be distorted, 
and important constants and parameters will be incorrect. This will result in an unpredictable 
behaviour of the machine control system. It is important to try to detect such faults before the 
execution is disturbed. 
 
The methods for checking of invariable memory all rely on reading the memory cells and compare the 
read values to what originally stored there. This may be done by direct comparison to a duplicate area, 
or by calculating a checksum (or signature). The checksum will then be compared to the sum which 
was originally calculated and stored in memory. 
 
Memory tests can be quite time consuming. It may not be possible to cover the complete address 
range at one time. Run time checking is often performed by checking only a limited address range 
each time the memory test task is started. After a large number of calls to the memory test task the 
complete memory will have been tested. 
 
Example: A 8 kbyte ROM memory is check summed by adding 8 bytes to the check sum every 

time the memory test task is called. It will take a total of 1024 calls (8*1024/8=1024) 
before the check sum is completed. If the memory test task is started every 50 ms, the 
diagnostic test interval will be 51 seconds (1024*50ms= 51.2 seconds). 
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It will not always be possible to use time-consuming memory tests at reset or power-up. The operator 
might find the time to wait for system start too long. In such cases, a simple power-up test may be 
combined with a more exhaustive run-time test. 
 
Following are examples of measures and techniques which are often employed to detect faults in 
invariable memory ranges: 
- checksum [IEC61508-7, clause A.4.2] 
- 8-bit signature [IEC61508-7, clause A.4.3] 
- 16-bit signature [IEC61508-7, clause A.4.4] 
- replication [IEC61508-7, clause A.4.5] 
 
 

2.3 Variable memory ranges 
 
Semiconductor memories may fail to work as intended. A fault in the variable memory will corrupt all 
variables stored in memory. This will result in an unpredictable behaviour of the machine control 
system.  
 
The methods for checking variable memory rely on different ways to stimulate the memory cells, and 
check that the function correctly. Test patterns of different complexity can be written and then read 
back. A complex test pattern will have a higher diagnostic coverage than a simple test pattern. 
 
Example: A simple test of variable memory can be made by writing and reading bit patterns 

according to the following: 
- save contents of memory cell to test. 
- write bit pattern 055H. 
- read and compare memory cell with 055H. Handle error if no correspondence. 
- write bit pattern 0AAH. 
- read and compare memory cell with 0AAH. Handle error if no    correspondence. 
- restore  contents of memory cell. 

 
Also testing of variable memory can be time consuming, as described above for invariable memory. 
 
Following are examples of  measures and techniques which are often employed to detect faults in 
variable memory ranges: 
- RAM test ”checkerboard” or ”march” [IEC61508-7, clause A.5.1] 
- RAM test ”walkpath” [IEC61508-7, clause A.5.2] 
- RAM test ”galpat” [IEC61508-7, clause A.5.3] 
 
 

2.4 I/O Units and Interface 
 
Interfaces to external units are present on many safety-related machine control systems. They can be 
analogue, digital, serial or parallel. The external communication through these interfaces can be of 
great importance for the safety. The status of the I/O units and interfaces may be critical, and should 
therefore be monitored. 
 
 
Example: The semiconductor outputs of a safety-related PES are doubled and monitored. A 

fault in one output transistor will be detected, while the other transistor still is able to 
switch off the output load. 
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                                                                                             + 24VDC 
 
                        Control 1 
 
 
                        Monitor 1 
                                                                                                     Load 
 
                        Monitor 2 
 
 
                        Control 2 
 
 
                                                                                             Ground 
 
Following are examples of measures and techniques which are often employed to detect faults in I/O 
and interfaces: 
- multi-channel parallel output [IEC61508-7, clause A.6.3] 
- monitored outputs [IEC61508-7, clause A.6.4] 
- input comparison/voting [IEC61508-7, clause A.6.5] 
 
 

2.5 Data paths 
 
Even a physically small PES may consist of several internal units which communicate. Examples of 
such data paths are electrical parallel buses, serial buses and optical fibres. The data paths between 
the internal units may fail, and should be checked. 
 
Important signals, such as alarm signals, originating from one unit should be detected and processed 
by the appropriate receiving unit. 
 
Example: An optical fibre is used as data path between two modules of a safety-related PES. All 

messages have an 16-bit checksum included, and all safety-related commands are 
transmitted twice before they are accepted and executed by the receiving module. 

 
Following are examples of measures and techniques which are often employed to detect faults in data 
paths: 
- inspection using test patterns [IEC61508-7, clause A.7.4] 
- transmission redundancy [IEC61508-7, clause A.7.5] 
- information redundancy [IEC61508-7, clause A.7.6] 
 
 

2.6 Power supply 
 
All safety-related programmable electronic systems should have some kind of circuitry to ensure that 
operation will not be started before an adequate supply voltage has been reached. The behaviour of 
the processor and other electronic circuits is specified only for a specific voltage range.  
 
Monitoring of the supply voltage level will be important also during run-time. Interruptions of the 
supply power will cause the electronic hardware to enter an undefined range where the exact 
behaviour cannot be foreseen. The monitoring circuit must give an alarm in time before the voltage 
reaches a threshold value. The PES should have a ”graceful death” bringing the controlled machinery 
to a safe state. 
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The programmable electronic system should then have time to take proper action to enter a safe state. 
It may also be necessary to save machine status and calculated values in a non-volatile memory. 
 
The output signal from the hardware circuit monitoring the supply power can be either static or 
dynamic. The output from a static monitor will indicate proper power supply with a constant high or 
low output signal. A change of the output will give an alarm to the processor. A monitor built on a 
dynamic principle will have a dynamic output signal. Power failure will be indicated by a constant 
signal. 
 
The most common way to implement a supply power monitoring is to use a standard commercial 
supply power monitor circuit. Such ICs are available from several semiconductor manufactures. A 
disadvantage with this type of circuit is that it is normally not testable, i.e. a fault in the circuit will 
not be noticed before the PES is shut down in an uncontrolled way. 
 
Supply Power 
+ 
 
 
                                Reset                    Reset                     Microcontroller 
                                logic                                        RES 
                                IC                                                             INT 
 
 
                                Low voltage                                    Alarm 
                                monitor 
 
 
Figure 2.6.a Example of block diagram of external circuits for power-up reset and detection of low 

supply voltage 
 
Supply Power                                                                                                                      + 
+ 
 
 
                                Reset                    Reset                     Microcontroller 
                                logic                                        RES 
                                IC                                                             INT 
 
 
                                Low voltage                                    Alarm 
                                monitor 
 
 
 
 
 
 
                                Reset                    Reset                     Microcontroller 
                                logic                                        RES 
                                IC                                                             INT 
 
 
Figure 2.6.b  Example of block diagram of external circuits for power-up reset and detection of low 

supply voltage in a dual-channel system. 
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Also over-voltage may create unwanted behaviour of the control system. Checking facilities can also 
be implemented to react on over-voltage before the specified operating voltage is exceeded, and the 
behaviour cannot be guaranteed. One example when over-voltage detection is needed may be a dual-
channel system using a single power supply. 
 
Following are examples of measures and techniques which are often employed to detect faults in the 
power supply: 
- over-voltage protection with safety shut-off [IEC61508-7, clause A.8.1]. 
- monitoring of secondary voltages [IEC61508-7, clause A.8.2]. 
- power-down with safety shut-off  [IEC61508-7, clause A.8.3]. 
 
 

2.7 Program sequence 
 
The execution sequence of the software may be distorted by either software faults, hardware faults or 
environmental disturbances. This will with great probability lead to incorrect behaviour of the 
programmable electronic system. The consequences of such a fault are not possible to foresee since 
”anything may happen”. However, there are well established techniques to monitor the programme 
sequence. 
 
The monitoring of programme sequence may be realised both in hardware and in software. A 
combination of a hardware unit (”watchdog”) with a logical monitoring realised in software will be 
the most powerful. But also less sophisticated techniques built on simple hardware or software 
solutions will certainly be able to detect some errors in the programme sequence. 
 
 

2.7.1 Monitoring by hardware 
 
A watchdog is defined as a hardware design which monitors the operation of internal hardware 
functions, and/or application programme functions, and/or system software functions and will result 
in a safe condition if not periodically reset at a predetermined interval. [prEN 12978] In practice, this 
means a timer circuit which is triggered by the processor at a periodic interval. If the trigger does not 
reach the watchdog, a stop or reset signal is given to the processor. 
 
 
                                                            Trigger 
 
                            Watchdog                                                 Processor 
 
                                                          Stop/Reset 
 
 
 

Figure 2.7.a. Watchdog, block diagram 
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Trigger from 
microcontroller 
 
 
Alarm signal from 
watchdog 
 
 
                                    Normal operation 
 
 

Figure 2.7.b.  Watchdog triggering and alarm signals 
 
There are several hardware solutions for watchdog functionality. Many microcontrollers offer a 
watchdog circuit on-chip. The watchdog is then programmed, activated and controlled through 
internal registers of the controller. There are also special circuits available to supervise 
microcontrollers. Such circuits often offer the facility of a watchdog. Another solution is to design a 
separate hardware circuitry based on a monostable flip-flop which has to be retriggered at a specified 
interval. 
 
The watchdog circuit is preferred to be hardware independent from the processor itself. The same 
error which causes the fault in programme sequence should not cause also the watchdog to stop 
functioning. There is an increased risk for this if the watchdog is integrated on the same chip as the 
processor. Special caution must be paid if the time base used by the processor and the watch dog is 
the same. A clock fault might then affect both the microcontroller and the watchdog. 
 
A good watchdog should be tested or fail-safe. Systems with high requirements for functional safety 
may let the processor fake a watchdog alarm at every power-up, or at a periodic interval. The 
processor will then detect if the watchdog is non-operational. Otherwise there is a risk for a fault in 
the watchdog to pass unnoticed, until it really will be needed. Another possibility is to design a 
watchdog circuitry where single hardware faults will cause an alarm. 
 
 

2.7.2  Software aspects 
 
Software must be used to generate the trigger to the watchdog hardware circuit. It may also be used to 
check the programme sequence even if no hardware has been implemented as watchdog.  
 
The simplest way of triggering in a cyclical system is to check the program sequence once every 
cycle. It is not advisable to make the checking or watchdog triggering in a dedicated interrupt routine 
or isolated task. Such a triggering will only prove that one single routine or task is running. The main 
program may be ”locked up”, without this influencing the execution of a time triggered interrupt 
routine. 
 
A more powerful way to check the program sequence by software, is to use trigger flags and key 
words to indicate that all the significant parts of the software are active and executed in the correct 
sequence. 
 



16 
 

 
 

 
             Software module 1 
 
 
             Set monitor pattern 1 
 
 
              Software module 2 
 
 

              
Set monitor pattern 2 

 
               
              Software module 3 
 
 
             Set monitor pattern 3 
 
 
 
                  Are all monitor            No       Safe 
                   patterns set ?                           state 
 
               Yes 
 
 
 

Figure 2.7.c.  Example of program sequence monitoring by software 
 
 

2.7.3 Actions at fault 
 
A detected fault in the program sequence will require different kinds of actions depending of the type 
of system. It is important that the correct action is taken. It will not be enough to design a watchdog 
into the system, and not specify properly which action shall be taken at fault. 
 
Most machines have a safe state which shall be entered when a fault is detected. A watchdog circuit 
may force the processor and the outputs to the safe state where signals are inactive. Another 
possibility is that a watchdog alarm will cut the power to the outputs and leave the machine in safe 
state. (See figure 2.7.d.) This safe state must not be possible to exit without a dedicated action of 
reset.  
 
For applications with requirements for high availability, the watchdog alarm may be used to isolate 
one of the processors and let a redundant unit take over without affecting the normal operation of the 
system. 
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              Processor                         I/O Circuits                          Power 
 
 
 
                                   Watchdog 
 
 
 
                                                                                                  Valve 
 
 

Figure 2.7.d.  The watchdog may be used to disconnect the outputs. 
 
 
A single-channel system which is intended to run in continuous mode should be reset by a watchdog 
alarm, and the operation should continue as soon as possible. No safe state exists in this case, and 
there will be risks associated with an inactive processor. 
 
If the control system contains any values measured or calculated during run-time, it must be specified 
how these values shall be handled after a watchdog alarm. Can they still be trusted and used, or must 
all such values be reset to default? 
 
 
2.7.4  Examples 
 
Following are examples of measures and techniques which are often employed to detect faults in 
program sequence: 
- an on-chip watchdog with separate time base without time-window, e.g. Motorola microcontroller 
68HC11 [IEC61508-7, clause A.9.1] 
- a watchdog with separate time base without time-window, e.g. a Maxim microprocessor supervisor 
IC [IEC61508-7, clause A.9.1] 
- logical monitoring of programme sequence implemented in software[IEC61508-7, clause A.9.3] 
- combination of temporal and logical monitoring of programme sequence [IEC61508-7, clause A.9.4] 
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3 Diagnostic coverage 
 

3.1 Processing unit 
 
The central processing unit (CPU) is responsible for executing all software instructions in their 
programmed sequence. 
A correct function of the CPU relies upon the use of adequate features for control and avoidance of 
faults or dysfunction in any of its components. The arithmetic/logic unit,  the control unit, the main 
memory, stacks and registers are integral parts of the CPU.  
 
The arithmetic/logic unit  
 
The arithmetic/logic unit (ALU) operates as the processor’s calculator, executing operations and 
returning the results to the main memory. 
The operation of the arithmetic/logic unit and control unit depends on the contents of associated 
registers, accumulators and stacks. These accumulators, stacks, and registers hold the operands 
necessary to the execution of the arithmetic instructions as well as the results of arithmetic 
calculations or data manipulations.  
 
The control unit 
 
The task of the control unit is to interpret machine instructions and to issue commands to all other 
units such as storage devices, input and output devices, and main memory. 
The current value of the control register indicates at which address the next instruction shall be 
fetched. The function of the instruction control unit is to generate the microprogram  which results 
from the decoding operations performed by the instruction decoder.  
The types of faults which may affect the instruction control unit may depend on register and main 
memory faults or on faults in the instruction decoder. The register faults are similar to memory faults. 
Faults in the instruction decoder may be a combination of faults in main memory and registers and 
faults in the decoder logic.  
 
The main memory registers and stacks 
 
The main memory is used for short term storage, holding data which is currently needed to carry out 
processing instructions.  
Normally, program instructions and data are stored in different places in the main memory. The area 
of main memory where program instructions are held while awaiting execution is the instruction 
stack. 
 
The registers  
. Accumulator where results of computations are hold 
. Storage register where data about to be used is stored 
. Addressed register 
. General purpose register 
are used to hold current data and sometimes sections of the program to be processed.  
 
The types of faults or dysfunction which may affect the main memory, stack and registers are similar 
to those listed in the following section. (3.2 Memory ranges). Consequently certain methods used to 
detect or avoid faults in the CPU may be common those used to detect faults in memory units. 
 
There are several methods to achieve fault diagnostic coverage of the processing unit of which the 
following can be used to reach a specified rate of coverage.  
 



19 
 

 
This work shall focus upon the methods listed in the IEC 61508 standard (part 2, A.4). 
  Comparator 
  Majority voter 
  Self-test by software: limited number of patterns (one channel) 
  Self-test by software : walking bit (one channel) 
  Self-test supported by hardware (one channel) 
  Reciprocal comparison by software 
 
 

3.1.1 Comparator (IEC 61508-7, A.1.3)  
 
This method is applicable for the detection of errors in instruction decoding and execution.  
In dual or multi-channel systems a special device provides for the detection of  fault/error by means of 
comparison of data from the different channels. 
The periodicity of the test execution shall comply with the specific application in order to reach an 
acceptable level of diagnostic coverage.  
If a fail-safe comparator device is used, a continuous execution of the test procedure or an adequate 
periodic repetition frequency of the test should provide for a high diagnostic coverage. In the 
following example, the comparator is a hardware device. 

Figure 3.1a 

Channel 1 Channel 2

Comparator

Comparator in a dual-channel system  
 
 
In the following example the comparator is implemented by software. The multiple processing is 
realised by two independent sets of data and application programs. Since there is only one processing 
unit, the double processing is performed in sequence as shown in the figure. The independent output 
results are checked by the software comparator. 
A high fault diagnostic coverage is achieved if the implementation of the two application programs is 
diverse. 
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Application 
program 1

Application  
program 2

Comparator

In 1

In 2

Out 1
Out 2

Out

T

T 1

T 2

T3

 
Figure 3.1 b          Software comparator single channel 

 
 

3.1.2 Majority voter (IEC 61508-7, A.1.4) 
 
This method is applicable for the detection of errors in instruction decoding and execution in multi-
channel systems. The method shall detect and mask failures in one of at least three hardware channels. 

Channel 1 Channel 2 Channel 3

VOTER 

OUT

Figure 3.1 c            Voter in a three channel system  
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3.1.3 Self-test by software: limited number of patterns [one channel] 
(IEC 61508-7, A.3.1) 
 
Standard techniques are used for the hardware construction. The failure detection is realised by means 
of specific software functions which provide for self-tests using at least two data patterns.  
For example a periodic testing can be carried out by introducing the test patterns 77hex and 88hex.  
A low fault diagnostic coverage is achieved by this method. 
 
 

3.1.4 Self-test by software : walking bit [one channel] (IEC 61508-7, 
A.3.2) 
 
This test method is focused on faults which can affect the memory parts of the processing unit. 
Assuming that the hardware consists of standard memory type without any parity bit, software test 
functions are implemented. Self-tests are performed by using a data pattern to check the physical 
storage medium (stacks, registers, accumulators).  
Given a specific memory unit to check, the different cells are sequentially addressed with a one bit 
value. The content of all the cells in the register are then read. The same procedure is repeated for the 
next cell until all cells are addressed. 
A medium fault diagnostic coverage is achieved by this method. 
Example : test of a four-bit register 

0 00 0

0 0 0 1

0 1 0 0

Content of register when starting the test walking-bit sequence 

0 01 0

Testing sequence starts

After checking the content of the register, the content of the adressed cell is reset to its  
previous value.

This procedure is then repeated untill all the cells in the register are set.

0 0 1 0

0 0 0 0

Figure 3.1 d      Walking-bit ( one-channel)  
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3.1.5 Self-test supported by hardware [one channel] (IEC 61508-7, 
A.3.3) 
 
Hardware supported test method for failure detection. A periodic hardware facility may be used for 
monitoring a certain bit pattern according to the watchdog principle. 
 
A medium fault diagnostic coverage is achieved by this method. 
 
 

3.1.6 Reciprocal comparison by software (IEC 61508-7, A.3.5) 
 
The method is built on the comparison result of data exchanged between the processing units of a 
multi-channel architecture. The types of data include results, intermediate results and test data.  
The detection of discrepancies results into the generation of an error/failure message.  
 
A high fault diagnostic coverage is achieved by this method. 
 
 

3.1.7  Summary of examples 
 
The table in figure 3.1 lists methods for checking the processing units. The list is not exhaustive, and 
other acceptable methods exist, 
 

 
Test method for diagnostic 
coverage of processing unit 

Maximum achievable fault 
diagnosis coverage  

 
Reference in IEC 61508- 7 

Comparator High A.1.3  
Majority voter High A.1.4 
Self-test by software : limited 
number of patterns (one 
channel) 

Low A.3.1 

Self-test supported by software 
: walking bit 

Medium A.3.2 

Self-test supported by hardware 
(one channel) 

Medium A.3.3 

Reciprocal comparison by 
software 

High A.3.5 

 
Figure 3.1 Examples of test methods of processing unit 

 
 

3.2  Memory ranges 
 
One aspect of memory design involves ensuring the integrity of data stored in memory. Memory 

devices can sometimes develop permanent faults which cause the memory to function incorrectly.  
Faults in a memory device can affect three different functions:  

- The memory cell array,  
- The decoder logic   
- The Read/Write logic. 
 
Memory Cell Array   
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A memory unit is built of memory cells. Physical cellular alterations such as metallization short-
circuits and capacitive coupling may lead to the following types of  faults: 

1. One or more cells are stuck at 0 or 1 
2. The occurence of a coupling between one or several pairs of cells. In such a case, the transition 

from x to y in one cell of the pair induces a state transition in the other cell. 
 
Decoder 
 
The function of the decoder is to select a unique memory cell for a specific address. The occurence of 
any failure in the decoder logic gives rise to one of the following behaviours :  
 
1. The decoder does not access the addressed cell and may even access non addressed cells. 
2. The decoder accesses multiple cells, including the addressed cell. 
 
Depending on the logic used, the case of no access to an addressed cell is equivalent to that cell stuck 
at 0 or stuck at 1. 
The case of multiple accesses is equivalent to coupling between cells in the memory cell array. 
 
Consequently, the faults encountered in the decoder do not need to be treated specifically since they 
are in every aspect similar to the set of faults observable in a memory  cell array. 
 
Read/Write Logic 
 
Independently of the type of memory ( variable, invariable), the device can be considered to have K 
inputs and N outputs. The occurence of any failure in the Read/Write logic gives rise to one of the 
following behaviours : 
 
Data input lines or data output lines may interact with each other via short-circuits or capacitive 
coupling. These errors are equivalent to coupling between memory cells. 
 
Output lines of the sense amplifier logic or write driver logic may be stuck at 0 or stuck at 1. In either 
case this fault is equivalent to stuck-at-0 or stuck-at-1 memory cells that correspond to the stuck 
output lines.  
  
The purpose of the following sections is to point out adequate methods and techniques to achieve 

specified levels of diagnostic coverage. These techniques, adapted to the current type of memory 
device, shall concentrate on faults in the memory cell only.  

 
 

3.2.1  Invariable memory ranges 
 
There are several methods to achieve fault diagnostic coverage of memory units of which the 
following can be used to reach a specified rate of coverage.  
 
This work shall focus upon the methods listed in the IEC 61508 standard (part 2, A.5 - A.6).  
 Word saving multi-bit redundancy 
 Modified checksum 
 Signature of one word (8 bit) 
 Signature of a double word (16 bit) 
 Block replication 
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3.2.1.1 Word saving multi-bit redundancy ( IEC 61508-7, A.4.1) 
 
The multi-bit redundancy technique is used to detect single bit errors, 2-bit errors, 3-bit errors, and 
all-bit errors in a 16-bit word. A common approach to error bit detection, is the simple parity 
technique where one parity bit is added to each character.  
 
The word saving multi-bit redundancy is a variation of simple parity and is achieved by the addition 
of several redundant bits, a so called check code,  to each word. By doing so the probability of multi-
bit error detection is increased. 
 
Usually data rarely consist of long continuous streams of bits. Data access or recovering is broken 
into blocks of data. 
A block code converts a fixed length of  K data bits to a fixed length N code word, where N > K. The 
rate of the code is the ratio K / N, and the redundancy of the code is 1 - (K/N).  
 
The procedure can also be used to detect addressing errors, by calculating the redundant bits for the 
concatenation of the data word and its address. 
 
Diagnostic coverage : medium 
 

DCN  =  
[ ]

[ ]
∑ ∑ ∑ ∑

∑

+ − + − + −all gle bit errors all bit errors bit all bit errors

all possible errors

sin 2 3
  

 
 
3.2.1.2  Modified checksum  (IEC 61508-7, A.4.2) 
 
Common to all checksum techniques is that one set of code is generated by a specific algorithm. This 
set of code, representing the contents of a memory area is then stored as the defined checksum value. 
At runtime, during self test, a new set of code is generated by the same algorithm and compared with 
the stored value. If a difference occurs an adequate measure is taken and/or a failure message is raised 
to bring the condition to the attention of the user/operator.  
 
What characterises a checksum technique is the nature of the set of code generated and the type of 
algorithm used. The combination of those two factors permits to chose the appropriate method for a 
specified rate of diagnostic coverage. 
 
In the case of the modified checksum a single word is generated and saved. This word represents the 
contents of all words in memory.  
  
A modified checksum is a fault/error control technique in which a single word representing the 
contents of all words in memory is generated and saved. The algorithm applied to derive the 
checksum value shall use all the words in the current block of memory. 
During self test, a checksum is produced from the current algorithm and compared with the previously 
saved checksum value. The detection of a difference shall result in a predefined  invariable memory-
error measure and/or message. 
 
Diagnostic coverage :  
 

DCN =  
[ ]

[ ]
∑ ∑

∑

− + −all odd bit errors even bit errorss

all possible errors
 ≈ 50 % 
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3.2.1.3  Signature of one word (8 bit) (IEC 61508-7, A.4.3) 
 
This technique is used to detect 1-bit errors and multi-bit errors within a word.  
 
The Cyclic redundancy check (CRC), is used in applications involving detection of small changes in 
blocks of data. Such applications include start-up verification of ROM code, program and data 
correctness validation.  
 
The CRC algorithm operates on a block of data as a unit. The CRC algorithm divides this single large 
value by the CRC polynomial or generator polynomial. CRC polynomials are designed and 
constructed for test of data blocks of limited size. Larger amount of data invalidate some of the 
expected properties such as the guarantee of detecting any 2-bit errors.  
 
The remainder of the division between the value of the data block and the CRC polynomial is the 
CRC result or signature. In the case of Signature of one word technique, the CRC result shall be at 
least one word in size. 
 
The signature is sent or stored along with the original data. When the data is received or recovered 
from storage, the CRC algorithm is reapplied and the latest signature compared with the original 
signature. A failure message is raised if there is a difference. 
  
Diagnostic coverage  : DCN =   
 

[ ]
[ ]

∑ ∑ ∑

∑

− + − +all bit errors all multi bit errors within a word all possible bit errors

all possible errors

1
 

= 99.6 % 
 
 
3.2.1.4   Signature of a double word (16 bit) (IEC 61508-7, A.4.4) 
 
This technique is used to detect 1-bit errors and multi-bit errors within a word, as well as all possible 
bit errors. 
 
The signature of a double word technique is a variation of the signature of one word technique where 
the CRC result value is at least two words in size. 
For 16-bit polynomials, the maximum designed data length is generally 215 - 1 bits, which is just less 
than 4K bytes. Consequently, a 16-bit polynomial is not the best choice to produce a single result 
representing an entire file, or even to verify a single EROM device, of  size 8K or more. 
 
Diagnostic coverage : 
 
DCN   =  

[ ]
[ ]

all bit errors all multi bit errors within a word all possible bit errors

all possible errors

1− + − +∑ ∑∑

∑
 ≈ 

99.998% 
 
 
3.2.1.5  Block replication (IEC 61508-7, A.4.5) 
 
This technique is used to detect all bit errors. 
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The block replication is a technique used for storage and loading of  safety-related data and programs. 
The block of data is duplicated in different format and stored in separate memory areas. The contents 
of the two memory areas are  compared and a failure message is raised if a difference is detected. 
The detection of certain types of bit-errors requires that the data is stored inversely in one of the two 
memories and re-inverted when read. 
  
Diagnostic coverage : high 
 
 

DCN = 
[ ]

[ ]
∑ ∑

∑

+all bit errors all word errors

all possible errors
  

 
 
3.2.1.6  Summary of examples 
 
The table in figure 3.1 lists methods for checking the invariable memory ranges. The list is not 
exhaustive, and other acceptable methods exist. 
 
 

Method for fault diagnostic 
coverage of invariable 
memory ranges 

Maximum achievable 
fault diagnosis 
coverage  

 
Reference in IEC 61508- 7 

Word saving multi-bit 
redundancy 

High A.4.1 

Modified checksum Low A.4.2 This technique detects all the 
odd errors and some of the even 
errors 

Signature of one word (8 bit) High A.4.3 This technique detects all one 
bit and a high percentage of multibit 
errors 

Signature of a double word 
(16 bits) 

High A.4.4  

Block repetition High A.4.5  
 

Figure 3.2.1 Examples of test methods for invariable memory 
 
 

3.2.2  Variable memory ranges  
 
3.2.2.1  RAM test ”checkerboard” or ”march” (IEC 61508-7, A.5.1) 
 
The RAM checkerboard test is used to detect static bit errors. 
 
The checkerboard test is based on a checker-board type pattern of 0’s and 1’s which is written into a 
bit-oriented memory area. The cells of the memory area under test are inspected in pairs to ensure that 
the contents are the same and correct. The address of the first cell in such a pair is variable and the 
address of the second cell is derived by bit inversion of the first address. 
In the first phase, the variable address is incremented until the end of the address space of the memory 
area under test. 
In the second phase, the address is decremented to its original value. 
 
The test is repeated with the checker-board pattern inverted  
A failure message is raised if any difference is occurs. 
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Diagnostic coverage : low 
 
 

DCN =  
static failures

all possible failures

∑

∑
 

 
 
 
3.2.2.2  RAM test ”walk-path” (IEC 61508-7, A.5.2) 
 
The RAM walk-path test is used to detect static and dynamic bit errors, as well cross-talk between 
memory cells. 
 
The first step in the walk-pat test consists of initialising the chosen memory area to be tested. This is 
realised by writing a standard data pattern in that memory area. A bit inversion is performed on the 
first cell and the remaining memory area is inspected.   
 
The second step consists of re-inverting the first cell followed by another inspection of the remaining 
memory area. 
 
These two steps are repeated for all memory cells in the memory area under test. 
 
A symmetric  test is carried out by performing a bit inversion of all cells in memory under test and 
proceeding as described above. 
 
Diagnostic coverage : medium 
 
 

DCN = 
[ ]static failures dynamic failures cross talk failures

all possible failures

+ + −∑∑∑

∑
 

 
 
3.2.2.3  RAM test ”galpat” or ”transparent galpat”  
 (IEC 61508-7, A.5.3) 
 
 
The Galpat and the transparent Galpat techniques are used to detect static bit errors and dynamic 
couplings between cells. 
 
Description and performance of the method 
 
The first step in the Galpat test consists of initialising a chosen memory area. This is realised by 
setting all cells to the value 0 or 1.  
The second step consists of inverting one cell at the time; 
For each inverted cell, the value of the remaining cells are inspected sequentially by single read 
access. The inverted cell is checked after each read access.  
 
The same procedure is repeated with the opposite initialisation of the memory range to be tested. 
In the transparent Galpat method no initialisation takes place. When a cell to be tested is chosen, the 
inspection of the remaining cells is realised by sequential read access followed by the generation of a 
signature e.g. S1, which is stored.  
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The next step is to invert the cell to be tested and to repeat the same inspection process of the 
remaining cells followed by the generation of a second signature e.g. S2, which is also stored. The 
signatures S2 and S1 are then compared. Any difference gives rise to an error message. 
The last step in the method is the re-inversion of the cell to be tested followed by the generation of the 
signature e.g. S3 of all the remaining cells. A comparison of S3 and S1 is performed and any 
discrepancy gives rise to an error message.  
 
The inspection of all the cells in the memory range are done in the same manner. 
 
Diagnostic coverage : high 
 
 

DCN =  
[ ]static failures dynamic couplings

all possible failures

+∑∑

∑
 

 
 
3.2.2.4  RAM test ”Abraham” (IEC 61508-7, A.5.4) 
 
This technique is used to detect all stuck-at and coupling errors between memory cells. 
 
Description and performance of the method 
 
The Abraham test is a form of variable memory pattern test which identifies all stuck-at faults and all 
coupling faults between memory cells. The proportion of faults detected exceeds that of the RAM test 
”galpat”. A number of 30n operations is necessary to perform the test of n cells in memory. 
 
 
Diagnostic coverage : high 
 

DCN =  
[ ]all stuck at failures coupling failures

all possible failures

− +∑∑

∑
 

 
 
 
3.2.2.5  Parity-bit for RAM (IEC 61508-7, A.5.5 One-bit redundancy - for 
 example RAM monitoring with a parity bit) 
 
This technique is used to detect all possible bit errors in the memory range tested. 
 
A very common approach to error detection is the single parity check code. This code appends to each 
K data bits an additional bit whose value is taken to make the K+1 word even (or odd).  
Such a choice  is said to have even (odd) parity. With even (odd) parity, a single bit error will make 
the received word odd (even).  
The implementation of this technique for an N*8-bit memory simply requires an extra block of 
memory to realise an N*9-bit memory. If any single bit of the 8 stored bits is corrupted, the parity bit 
will be incorrect. This is also the case for 3, 5, or 7 bits errors. However 2 or any even number of 
errors will not be noticed. 
 
Diagnostic coverage : low 

DCN =  
all possible bit errors

all possible errors

∑

∑
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3.2.2.6  RAM monitoring with a modified hamming code (IEC 61508-7, A.5.6) 
 
This technique is used to detect all odd-bit errors, all 2-bit errors, 3-bit and multi-bit errors. 
 
Error-Correcting Codes - Hamming Code 
 
Data is rarely transmitted in long continuous streams of bits. Transmission of data is usually broken 
into blocks or message. Each block or message is a separate unit of transmission. 
A message of length n (n = m + r) consists of : 
 m message bits (data bits) 
 r redundant bits (check bits) 
The check bits are part of the error protection and recovery mechanism built in the message. 
The message of n bits size, is called an n-bit codeword. 
The number of bits which differ in two codewords is called the Hamming Distance.  
 
The significance of the Hamming distance is that if two codewords are a Hamming distance d apart, it 
will require d single bit errors to convert one into the other. In other words, errors that involve less 
bits than the Hamming distance can be detected. 
 
In most data transmission applications, all 2m possible data messages are legal. But, depending on how 
check bits are computed, not all codewords are used.  
 
Knowing how codewords are generated, gives information on how to construct a list of legal 
codewords and from that knowledge find the minimum Hamming distance.  
This distance is the Hamming distance of the complete code. 
 
The error-detecting and correcting properties of a code depend on its Hamming distance.  
To detect d errors requires a distance d +1 code.  
With such a code it is not possible that d single-bit errors can change a valid codeword into another 
valid codeword. 
To correct d errors requires a distance 2d+1 code, so that legal codewords are so far apart that even 
with d changes, the original codeword is still closer than any other codeword and consequently can be 
uniquely determined. 
 
Diagnostic coverage : high 
 
DCN   =  

[ ]all odd bit errors all bit errors bit errors multi bit errors

all possible errors

− + − + − + −∑∑∑∑

∑

2 3
 

 
3.2.2.7 Double RAM with hardware or software comparison and   read/write 
test (IEC 61508-7, A.5.7) 
 
This technique is used to detect all bit errors. 
 
The double RAM with hardware or software comparison and read/write test technique is based on 
duplication of the safety-related contents of a chosen memory area. 
The contents of memory is duplicated in different format and stored in separate memory areas.  
The contents of the two memory areas are compared and a failure message is raised if a difference is 
detected. 
 
Diagnostic coverage : high 
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DCN =  
all bit errors

all possible errors

∑

∑
 

 
 
3.2.2.8  Summary of examples 
 
The table in figure 3.2 lists methods for checking the variable memory ranges. The list is not 
exhaustive, and other acceptable methods exist. 
 
 

Method for fault diagnostic 
coverage of variable 
memory ranges 

Maximum achievable 
fault diagnosis 
coverage  

 
Reference in IEC 61508- 7 

RAM test ”checkerboard” Low A.5.1 
RAM test ”walk-path”  Medium A.5.2 
RAM test ”galpat or 
”transparent” 

High A.5.3 
Transparency during the operating cycle 
can be achieved by partitioning the 
memory. The testing of each partition is 
later realised in different time segments. 

RAM test ”Abraham” High A.5.4 
Parity-bit for RAM Low A.5.5 
RAM monitoring with a 
modified hamming code 
 

High A.5.6 

Double RAM with hardware 
or software comparison and 
read/write test 

High A.5.5 

 
Figure 3.2.2 Examples of test methods for variable memory 

 
 

3.3 I/O Units and Interfaces 
 
There are several methods to achieve fault diagnostic coverage of I/O units and interface of which the 
following can be used to reach a specified rate of coverage.  
This work shall focus upon the methods listed in the IEC 61508 standard (part 2, A.7).  
  Test pattern 
  Code protection 
  Multi-channelled parallel output 
  Monitored outputs 
 Input comparison/voting 
 
 

3.3.1 Test pattern (IEC 61508-7, A.6.1) 
 
The aim of this test method is to detect the faulty states which may affect any input or output lines. A 
defined flow of data is fed via the input ports of the control system which after processing gives rise 
to the corresponding signals in the respective output lines. The output signal pattern is then compared 
to the expected signals. 
The repetition frequency of this test procedure depends of the current application. 
Diagnostic coverage : high 
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Example : 

Periodic generation of the test 
pattern

System processing

Comparaison with expected 
output signal levels

In(1) In(n) I(i)

Out(1)
Out(m)Out(j)

Test result

Figure 3.3 a      Test pattern

Out(2)

Out(3)

 
 

 
 

3.3.2 Code protection (IEC 61508-7, A.6.2) 
 
The aim of this test method is to detect random hardware and systematic failures in the input/output 
data flow. A coding procedure or a table system is used to limit the number of input or output signal 
combinations for which the system operates normally. By means of a decoding routine the status of 
the input and output signals are determined in such a way that any systematic error or random failure 
is detected. This information can be further used to add more protection under run-time.   
Diagnostic coverage : high 
Example: 
A two channelled safety-related system is based on independent input signals In1 and In2.  
By coding In1 and In2, information redundancy is added at the input stage. The parallel processing of 
these signals in respective computer results in two output signals. If  special conditions are set to 
generate a common status signal any discrepancies are detected and result in appropriate safety 
measures. 
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Computer 
A

Computer 
B

Coder Coder

Comparison

In1 In2

Out 1 Out 2

Figure 3.3.b  Code protection  
 
 

3.3.3 Multi-channel parallel output (IEC 61508-7, A.6.3) 
 
The multi-channel parallel output feature enables the detection of random hardware faults such as  
stuck-at faults as well as faults resulting from external devices. Errors/failures such as timing errors, 
addressing errors, drift failures and transcient failures may also be detected with such a method. This 
control technique implies that the system is built with independent outputs. The error detection 
procedure is carried out under the diagnostic interval by external comparators which can switch off 
the current equipment. Diagnostic coverage : high 
 
 

3.3.4 Monitored outputs (IEC 61508-7, A.6.4) 
 
Individual failures can be detected by using the monitored output method which is data flow-
dependent. This method enables detection of faults/errors and failures originating from external 
equipment, timing errors, addressing errors as well as drift failures and transcient failures  
The error detection procedure is effective only if the data flow changes appear under the diagnostic 
interval. Depending on the robustness of this control mechanism, detected failures may sometimes not 
be track to a specific output line. Diagnostic coverage : high 
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3.3.5 Input comparison / voting (IEC 61508-7, A.6.5) 
 
Input comparison voting is an error / fault method used to detect individual failures from external 
equipment or units. Errors/failures such as timing errors, addressing errors, drift failures and 
transcient failures may also be detected with such a method. This control technique implies that the 
system is built with independent input units. The error detection procedure is carried out under the 
diagnostic interval by an external comparator which can switch off the signal processing in respective 
processor unit.  

Input 1 Input 2 Input 3

Comparator

Output 1 Output 2
Output 3

Signal 1 Signal 2 Signal 3

Processor 1 Processor 2
Processor 3

Figure 3.3.d   Input comparison 

Status Input 1

Status Input 2

Stauts Input 3

 
Diagnostic coverage : high 
 
 

3.3.6  Summary of examples 
 
The table in figure 3.3 lists methods for checking the I/O units and interfaces. The list is not 
exhaustive, and other acceptable methods exist. 
 

Method for fault diagnostic 
coverage of I/O units and 
interface 

Maximum achievable fault 
diagnosis 
coverage 

 
 
Reference in IEC 61508- 7 

Test pattern High A.6.1 
Code protection  A.6.2 
Multi-channel parallel output  High A.6.3 
Monitored outputs High A.6.4 
Input comparison / voting High A.6.5 

 
Figure 3.3 Examples of test methods for I/O units and interfaces 
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3.4 Data paths 
 
There are several methods to achieve fault diagnostic coverage of Data paths of which the following 
can be used to reach a specified rate of coverage.  
 
This work shall focus upon the methods listed in the IEC 61508 standard (part 2, A.8).  
  
  Multi-bit hardware redundancy 
  Complete hardware redundancy 
  Inspection using test patterns 
  Transmission redundancy 
  Information redundancy 
 
 

3.4.1 Multi-bit hardware redundancy (IEC 61508-7, A.7.2) 
 
The aim of this method is to detect errors during transmission on the bus and in serial transmission 
links. By extending the bus with two or more lines, error detection is achieved by using hamming 
code techniques. 
 
Diagnostic coverage : medium 
 
 

3.4.2 Complete hardware redundancy (IEC 61508-7, A.7.3) 
 
The aim of this method is to detect errors during the communication process between units within a 
system. The communication bus is doubled and the additional lines are used to detect errors.  
 
Diagnostic coverage : high 
 
 

3.4.3 Inspection using test patterns (IEC 61508-7, A.7.4) 
 
The aim of this method is to detect static failures (stuck-at failure) and cross-talk. By using a data 
flow-independent cyclical test of data path, a comparison is done to compare current observation with 
the expected values. This method is effective only if the pattern information, the test pattern 
reception, and the pattern evaluation are independent of each other.  
 
Diagnostic coverage : high 
 
 

3.4.4 Transmission redundancy (IEC 61508-7, A.7.5) 
 
The aim of this method is to detect and avoid transcient failures. The transmission of information is 
repeated several time in sequence.  
 
Diagnostic coverage : high 
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3.4.5 Information redundancy (IEC 61508-7, A.7.6) 
 
The aim of this method is to detect and avoid errors in bus communication. Usually the information 
transfer is carried out in blocks, followed by a checksum calculation. 
  
Diagnostic coverage : high 
 
 
3.4.6  Summary of examples 
 
The table in figure 3.4 lists methods for checking the data paths. The list is not exhaustive, and other 
acceptable methods exist. 
 
 

Method for fault diagnostic 
coverage of data paths 

Maximum achievable 
fault diagnosis coverage  

 
 
Reference in IEC 61508- 7 

Multi-bit hardware redundancy Medium A.7.2 
Complete hardware redundancy High A.7.3 
Inspection using test patterns High A.7.4 
Transmission redundancy High A.7.5 
Information redundancy High A.7.6 

 
Figure 3.4 Examples of test methods for data paths 

 
 

3.5 Power supply 
 
The possible faults cannot be defined in the an exact way, as for example memory faults can be. 
Faults in the supply power may be characterised as: 
- supply voltage lower than specified minimum limit. 
- supply voltage higher than specified maximum limit. 
- supply voltage drifting within the specified range. 
- oscillations. 
The voltage variations can further be characterised as fast or slow, and intermittent or singular. 
 
Neither is it possible to exactly define the faults which are detected by a certain technique to monitor 
the supply power. The diagnostic coverage of the power supply monitoring cannot be calculated. It 
will have to be defined in terms such as low, medium or high. 
 
Continuous monitoring without checking for faults in the circuitry can be defined to have low 
diagnostic coverage. A hardware or software fault in the monitoring mechanism may easily disable 
the supply voltage monitoring without this being observed by the processing unit. 
 
Continuous monitoring using dynamic signals can be defined to have high diagnostic coverage. A 
fault in the monitoring function must then be regarded as likely to corrupt the dynamic signals. The 
processing unit will observe the change in the dynamic signal, and detect the fault. 
 
Machine control systems do very seldom employ advanced or redundant monitoring of the supply 
voltage in a single channel. Dual-channel designs usually have two independent voltage monitoring 
circuits. Most circuits for supply voltage monitoring may be considered to have low diagnostic 
coverage. 
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The table in figure 3.5 lists methods for checking the power supply. The list is not exhaustive, and 
other acceptable methods exist. 
 

Method for fault diagnostic 
coverage of power supply 

Maximum achievable fault 
diagnosis coverage  

Reference in IEC 61508- 7 

Continuous monitoring (no 
checking in the circuitry) 

Low  

Continuous monitoring using 
dynamic signals 

High  

 
Figure 3.5 Examples of test methods for power supply 

 
 

3.6 Program sequence 
 
Faults in the programme sequence may be caused by hardware faults, software faults or 
environmental disturbances. It is not possible to define the fault modes in a precise way. Neither is it 
possible to calculate the number of faults which will be detected. The diagnostic coverage cannot be 
calculated, but has to be agreed upon by definition, e.g. as low, medium or high. 
 
Techniques to detect faults in programme sequence are based on software, hardware or combinations 
of both. 
 
A frequently use technique is a hardware circuit (‘watch dog’) triggered by the software of the 
processing unit within a periodic interval. This technique may be further enhanced by logical 
monitoring of the execution. The different parts of the software will check for a correct sequence 
between them. Software checking may also be used without hardware circuitry. 
 
Depending on combinations of techniques, different diagnostic coverage may be claimed. 
 
There are some hardware aspects which will influence the diagnostic coverage: 
- monitoring time base shared with CPU, or independent of CPU time base 
- on-chip hardware or hardware separated from the processing unit. 
- fail-safe monitoring hardware, i.e. a fault in the hardware used for monitoring the execution will 
cause an alarm. 
 
There are also software aspects which will affect the diagnostic coverage: 
- triggering from a non safety-related part of the software. 
- testing of the program sequence monitoring function at reset.  
- software monitoring of the correct sequence of the individual program sections by passing ”keys” 
between software modules, or by  ”counting”. 
 
Execution monitoring without hardware support is very sensitive to hardware faults in the processing 
unit. Faults in the processing unit may disable both the execution of the application software, and the 
monitoring software. Execution monitoring based only on software must be defined to have low 
diagnostic coverage. 
 
A monitoring device integrated on the same chip as the processing unit, and triggered at a periodic 
interval, may be regarded to have low diagnostic coverage. 
 
An external hardware circuit dedicated to execution monitoring will be less subject to common cause 
failures with the processing unit. It can be regarded to have medium diagnostic coverage. 
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An external fail-safe circuit, or an external periodically tested circuit, can be regarded to have high 
diagnostic coverage. 
 
Machine control systems do seldom employ advanced or redundant monitoring of the programme 
sequence in a single channel. Dual-channel designs usually have two independent ‘watchdogs’, and 
the processing units may synchronise and thereby monitor the programme sequence of the other 
channel. 
 
The table in figure 3.6 lists methods for checking the invariable memory ranges. The list is not 
exhaustive, and other acceptable methods exist. 
 

Method for fault diagnostic 
coverage of program sequence 
execution 

Maximum achievable fault 
diagnosis coverage 

Reference in IEC 61508- 7 

Monitoring device integrated on the 
same chip as the processing unit 

Low  

External hardware circuit or 
external periodically tested circuit 

Medium  

External fail-safe circuit High  
 

Figure 3.6 Examples of test methods for program sequence 
 
 

4 Requirements 
 
In the work package 2.1 it is shown that, for system architectures typical for complex electronic 
systems (CES) a correspondence between the categories of EN 954-1 and the Safety Integrity Levels 
of IEC 61508 is possible if a complete safety function is executed by the CES. To get an hierarchical 
risk reduction between categories B, 2, 3 and 4 the following tables can be used. If the designer can 
justify that the assumptions for the architectures are the same than made in chapter 1.3 the following 
tables could be used without quantification. Using the result of chapter xxx a link can be made 
between the categories of EN 954-1 and the Safety Integrity Levels of IEC 61508 for these designated 
architectures for the machinery sector for CES. 
 
For complex electronic systems according to chapter 6.2.2 of EN 954-1 cannot be used to realize 
Category 1. For this reason, the following tables do not contain any checking principles for category 
1.   
 
The requirements listed in this report are combined to form adequate safety principles for a certain 
category (B, 1, 2, 3 or 4). Different safety principles are listed for the different architectures in 
category 3 and 4. This is commented in chapter 1.3. 
 
Some of the checking principles may be applied either at power-up, or continuously during run-time. 
This will be much depending on the application and no specific requirements are given for when (or 
how often) the checking must take place. 
 
 

4.1 Processing unit 
 

4.1.a Requirement: The CPU shall be checked for stuck-at failures of registers and internal RAM. 

4.1.b Requirement: The decoding and execution of instructions shall be checked. 

4.1.c Requirement: All registers must be checked. 

4.1.d Requirement: Faults in the processing unit shall be indicated by the PES. 
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Requirement Category      
 B 2 3 

Single 
 

Dual 
4 

Dual 
 

Triple  
4.1.a Registers&RAM   x x x x 
4.1.b Instruction decoding   x  x  
4.1.c All registers   x  x  
4.1.d Indication   x x x x 
Minimum diagnostic coverage - - High Medium High  Medium 

 
Table 4.1 Safety principles for monitoring of the processing unit. 

 
 

4.2 Invariable memory ranges 
 

4.2.a  Basic requirement: The PES shall be able to detect faults in the invariable memory. 

4.2.b  Additional requirement: The complete address range must be checked. 

4.2.c Basic requirement: Memory failures shall be indicated by the PES. 
 
 
Requirement Category      
 B 2 3 

Single 
 

Dual 
4 

Dual 
 

Triple  
4.2.a Memory check x x x x x x 
4.2.b Complete address range   x  x  
4.2.c Indication   x x x x x 
Minimum diagnostic coverage Low Low High Medium High Medium 

 
Table 4.2  Safety principles for monitoring of invariable memory. 

 
 

4.3 Variable memory ranges 
 

4.3.a  Basic requirement: The PES shall be able to detect faults in the variable memory. 

4.3.b  Additional requirement: The complete address range must be covered. 

4.3.c Basic requirement: Memory failures shall be indicated by the PES. 
 
 
Requirement Category      
 B 2 3 

Single 
 
Dual 

4 
Dual 

 
Triple  

4.3.a Memory check x x x x x x 
4.3.b Complete address range   x  x x 
4.3.c Indication  x x x x x 
Minimum diagnostic coverage Low Low High Medium High Medium 

 
Table 4.3 Safety principles for monitoring of variable memory. 
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4.4 I/O Units and Interface 
 

4.4.a Requirement: The PES shall automatically check the input and output units (digital, analogue, 
serial or parallel). 

4.4.b Requirement: Faults detected in the internal communication shall be indicated. 
 
Requirement Category      
 B 2 3 

Single 
 

Dual 
4 

Dual 
 

Triple  
4.4.a I/O check   x x x x 
4.4.b Indication   x x x x 
Minimum diagnostic coverage - - High Medium High Medium 

 
Table 4.4  Safety principles for monitoring of I/O units and interface. 

 
 

4.5 Data paths 
 

4.5.a Requirement: The PES shall automatically check the internal communication. 

4.5.b Requirement: Faults detected in the internal communication shall be indicated. 
 

Requirement Category      
 B 2 3 

Single 
 

Dual 
4 

Dual 
 

Triple  
4.5.a Data path check   x x x x 
4.5.b Indication   x x x x 
Minimum diagnostic coverage - - High Medium High Medium 

 
Table 4.5 Safety principles for monitoring of data paths. 

 
 

4.6 Power supply 
 

4.6.a  Basic requirement: The PES shall be able to detect decreases in the supply voltage, and the 
execution of the processor must be halted in a controlled way. 

4.6.b Additional requirement: The supply voltage monitoring circuit must be dynamic, i.e. correct 
supply voltage is indicated by a dynamic signal. 

4.6.c Additional requirement: The supply voltage monitor circuit must be fail-safe, i.e. a fault in the 
circuitry shall lead to a power fail alarm. 

4.6.d Additional requirement: Power supply failures shall be indicated by the PES. 
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Requirement Category      
 B 2 3 

Single 
 

Dual 
4 

Dual 
 

Triple  
4.6.a Supply power monitoring x x x x x x 
4.6.b Dynamic   x 

or 46c 
 x 

or 46c 
 

4.6.c Fail-safe   x 
or46b 

 x 
or46b 

 

4.6.d Indication   x x x x 
Minimum diagnostic coverage Low Low High Medium High Medium 

 
Table 4.6  Safety principles for monitoring of supply power. 

 
NOTE: It is difficult to find a good definition of diagnostic coverage for the power supply checking. 
 
 

4.7 Program sequence 
 

4.7.a Basic requirement: The PES shall have a watchdog implemented in hardware to monitor the 
program sequence. 

4.7.b Additional requirement: The hardware (especially the time base) used for the watchdog shall 
be independent of the processor it is supposed to supervise. 

4.7.c Additional requirement: There shall be software means of monitoring the program sequence. 

4.7.d Additional requirement: The watchdog must be automatically tested by the software at power-
up or a periodic intervals. 

4.7.e Additional requirement: The watchdog must be fail-safe, i.e. a fault in the watchdog circuitry 
will lead to a watchdog alarm. 

4.7.f Additional requirement: A watchdog alarm shall be indicated by the PES. 
 

Requirement Category      
 B 2 3 

Single 
 
Dual 

4 
Dual 

 
Triple 

4.7.a Hardware watchdog x x x x x x 
4.7.b Independent hardware   x  x  
4.7.c Software monitoring   x x x x 
4.7.d Tested   x 

or 47e 
 x 

or 47e 
 

4.7.e Fail-safe   x  
or 47d 

 x  
or 47d 

 

4.7.f  Indication   x x x x 
Minimum diagnostic coverage Low Low High Medium High Medium 

 
Table 4.7 Safety principles for monitoring of program execution. 

 
 
NOTE: The principle of requiring more functionality for a higher category corresponds to requiring a 

higher diagnostic coverage. 
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5 Validation methods 
 

5.1 Processing units 
 
 
Aim: To validate the checking of processing units, and to determine its diagnostic coverage. 

 

Description: The processing unit in a safety-related PES used for machine control is most often a 
microprocessor or a microcontroller. A hardware reference manual of the semiconductor 
manufacturer will be needed to study the processing unit. Software routines for checking of the 
processing unit shall be analysed. The analysis can be summarised in following check list: 
 
 

 Processing Units      
  Ap.*) Yes No Comment 
A Are the processing units checked for 

faults? 
    

B Have techniques and measures according 
to IEC 61508-2, table A.4 been used? 

    

C Have the software routines used for 
checking of processing units been 
identified? 

    

D Have the software routines for handling of 
faults been identified? 

    

E Is the instruction decoding covered by self-
checking ? 

    

F Are the internal registers covered by self-
checking ? 

    

G Is self-checking performed at power-up ?     
H Is periodic self-checking performed at run-

time ? 
    

I Has the diagnostic coverage been 
determined? 

    

J Has the software implementing the self-
checking been checked without finding 
logical faults? 

    

K Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 

 
 

5.2 Invariable memory ranges 
 
 
Aim:  To validate the memory checking, and to calculate its diagnostic coverage. 
 
Description:  Programme code and constants will be stored in invariable memory (ROM, EPROM 
etc.). A memory map will give an overview of the memory ranges. The hardware circuit diagram or 
the microprocessor manual may have to be studied. Software routines for memory checking and 
handling of memory faults shall be analysed. The analysis can be summarised in following check list: 
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 Invariable Memory Ranges     
  Ap.*) Yes No Comment 
A Is automatic and periodic checking of the 

invariable memory range made at a 
periodic interval? 

    

B Is automatic checking of the invariable 
memory range made at power-up? 

    

C Have techniques and measures according 
to IEC 61508-2, table A.5 been used? 

    

D Have the software routines used for 
memory checking been identified? 

    

E Have the software routines for handling 
of faults been identified? 

    

F Is the complete address range of the 
invariable memory covered by the test? 

    

G Has the software for memory checking 
been analysed without finding faults? 

    

H Has the software for handling of faults in 
memory been checked without finding 
faults? 

    

I Has the diagnostic coverage been 
calculated? 

    

J Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 

 
 

5.3  Variable memory ranges 
 
 
Aim:  To validate the memory checking, and to calculate its diagnostic coverage. 
 
Description:  Variables and parameters will be stored in variable memory (RAM, EEPROM etc). A 
memory map will give an overview of the memory ranges. The hardware circuit diagram or the 
microprocessor manual may have to be studied. Software routines for memory checking and handling 
of memory faults shall be analysed. The analysis can be summarised in following check list: 
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 Variable Memory Ranges     
  Ap.*) Yes No Comment 
A Is automatic and periodic checking of the 

variable memory range made at a 
periodic interval? 

    

B Is automatic checking of the variable 
memory range made at power-up? 

    

C Have techniques and measures according 
to IEC 61508-2, table A.6 been used? 

    

D Have the software routines used for 
memory checking been identified? 

    

E Have the software routines for handling 
of faults been identified? 

    

F Is the complete address range of the 
variable memory covered by the test? 

    

G Has the software for memory checking 
been analysed without finding faults? 

    

H Has the software for handling of faults in 
memory been checked without finding 
faults? 

    

I Has the diagnostic coverage been 
calculated? 
 

    

J Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 
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5.4 I/O Units and Interface 
 
 
Aim:   To validate the checking of I/O units and interfaces (external communication), and to 
determine its diagnostic coverage. 
 
Description: The control system may be equipped with I/O units and interfaces for communication 
with external units. A hardware circuit diagram, and possibly also the reference manual of the 
semiconductor I/O circuits, will be needed for the analysis. Software routines for checking of external 
communication shall be analysed. The analysis can be summarised in following check list: 
 
 
 I/O Units and Interface     
  Ap.*) Yes No Comment 
A Have all I/O units and interfaces been 

identified? 
    

B Are the I/O units and interfaces checked 
for faults at power-up? 

    

C Are the I/O units and interfaces checked 
for faults at run-time? 

    

D Have techniques and measures according 
to IEC 61508-2, table A.7 been used? 

    

E Have the software routines used for 
checking of I/O units and interfaces been 
identified? 

    

F Have the software routines for handling 
of faults been identified? 

    

G Is self-checking performed at power-up ?     
H Is periodic self-checking performed at 

run-time ? 
    

I Has the diagnostic coverage been 
determined? 

    

J Has the software implementing the self-
checking been checked without finding 
logical faults? 

    

K Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 
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5.5 Data paths 
 
 
Aim:  To validate the data path (internal communication) checking, and to determine its diagnostic 
coverage. 
 
Description: Communication between modules of the PES is made through different data paths. A 
block diagram of the hardware has to be studied in combination with the circuit diagrams. Software 
routines for checking of internal communication shall be analysed. The analysis can be summarised in 
following check list: 
 
 
 Data Paths      
  Ap.*) Yes No Comment 
A Have all data paths for communication 

been identified? 
    

B Are the data paths checked for faults at 
power-up? 

    

C Are the data paths checked for faults at 
run-time? 

    

D Have techniques and measures according 
to IEC 61508-2, table A.8 been used? 

    

E Have the software routines used for 
checking of data paths been identified? 

    

F Have the software routines for handling 
of faults been identified? 

    

G Has the diagnostic coverage been 
determined? 

    

H Has the software implementing the self-
checking been checked without finding 
logical faults? 

    

I Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 
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5.6 Power supply 
 

 

Aim: To validate the power supply monitoring, and to determine its diagnostic coverage.  
 
Description: The monitoring of supply voltage requires a combination of hardware and software 
measures. An analysis of the hardware circuit diagrams is often the best way to commence. The 
sensing of the power alarm signal, and the power down routines should be analysed in the source 
code.  The analysis can be summarised in a check list: 
 
  
 Power Supply Monitoring     
  Ap.*) Yes No Comment 
A Is the supply power monitored to give 

alarm at low voltage ("brown-out") ? 
    

B Is the supply power monitored to give 
alarm at high voltage? 

    

C Have techniques and measures according 
to IEC 61508-2, table A.8 been used? 

    

D Have the hardware circuit diagrams been 
analysed without finding faults? 

    

E Have the software routines used for 
power supply monitoring been 
identified? 

    

F Have the software routines for handling 
of faults been identified? 

    

G Has the interface between hardware and 
software been analysed without finding 
faults? 

    

H Has the control flow at low voltage 
alarm been analysed without finding 
faults ? 

    

I Has the time from low voltage alarm  to 
entered ‘safe state’ been analysed 
without finding faults ? 

    

J Has the action taken at high voltage been 
analysed without finding faults? 

    

K Has the diagnostic coverage been 
determined? 

    

L Has the software implementing the self-
checking been checked without finding 
logical faults? 

    

M Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 
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5.7 Program sequence 
 

 

Aim:   To validate the programme sequence monitoring (watchdog), and to determine its diagnostic 
coverage. 
 
Description: The programme sequence monitoring may be implemented in combination of hardware 
and software, or just in software. The hardware circuit diagrams should be analysed for the measures 
in hardware. The source code should be analysed for triggering of hardware, monitoring mechanisms 
in software and handling of watchdog program sequence alarm. 
 
 
 Programme Sequence Monitoring     
  Ap.*) Yes No Comment 
A Is there a hardware device (watchdog) to 

monitor the execution of the software? 
    

B Is there a software monitoring of the 
execution of the software ? 

    

C Have techniques and measures according 
to IEC 61508-2, table A.10 been used? 

    

D Has the hardware circuit diagram been 
analysed without finding faults? 

    

E Will a watchdog alarm result in a reset 
of the microprocessor? 

    

F Will a watchdog alarm result in the loss 
of the calculated values, and machine 
state? 

    

G Is the watchdog triggered at a period less 
than 5 seconds? 

    

H Is the time base of the hardware 
watchdog independent from the 
processor time base? 

    

I Is the watchdog a separate hardware 
circuit (not integrated into the 
microcontroller) ? 

    

J Is an unintended change in the program 
flow likely to lead to a watchdog alarm ? 

    

K Is the watchdog triggered during the 
execution of the main program ? 

    

L Has the diagnostic coverage been 
determined? 

    

M Has the software implementing the self-
checking been checked without finding 
logical faults? 

    

N Are the techniques and measures used 
adequate as safety principles for the 
intended category (see chapter 4)? 

    

*) Ap. = Applicable question (Some questions may not be applicable for all control systems.) 
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6 Conclusions 
 
 
Summing up the results of this work, it appears without any doubt that when safety-related functions 
are at stake, safety-principles shall be implemented in the design of the control system. The level of 
safety or the category shall be the starting point for the choice of architecture to be implemented. This 
architecture shall be supported by adequate techniques and measures to detect and control faults, to 
minimise their repercussion on the whole system and eventually to provide a soft transition to a safe-
state.  
 
Checking of processing units, memory ranges, I/O units, interfaces, data paths, power supply and 
program sequence are regarded as state-of the-art. The selection of checking techniques and the 
diagnostic coverage needed, will be depending on the risks associated with the machine to be 
controlled. A complex electronic control system of a high-risk machine shall be able to find most 
faults in the control system before hazardous situations can be caused. That calls for elaborate 
checking facilities with high coverage. A low-risk machine must also have safety principles 
implemented, but lower coverage can be accepted. 
 
It has been possible to use the techniques and measures suggested in the IEC 61508 safety standard, to 
prescribe safety principles required by the EN 954-1 standard. The IEC 61508 has established a frame 
of reference which is well possible to use also with the EN 954-1. However, the recommendations for 
the safety integrity levels of IEC 61508 will have to be modified for the categories of EN 954-1. 
 
The safety measures to be implemented are described and associated to the current architecture for a 
specific category. The checklists presented in this report will be of help both to the developer and to 
the assessor. 
 
 


