STSARCES

Standards for Safety Related Complex Electronict8gs

Annex 7

Methods for fault detection

Final Report of WP2.2

Jan Jacobson & Jacques Hérard

European Project STSARCES
Contract SMT 4CT97-2191

Contents
o X O T 3
S O] 4
10 LY 1LY 2 T 5
1 IO T 1 L 1 (@]\ 6
1.1 DIAGNOSTIC COVERAGEcccuutiittieit ettt ettt e e e e et e e e e e e et e e e et e e e ta e s et e e eas e e eaa e s aaneeenaaeeennsessnneenrnnns 7
1.2 DIAGNOSTIC TEST INTERVAL ..u.eitttiteteeeetteeeaateeeaeee e e eaa e s saeee et s e aaa s st seeta e eansssanesasseensnsesanneerennns 8
G T 2t Lot T 1 =T = = 8
2 DESCRIPTION OF METHODS ..ottt ettt e et e et e et e e st e s e st s e s st e e st s esba e ananeaees 10
2.1 ROCESSING UNITS .t uiituiitiitettsttiesteetatsateesa ettt e s s st e et sat e et s st e st s et s as e sa e sasssasaa st sanssbseansstennns 10
2.2 INVARIABLE MEMORY RANGESuituiitiiiiiiteitieiteeiteeitesst s et s sassaa et s st saa s et e st s et s st e et s et e raneeansenss 10
2.3 VARIABLE MEMORY RANGEScutiitittiitiettitttieta ettt et tsaeeststte et sat e st ssastntesnestntsaneetsesaessnsarnnns 11
2.4 1/OUNITS AND INTERFACEutiittniettt ettt e et e et e e et e e et e e e eat e s st e s st essaa e s saaeeeat s esan st saesenansennnreneas 11
P T B 7N 2 1 T 12
P2 ST = 0 V1T = RS U = = I 12
2.7 ROGRAM SEQUENCE.uuituiiitiitiett ittt et ettt iesa ettt esa ettt sttt stt et sttt ta s et sttssassanseanestnsssnseanesrnerens 14
3 DIAGNOSTIC COVERAGE ..o et e e e e e et e s e e e e e e eanaeeeen 18
G T R = 2T T =21 | NN 18
G I V| =1V o = 22 = ¥ N] =5 22
3.3 [/OUNITS AND INTERFACES . .. ctttttuiettttteeeetettteeseetaaeessesasteesasta e esestanseesestaeeseeraaseeserssasseeererans 30
G T 0 N = = 1S 34
T T = 1LY/ = S S U == TN 35
I I = 2T 1] oY Y IEST = 1 = N =N 36
4 REQUIREMENTS ... ittt s e e e e e e e e e e ettt seeeeeaaaaeeeeee s e s aabaa e e eeeaeeeeeeeresssennanns 37
o T = 20 Tod =11 [N [0 N/ T 37
4.2 INVARIABLE MEMORY RANGESuuituiitittiettitti ettt ea et ttessa s st ssatsssesaessatssnessnsssnsesnestnsenneaetenes 38
4.3 VARIABLE MEMORY RANGESuiiuuiittiittiteitiettesttettesasstseanstta ettt taa ettt tasateeaasetessnsesnssensees 38
4.4 [/OUNITS AND INTERFACEccuuiittieitt ettt et e et e e ea e e e s s e eata s e eaasse s e s eatsssat s s st sssnssasnansessnnsasensns 39
ST B N 7N =7 1 = 1T 39
ST = Y = S U == N 2T 39
A = 0T e Y Y IES] =0 LU = o =N 40
5 VALIDATION METHODS . ..ottt e e e e et e e e e e e e s e e s e e e ean e s aaeeeanans 41
LT R = 2T Yo =31 [N0 N 41
5.2 INVARIABLE MEMORY RANGESccuuiittnieittieeetee et e ettt e eea e e eeaaeeeat e e et e setesean e s et eraneeran e reseaeeranns 41
5.3 VARIABLE MEMORY RANGEScuutiitunieituieeetteeeieeteteeeet s eaaeas st e eas e sean e raaeeeanerennsertneeranserenneeees 42
5.4 [/OUNITS AND INTERFACEcuttuiietetttteetettuseeeesssteeessseasteeseetaaeeseetaneseeesttseeserrseesrrsnaneesesrsnns 44
LT T N 1NN 27 1 2 15 45
LTI 2 11T/ = 23S U == 17N 46
LT A = 2T 1] oY VIR =T = 1 = N =N 47
6 (OO]\ (O I 0 ST (@] 1N T 84

Preface

The European Research project STSARCES StandardSdfety Related Complex Electronic
Systems aims to harmonise validation methods fietysaelated parts of machine control systems.

This is a draft issued to be subject of furthercdésions. Especially the requirements and the
connection of requirements at specific categorseg (chapter 4) have to be harmonised between the
STSARCES partners.

Revision

Date

Changes made

Distribution

0

26 August 1998

First issue

BIA, INERIS

1

4 December 1998

Chapters on coverage and vaiidg
methods added

&BIA

2

23 December 1998Changes

to
requirements.
Chapter 6 integrated into chapter
Coverage chapter is now chapter
Some other minor changes.

chapter

1.1 gilA, INERIS

SSENNS)

24 February 1999

Chapter 1.3 added.
Several additions to chapter 3.
Requirements of chapter 4 update
Check lists in chapter 5 modified.
Some other minor changes.

All
partners
d

STSARCES

10
1999

Septembsg

tAddition to chapter 1.1
Addition of figures to chapter 3

BIA

24
1999

Septembsg

rChanges to chapter 1.1 :

DC, definition revised

Changes to chapter 1.3 :

new text added, rectification of t
reference in last paragraph.
Figures on applicable architecty
configurations added.
Changes to chapter 3 :
Tables listing proprieties of metho
for diagnostic coverage are sligh
modified.

Changes to chapter 4

All STSARCES
partners
ne

re

ds
tly

29 February 2000

Summary and conclusion added.

Page numbers included in the ta‘kjl‘dERIS

of contents

Scope

Work Package 2.2 "Methods for Fault detection” lné EEuropean research project STSARCES has
the objective to establish which techniques andsones that can be regarded as basic or well-tried
safety principles for detection of hardware fauhsmachine control systems. It is part of the
STSARCES WP 2 "Hardware Safety”, which also cordaMP2.1 "Quantitative analysis of complex
electronic systems using fault tree analysis anckbamodelling”.

This document contains an introduction (chapterallackground description of the techniques
(chapter 2), calculation and definition of diagnostoverage (chapter 3), listing of the requirersent
(chapter 4) and validation methods (chapter 5). iftr®duction and the background description is
regarded to be needed to harmonise the opinioseoSTSARCES partners. The overall hardware
architecture is not discussed in this document.

Summary

The evaluation of hardware safety is an importantdr when assessing the overall characteristics of
a safety-related system according to the machirdirgctive. The increasing integration of
programmable electronics in industrial equipmerdsadew aspects that need to be considered. The
experience and knowledge gathered from existindesys and the modern approach in system
development could contribute to the validation pss The present work is an attempt to lay down
some reference marks on existing methods and ptaxiconsidered as state of the art. It also
clarifies the interdependency between architecti@sign, diagnostic coverage and category (i.e. the
system behaviour at fault).

The basic concepts of diagnostic coverage, testviak and architecture are explained. Measures for
checking of processing units, memory, I/O unitdeiface, data paths, power supply and program
sequence are described. These measures are themigto requirements for control systems to be
used with safety functions of different category.

Eventually, preliminary tables are presented ireotd summarise the aspects related to the validati
of safety-related systems.

1 Introduction

Programmable electronic systems (PES) have théyatul detect faults within themselves before a
fault is manifested as a failure of the system. Tdahniques and measures used focus on different
parts of the electronic hardware and may requiffergint amount of system effort. It is regarded as
state-of-the-art to implement techniques for faeltection in PES used in safety-critical applicagio

It is easy to imagine some possible faults which cause unexpected behaviour of the machine
which is controlled. A bit in a memory cell may beick at "0” or "1”. The output circuits may be
stuck at "ON”". A software fault may cause a tasletder an "eternal loop”. Perhaps interruptions in
the supply power, or variations in the voltage lemgay influence the execution of the software.aDat
transferred on serial communication lines may tstodied by interference. An internal CPU fault
might cause incorrect execution. There are teclesiqand measures to detect such faults before the
machine gets out of control.

All safety critical systems should undertake bas&asures to detect the faults, and possibly control
the failures which might occur. The standard EN-2%pecifies 5 categories for system behaviour at
fault. Basic safety principles should be implemdritar categories B, 1, 2, 3 and 4. For categorjes 1
2, 3 and 4 also well-tried safety principles havdé¢ implemented. The presence and performance of
the safety principles must be validated.

It does not yet exist a common understanding iérain measure fulfils the requirements for safety
principles for a specific category.

Catego | System behaviour Principles to achieve
ry safety
B The occurrence of a fault can lead to the losshef Mainly characterised by
safety function. selection of components

n

1 As in category B, but the probability of occurcernis
lower than in category B.

2 Faults are detected by periodic checks at seifbhinly characterised Ry
intervals. structure
The occurrence of a fault can lead to the losshef t

safety function between the checks. The loss of the
safety function is detected by the check.

3 When a single fault occurs the safety functioaligays
performed.

Some but not all faults will be detected.
Accumulation of undetected faults can lead to tes
of the safety function.

4 When the fault (faults) occur the safety functiisn
always performed.
The fault (faults) will be detected in time to peen the
loss of the safety function.

n

Figure 1a. Summary of categories for system belat fault according to standard EN954-1.

1.1 Diagnostic coverage

Simple tests will not detect all hardware faultl®rate tests will detect many hardware faulthat
cost of much processing effort spent. The diagnostiverage, DC, is defined as the fractional
decrease in the probability of dangerous hardwaikiré resulting from the operation of the
automatic diagnostic tests. [IEC 61508-4, clau8e6B3 See formula 1. If the test detects all faulg,
coverage is 100%. If no faults are detectablectwerage is 0%.

_ _ the probability of detected dangerous failures
diagnostic coverage DC = ; .
the probabilty of total dangerous failures

Another definition of diagnostic coverage, P{see formula 2) relates to the fraction of totainber

of different failures that is detected during atjatar test. There can be large differences betwee
the two ways to define the diagnostic coverage. grobability based approach distinguishes between
faults which occur with different probability, wkilthe number based approach does not. A test
technique which detects faults occurring with hjgbhbability is very well likely to have a high DC,
but may have a low DCif there is a large number of low probability fesvhich are not detected.

the number of dangerous failures detected
the total number of dangerous failures

diagnostic coverage QG-

It may be hard to find numerical values for the hadoilities of different faults. Sometimes the
assumption is made, that all faults have the sarobapility. This is always an approximation of
reality.

It is possible to make a numerical calculationh®f toverage of some methods. While the coverage of
some other methods may have to be expressed intagwal ways such as "high/medium/low”. An
estimation of the diagnostic coverage will be nelette be able to compare two diagnostic test
methods.

A translation from the qualitative definition “lomédium/high”, to a quantitative measure expressed
as a percentage will be needed. This report hasechtm follow the definitions suggested by the IEC

61508 standard. (See figure 1.) High coverageesl tisr techniques and measures with a probability
higher than 99% to detect a fault. Medium covenagmns a probability less than 99%, but higher
than 90%. Low coverage will correspond to a diagjnaoverage greater than 60%, but lower than
90%. Techniques and measures offering less thanpgdob@ability to detect faults are to be avoided in

safety-related parts of control systems.

Medium
<+“—p
Low High
“—> <>
| | | | |
I I I I I P>
0 60 90 99 100

Figure 1. Diagnostic coverage defined as low, madand high.

When numerical values are needed in calculatiod®; & used for “low” coverage, 90% is used for
“medium” coverage and 99% is used for “high” coggra

The quantification of the diagnostic coverage fiffedent methods of fault detection in memory and
I/O units (in chapter 3 of this report) is basedvafues extracted from the IEC 61508 standard. &hos
values are the results of theoretical studies basea simplified probabilistic approach. The ladk o
data concerning the various types of memory clapsl, the assumption that the potential faults are
equally distributed introduce a number of uncettam

Similar uncertainties are introduced for other parftthe PES. The probability of different faults i
the processing unit will depend on the type of pesor, the manufacturer, the production process, th
design etc. It is hardly possible to state a proivatthat will be valid in all cases. Assuming ammal
fault distribution of possible faults, the previogispressions [1] and [2] for the diagnostic coverag
become equivalent.

Faults in the programme sequence will have diffemFobabilities depending on the programming
language, the experience of the programmer, thingesffort etc. It will not be easy to state a
probability-based diagnostic coverage for the progne sequence monitor.

The most valid estimation of diagnostic coverageafdault detecting method should at this stage be
limited to one of the three levels referred earlierthis section; low, medium or high. The level
chosen may be different if probability, or numbefserrors, is used for the definition of diagnostic
coverage. However, the level will be the samelifallts are equally probable.

1.2 Diagnostic test interval

Methods for fault detection can be used at powetsugstablish if the electronic system is fit tarst
operating. Faults should be detected at start,opedation must not be allowed to start when faults
are detected. Such a power-up test will not dégedts which occur during operation. Thus it widtn

be suitable for systems of high safety integrityqwmgtrict requirements for behaviour at fault. Powe
up testing is sometimes used in systems with meele@ety requirements, and short operating time
between power-ups.

Fault detection may also be performed at run-timdirtd faults occurring during operation. The
diagnostic test interval will be of great importarto decide for which applications the system can b
used. The test interval will be the maximum timeimy which an undetected fault may exist.

The diagnostic test interval is defined as therugebetween on-line tests to detect faults infatga
related system that have a specified diagnostierege [IEC61508-4, clause 3.8.7].

The application will decide the requirement forgtiastic test interval. It is not easy to define an
exact requirement for a certain category. The failtate being generally much greater than the
diagnostic test interval, the diagnostic time im#&rshould nevertheless not be longer than 1% ef th
mean time between operation demands.

1.3 Architecture

Different hardware architectures are possible fBE® intended to fulfil category 2, 3 or 4. Catggor
2 is often realised by a single channel structutdch is called a 1001 system (1 channel out of 1
provides the safety function). Category 3 may ladiged by a single channel system in combination
with auxiliary components such as an electromedahmiodule, or by a dual channel system. A PES
intended to claim category 4 will probably be eitltial-channel or triple-channel. Other more
advanced architectures may certainly be used fproathe categories, but this is not state-of-the-a
due to financial restrictions on the design.

The safety principles required will depend on therdiware architecture chosen. A dual-channel
system employing safety principles of medium diagitocoverage may provide the same probability
for failure of the safety function, as a single mhal system using safety principles with high
diagnostic coverage. Faults in the single chaniiEhave to be more accurately detected to progde
high probability of failure-free operation. A duattannel system may tolerate an undetected fault in
one of channels, while the other channel still pdes the safety function.

In a similar way, a triple-channel system will ndesis efficient safety principles, than a dual-gten
system. These differences will be reflected in thquirements on which safety principles to be
employed for a specific category. (See the tablehapter 4.)

PES PES
IN 1 ouT IN \ ouT
Components/
Parts of the PES
safety-related
system
Figure 1.3.a Single channel Figure 1.3.b Dual channel

Examples of block diagrams for cathegory 3 corgystems

PES
PES |
IN \ ouT IN PES ouT
PES |
PES
Figure 1.3.c Dual channel Figure 1.3.d Tripple channel

Examples of block diagrams for cathegory 4 corgystems

10

2 Description of methods

There are several aspects in a programmable abéctaystem which can be automatically self-
checked. The following chapter gives some backgit@amd explanations to the different techniques.

2.1 Processing units

The processing unit of the PES may suffer fromt&ulhich may cause malfunction. Examples of
such faults could be bit errors in one of its intrregisters, or malfunctioning of the instruction
decoder.

Self-testing is employed by designing software ireg which test the functionality of the processing
unit. Certain operations are performed, and thaleb& only one correct result of such a test. The
principle of letting a processor which might beetgfcheck itself, relies on the assumption thaugt f
will corrupt the result of the self-check. The selét has to be designed in such a way that tkdatrs

a fault corrupting the test itself is negligible.

Some tests on the processing units are very hgsdrform during run-time. A processing unit in full
operation will make use of all registers, flags. détenay be easier to perform exhaustive testhef t
processing unit at power-up before the applicasiofitware has been started.

Another approach is to let two processing unithexge data, and then compare the result. A fault in
one of the processors is supposed to be detectdtkmther processor.

Following are examples of measures and technigueshware often employed to detect faults in
processing units:

- self test of the execution of the instruction set

- self test of registers by patterns or walkingfC61508-7, clause A.3.1, A.3.2]

- reciprocal comparison by software between tw@essing units [IEC61508-7, clause A.3.5]

2.2 Invariable memory ranges

Semiconductor memories may fail to work as intendeéhult in the invariable memory will corrupt
the source code and constants stored there. Ttradtisns to the processing unit may be distorted,
and important constants and parameters will beriect This will result in an unpredictable
behaviour of the machine control system. It is it to try to detect such faults before the
execution is disturbed.

The methods for checking of invariable memory el on reading the memory cells and compare the
read values to what originally stored there. Thig/ine done by direct comparison to a duplicate, area
or by calculating a checksum (or signature). Theckbum will then be compared to the sum which
was originally calculated and stored in memory.

Memory tests can be quite time consuming. It maly lreo possible to cover the complete address
range at one time. Run time checking is often peréal by checking only a limited address range
each time the memory test task is started. Afterrge number of calls to the memory test task the
complete memory will have been tested.

Example: A 8 kbyte ROM memory is check summed hyiragl 8 bytes to the check sum every
time the memory test task is called. It will takeotal of 1024 calls (8*1024/8=1024)
before the check sum is completed. If the memasytisk is started every 50 ms, the
diagnostic test interval will be 51 seconds (1024"5= 51.2 seconds).

11

It will not always be possible to use time-consuminemory tests at reset or power-up. The operator
might find the time to wait for system start tomdp In such cases, a simple power-up test may be
combined with a more exhaustive run-time test.

Following are examples of measures and technigudshware often employed to detect faults in
invariable memory ranges:

- checksum [IEC61508-7, clause A.4.2]

- 8-bit signature [IEC61508-7, clause A.4.3]

- 16-bit signature [IEC61508-7, clause A.4.4]

- replication [IEC61508-7, clause A.4.5]

2.3 Variable memory ranges

Semiconductor memories may fail to work as intendethult in the variable memory will corrupt all
variables stored in memory. This will result in anpredictable behaviour of the machine control
system.

The methods for checking variable memory rely dfedent ways to stimulate the memory cells, and
check that the function correctly. Test patterngifferent complexity can be written and then read
back. A complex test pattern will have a highegdiastic coverage than a simple test pattern.

Example: A simple test of variable memory can bealenhy writing and reading bit patterns
according to the following:
- save contents of memory cell to test.
- write bit pattern 055H.
- read and compare memory cell with 055H. Handleref no correspondence.
- write bit pattern OAAH.
- read and compare memory cell with OAAH. Handi®eif no correspondence.
- restore contents of memory cell.

Also testing of variable memory can be time consignas described above for invariable memory.

Following are examples of measures and techniguresh are often employed to detect faults in
variable memory ranges:

- RAM test "checkerboard” or "march” [IEC61508-1aase A.5.1]

- RAM test "walkpath” [IEC61508-7, clause A.5.2]

- RAM test "galpat” [[IEC61508-7, clause A.5.3]

2.4 I/O Units and Interface

Interfaces to external units are present on mafgtyseelated machine control systems. They can be
analogue, digital, serial or parallel. The exteroanmunication through these interfaces can be of
great importance for the safety. The status oflif@eunits and interfaces may be critical, and stoul
therefore be monitored.

Example: The semiconductor outputs of a safetyadld?ES are doubled and monitored. A
fault in one output transistor will be detected,lelthe other transistor still is able to
switch off the output load.

12

+ 24VDC

Control 1

/7 \

Monitor 1

$ o4
Monitor 2

-
Control 2
N

Ground

Following are examples of measures and technigiéshvare often employed to detect faults in I/O
and interfaces:

- multi-channel parallel output [IEC61508-7, cladsé.3]

- monitored outputs [IEC61508-7, clause A.6.4]

- input comparison/voting [IEC61508-7, clause A}6.5

2.5 Data paths

Even a physically small PES may consist of sevetalnal units which communicate. Examples of
such data paths are electrical parallel busesaldanises and optical fibres. The data paths between
the internal units may fail, and should be checked.

Important signals, such as alarm signals, origimgatrom one unit should be detected and processed
by the appropriate receiving unit.

Example: An optical fibre is used as data path betwtwo modules of a safety-related PES. All
messages have an 16-bit checksum included, ansatdty-related commands are
transmitted twice before they are accepted anduteddy the receiving module.

Following are examples of measures and technigigshvare often employed to detect faults in data
paths:

- inspection using test patterns [IEC61508-7, cals .4]

- transmission redundancy [IEC61508-7, clause A.7.5

- information redundancy [IEC61508-7, clause A.7.6]

2.6 Power supply

All safety-related programmable electronic systemsuld have some kind of circuitry to ensure that
operation will not be started before an adequapplgwoltage has been reached. The behaviour of
the processor and other electronic circuits is ifipelconly for a specific voltage range.

Monitoring of the supply voltage level will be impiant also during run-time. Interruptions of the

supply power will cause the electronic hardwareetder an undefined range where the exact
behaviour cannot be foreseen. The monitoring dincuist give an alarm in time before the voltage
reaches a threshold value. The PES should haveaae€fyll death” bringing the controlled machinery

to a safe state.

13

The programmable electronic system should then timeeto take proper action to enter a safe state.
It may also be necessary to save machine statusadeculated values in a non-volatile memory.

The output signal from the hardware circuit monitgrthe supply power can be either static or
dynamic. The output from a static monitor will indte proper power supply with a constant high or
low output signal. A change of the output will gima alarm to the processor. A monitor built on a
dynamic principle will have a dynamic output signdbwer failure will be indicated by a constant
signal.

The most common way to implement a supply poweritagng is to use a standard commercial
supply power monitor circuit. Such ICs are ava#alilom several semiconductor manufactures. A
disadvantage with this type of circuit is thatdtriormally not testable, i.e. a fault in the citowill

not be noticed before the PES is shut down in @ontnolled way.

Supply Power
+

Reset Reset Microcontroller
logic RES
IC INT

Low voltalge Alarm

monitor

Figure 2.6.a Example of block diagram of extermaduits for power-up reset and detection of low
supply voltage

Supply Power +
+
Reset Reset Microcontroller O
logic RES N
IC INT O
Low voltalge Alarm O
monitor N
O
Reset Reset Microcontroller N O
logic RES \O
IC INT

Figure 2.6.b Example of block diagram of extemieduits for power-up reset and detection of low
supply voltage in a dual-channel system.

14

Also over-voltage may create unwanted behaviouhefcontrol system. Checking facilities can also

be implemented to react on over-voltage beforespiexified operating voltage is exceeded, and the
behaviour cannot be guaranteed. One example whemvoltage detection is needed may be a dual-
channel system using a single power supply.

Following are examples of measures and techniqirshvare often employed to detect faults in the
power supply:

- over-voltage protection with safety shut-off [IGL508-7, clause A.8.1].

- monitoring of secondary voltages [IEC61508-7usk&A.8.2].

- power-down with safety shut-off [IEC61508-7,ude A.8.3].

2.7 Program sequence

The execution sequence of the software may berthstdy either software faults, hardware faults or
environmental disturbances. This will with greablpability lead to incorrect behaviour of the
programmable electronic system. The consequencegodf a fault are not possible to foresee since
"anything may happen”. However, there are well leigthed techniques to monitor the programme
sequence.

The monitoring of programme sequence may be rehlisgth in hardware and in software. A
combination of a hardware unit ("watchdog”) witHagical monitoring realised in software will be
the most powerful. But also less sophisticated riggles built on simple hardware or software
solutions will certainly be able to detect someesin the programme sequence.

2.7.1 Monitoring by hardware

A watchdog is defined as a hardware design whiclmitois the operation of internal hardware
functions, and/or application programme functicamsg/or system software functions and will result
in a safe condition if not periodically reset giradetermined interval. [prEN 12978] In practidest
means a timer circuit which is triggered by thegeissor at a periodic interval. If the trigger does
reach the watchdog, a stop or reset signal is givéine processor.

Trigger

Watchdog Processor

Stop/Reset

A

Figure 2.7.a. Watchdog, block diagram

15

Trigger from
microcontroller

Alarm signal from
watchdog

Normal operatio

4
v

Figure 2.7.b. Watchdog triggering and alarm signal

There are several hardware solutions for watchdogtionality. Many microcontrollers offer a
watchdog circuit on-chip. The watchdog is then paogmed, activated and controlled through
internal registers of the controller. There areoalspecial circuits available to supervise
microcontrollers. Such circuits often offer theifig of a watchdog. Another solution is to design
separate hardware circuitry based on a monosthpifidp which has to be retriggered at a specified
interval.

The watchdog circuit is preferred to be hardwardependent from the processor itself. The same

error which causes the fault in programme sequehoelld not cause also the watchdog to stop

functioning. There is an increased risk for thishié watchdog is integrated on the same chip as the
processor. Special caution must be paid if the thage used by the processor and the watch dog is
the same. A clock fault might then affect both tierocontroller and the watchdog.

A good watchdog should be tested or fail-safe. @gstwith high requirements for functional safety
may let the processor fake a watchdog alarm atyepewer-up, or at a periodic interval. The
processor will then detect if the watchdog is nperational. Otherwise there is a risk for a faalt i
the watchdog to pass unnoticed, until it reallyl viié needed. Another possibility is to design a
watchdog circuitry where single hardware faultd wéluse an alarm.

2.7.2 Software aspects

Software must be used to generate the triggeretaviichdog hardware circuit. It may also be used to
check the programme sequence even if no hardwarbden implemented as watchdog.

The simplest way of triggering in a cyclical systésnto check the program sequence once every
cycle. It is not advisable to make the checkingvatchdog triggering in a dedicated interrupt roatin
or isolated task. Such a triggering will only prabat one single routine or task is running. Thénma
program may be "locked up”, without this influengithe execution of a time triggered interrupt
routine.

A more powerful way to check the program sequencedftware, is to use trigger flags and key
words to indicate that all the significant partstioé software are active and executed in the cbrrec
sequence.

16

Software module 1

Set monitor pattern

Software module 2

Set monitor pattern 2

Software module 3

Set monitor pattern

=3

W

N(l; Safe

State

Are all monite
patterns set ?

Figure 2.7.c. Example of program sequence monigdoy software

2.7.3 Actions at fault

A detected fault in the program sequence will regdifferent kinds of actions depending of the type
of system. It is important that the correct actioaken. It will not be enough to design a watahdo
into the system, and not specify properly whichicacshall be taken at fault.

Most machines have a safe state which shall beeshtehen a fault is detected. A watchdog circuit

may force the processor and the outputs to the st where signals are inactive. Another

possibility is that a watchdog alarm will cut thewer to the outputs and leave the machine in safe
state. (See figure 2.7.d.) This safe state mustbropossible to exit without a dedicated action of

reset.

For applications with requirements for high avaiiah the watchdog alarm may be used to isolate
one of the processors and let a redundant unitde&ewithout affecting the normal operation of the
system.

17

Processor Ccuits Power

Watchdog \

Val

Figure 2.7.d. The watchdog may be used to disazirthe outputs.

A single-channel system which is intended to rucadntinuous mode should be reset by a watchdog
alarm, and the operation should continue as soguossible. No safe state exists in this case, and
there will be risks associated with an inactivecgssor.

If the control system contains any values measarazhlculated during run-time, it must be specified
how these values shall be handled after a watchtiorgn. Can they still be trusted and used, or must
all such values be reset to default?

2.7.4 Examples

Following are examples of measures and technigudshware often employed to detect faults in
program sequence:

- an on-chip watchdog with separate time base withione-window, e.g. Motorola microcontroller
68HC11 [IEC61508-7, clause A.9.1]

- a watchdog with separate time base without tirmeaw, e.g. a Maxim microprocessor supervisor
IC [IEC61508-7, clause A.9.1]

- logical monitoring of programme sequence impletadrin software[[EC61508-7, clause A.9.3]

- combination of temporal and logical monitoringpmbgramme sequence [IEC61508-7, clause A.9.4]

18

3 Diagnostic coverage

3.1 Processing unit

The central processing unit (CPU) is responsible eigecuting all software instructions in their
programmed sequence.

A correct function of the CPU relies upon the usadequate features for control and avoidance of
faults or dysfunction in any of its components. Enghmetic/logic unit, the control unit, the main
memory, stacks and registers are integral pariseo€CPU.

The arithmetic/logic unit

The arithmetic/logic unit (ALU) operates as the g@ssor’s calculator, executing operations and
returning the results to the main memory.

The operation of the arithmetic/logic unit and eohtunit depends on the contents of associated
registers, accumulators and stacks. These accuwmilattacks, and registers hold the operands
necessary to the execution of the arithmetic icsivnos as well as the results of arithmetic

calculations or data manipulations.

The control unit

The task of the control unit is to interpret maehinstructions and to issue commands to all other
units such as storage devices, input and outputeievand main memory.

The current value of the control register indicagé¢swhich address the next instruction shall be
fetched. The function of the instruction controlitus to generate the microprogram which results
from the decoding operations performed by the irston decoder.

The types of faults which may affect the instruetmontrol unit may depend on register and main
memory faults or on faults in the instruction desod he register faults are similar to memory fawult
Faults in the instruction decoder may be a comhmnatf faults in main memory and registers and
faults in the decoder logic.

The main memory registers and stacks

The main memory is used for short term storagajihgldata which is currently needed to carry out
processing instructions.

Normally, program instructions and data are stanedifferent places in the main memory. The area
of main memory where program instructions are heldle awaiting execution is the instruction
stack.

The registers

. Accumulator where results of computations arel hol

. Storage register where data about to be usedrids

. Addressed register

. General purpose register

are used to hold current data and sometimes seaticthe program to be processed.

The types of faults or dysfunction which may affded main memory, stack and registers are similar
to those listed in the following section. (3.2 Mamoanges). Consequently certain methods used to
detect or avoid faults in the CPU may be commosehgsed to detect faults in memory units.

There are several methods to achieve fault diagnosverage of the processing unit of which the
following can be used to reach a specified rateookrage.

19

This work shall focus upon the methods listed s BC 61508 standard (part 2, A.4).
Comparator
Majority voter
Self-test by software: limited number of pattefmse channel)
Self-test by software : walking bit (one channel)
Self-test supported by hardware (one channel)
Reciprocal comparison by software

3.1.1 Comparator (IEC 61508-7, A.1.3)

This method is applicable for the detection of exiia instruction decoding and execution.

In dual or multi-channel systems a special deviowides for the detection of fault/error by meafs
comparison of data from the different channels.

The periodicity of the test execution shall compligh the specific application in order to reach an
acceptable level of diagnostic coverage.

If a fail-safe comparator device is used, a comtirsuexecution of the test procedure or an adequate
periodic repetition frequency of the test shouldvige for a high diagnostic coverage. In the
following example, the comparator is a hardwardaev

Channel 1 Channel 2

<—— Comparator | —»

i

Figure 3.1a Comparator in a dual-channel system

In the following example the comparator is impleteginby software. The multiple processing is
realised by two independent sets of data and agifit programs. Since there is only one processing
unit, the double processing is performed in seqai@scshown in the figure. The independent output
results are checked by the software comparator.

A high fault diagnostic coverage is achieved if itn@lementation of the two application programs is
diverse.

20

T
l In1
Application T1
program 1 In 2
Application T2
out 1 program 2
Out 2 I
v S
Comparator T3
Out

Figure 3.1 b Software comparator single channel

3.1.2 Majority voter (IEC 61508-7, A.1.4)

This method is applicable for the detection of egrim instruction decoding and execution in multi-
channel systems. The method shall detect and ra#lekefs in one of at least three hardware channels.

Channel 1 Channel 2 Channel 3

VOTER

ouT

Fiaure 3.1 c Voter in a three channetesy

21

3.1.3 Self-test by software: limited number of pat#rns [one channel]
(IEC 61508-7, A.3.1)

Standard techniques are used for the hardwareroetieh. The failure detection is realised by means
of specific software functions which provide foifgests using at least two data patterns.

For example a periodic testing can be carried gubfsoducing the test patterns 77hex and 88hex.

A low fault diagnostic coverage is achieved by thisthod.

3.1.4 Self-test by software : walking bit [one charel] (IEC 61508-7,
A.3.2)

This test method is focused on faults which camcfthe memory parts of the processing unit.
Assuming that the hardware consists of standardanetype without any parity bit, software test
functions are implemented. Self-tests are perforimgdising a data pattern to check the physical
storage medium (stacks, registers, accumulators).

Given a specific memory unit to check, the différealls are sequentially addressed with a one bit
value. The content of all the cells in the register then read. The same procedure is repeateefor
next cell until all cells are addressed.

A medium fault diagnostic coverage is achievedHhiy method.

Example : test of a four-bit register

Content of register when starting the test walking-dsifuence

0 0 0 0

Testing sequence starts

0 0 0 1

After checking the content of the register, the cantéithe adressed cell is reset ti
previous value.

This procedure is then repeated untill all the cellsénrégister are set.

0 0 1 0
0 1 0 0
1 0 0 0

Fiqure 3.1 d Walking-bit (one-chanr

22

3.1.5 Self-test supported by hardware [one channel{IEC 61508-7,
A.3.3)

Hardware supported test method for failure detact® periodic hardware facility may be used for
monitoring a certain bit pattern according to thetaladog principle.

A medium fault diagnostic coverage is achievedHiy method.

3.1.6 Reciprocal comparison by software (IEC 61508; A.3.5)

The method is built on the comparison result ofadetchanged between the processing units of a
multi-channel architecture. The types of data idelvesults, intermediate results and test data.

The detection of discrepancies results into theegion of an error/failure message.

A high fault diagnostic coverage is achieved byg thiethod.

3.1.7 Summary of examples

The table in figure 3.1 lists methods for checking processing units. The list is not exhaustinel, a
other acceptable methods exist,

Maximum achievable fault
Test method for diagnostidiagnosis coverage Reference in IEC 61508-|7
coverage of processing unit
Comparator High A.1.3
Majority voter High A.l.4
Self-test by software : limitegd.ow A3.1
number of patterns (one
channel)
Self-test supported by softwgrgledium A.3.2
: walking bit
Self-test supported by hardwatdedium A.3.3
(one channel)
Reciprocal comparison hyigh A.3.5
software

Figure 3.1 Examples of test methods of processiitg u

3.2 Memory ranges

One aspect of memory design involves ensuring mitegiity of data stored in memory. Memory
devices can sometimes develop permanent faultshwd@iase the memory to function incorrectly.
Faults in a memory device can affect three diffefenctions:

- The memory cell array,

- The decoder logic

- The Read/Write logic.

Memory Cell Array

23

A memory unit is built of memory cells. Physicalllolar alterations such as metallization short-
circuits and capacitive coupling may lead to tHfeing types of faults:

1. One or more cells are stuck at 0 or 1

2. The occurence of a coupling between one or seyaiad of cells. In such a case, the transition
from x to y in one cell of the pair induces a stasmsition in the other cell.

Decoder

The function of the decoder is to select a unigeeory cell for a specific address. The occurence of
any failure in the decoder logic gives rise to ohéhe following behaviours :

1. The decoder does not access the addressed cellagneven access non addressed cells.
2. The decoder accesses multiple cells, includingtidressed cell.

Depending on the logic used, the case of no adoems addressed cell is equivalent to that celikstu
at 0 or stuck at 1.
The case of multiple accesses is equivalent tolswupetween cells in the memory cell array.

Consequently, the faults encountered in the decddarot need to be treated specifically since they
are in every aspect similar to the set of faultsepbable in a memory cell array.

Read/Write Logic

Independently of the type of memory (variable ainable), the device can be considered to héve
inputs andN outputs. The occurence of any failure in the Raadé logic gives rise to one of the
following behaviours :

Data input lines or data output lines may intenaith each other via short-circuits or capacitive
coupling. These errors are equivalent to couplietgveen memory cells.

Output lines of the sense amplifier logic or wdver logic may be stuck at 0 or stuck at 1. linei
case this fault is equivalent to stuck-at-0 or ltacl memory cells that correspond to the stuck
output lines.

The purpose of the following sections is to point adequate methods and techniques to achieve
specified levels of diagnostic coverage. Thesenigckes, adapted to the current type of memory
device, shall concentrate on faults in the memetlyanly.

3.2.1 Invariable memory ranges

There are several methods to achieve fault diagnastverage of memory units of which the
following can be used to reach a specified rateookrage.

This work shall focus upon the methods listed mHEC 61508 standard (part 2, A.5 - A.6).
Word saving multi-bit redundancy
Modified checksum
Signature of one word (8 bit)
Signature of a double word (16 bit)
Block replication

24

3.21.1 Word saving multi-bit redundancy (IEC 6158-7, A.4.1)

The multi-bit redundancy technique is used to desewle bit errors, 2-bit errors, 3-bit errorsdan
all-bit errors in a 16-bit wordA common approach to error bit detection, is thmpbe parity
technique where one parity bit is added to eachacter.

The word saving multi-bit redundancy is a variatafrsimple parity and is achieved by the addition
of several redundant bits, a so called check cadesach word. By doing so the probability of multi
bit error detection is increased.

Usually data rarely consist of long continuous atme of bits. Data access or recovering is broken
into blocks of data.

A block code converts a fixed length &f data bits to a fixed lengtd code word, wher&l > K. The
rate of the code is the ratio/ N, and the redundancy of the codd is(K/N).

The procedure can also be used to detect addresgiong, by calculating the redundant bits for the
concatenation of the data word and its address.

Diagnostic coverage : medium

[z all singlebit errors+ Y all 2-biterrors+Y 3-bit+Y_ all -biterrors
[z all possibleerrors]

DCN =

3.2.1.2 Modified checksum (IEC 61508-7, A.4.2)

Common to all checksum techniques is that onefsebde is generated by a specific algorithm. This
set of code, representing the contents of a mem@y is then stored as the defined checksum value.
At runtime, during self test, a new set of codgaserated by the same algorithm and compared with
the stored value. If a difference occurs an adegoegasure is taken and/or a failure message edrais
to bring the condition to the attention of the dsperator.

What characterises a checksum technique is theenafuhe set of code generated and the type of
algorithm used. The combination of those two factoermits to chose the appropriate method for a
specified rate of diagnostic coverage.

In the case of the modified checksum a single vimgenerated and saved. This word represents the
contents of all words in memory.

A modified checksum is a fault/error control tecfue in which a single word representing the
contents of all words in memory is generated andecdaThe algorithm applied to derive the
checksum value shall use all the words in the outseock of memory.

During self test, a checksum is produced from tireemt algorithm and compared with the previously
saved checksum value. The detection of a differshed result in a predefined invariable memory-
error measure and/or message.

Diagnostic coverage :

[Z all odd - bit errors+ Y a/en—biterrorss]
[Z all possibleerrors]

DC\ = =50 %

25

3.2.1.3 Signature of one word (8 bit) (IEC 61508;A.4.3)
This technique is used to detect 1-bit errors anti+hit errors within a word.

The Cyclic redundancy check (CRC), is used in &afilbns involving detection of small changes in
blocks of data. Such applications include startvepification of ROM code, program and data
correctness validation.

The CRC algorithm operates on a block of data asita The CRC algorithm divides this single large
value by the CRC polynomial or generator polynomi@RC polynomials are designed and
constructed for test of data blocks of limited sikzarger amount of data invalidate some of the
expected properties such as the guarantee of ihgteaty 2-bit errors.

The remainder of the division between the valughef data block and the CRC polynomial is the
CRC result or signature. In the case of Signatfirene word technique, the CRC result shall be at
least one word in size.

The signature is sent or stored along with theimaigdata. When the data is received or recovered
from storage, the CRC algorithm is reapplied arel ldtest signature compared with the original
signature. A failure message is raised if theredgdference.
Diagnostic coverage : QG
[Z all 1-bit errors+ »_ all multi - bit errorswithinaword + Y all possiblebit errors

[z all possibleerrors]

=99.6 %

3.214 Signature of a double word (16 bit) (IEG1508-7, A.4.4)

This technique is used to detect 1-bit errors aotti+hit errors within a word, as well as all pdssi
bit errors.

The signature of a double word technique is a tianaof the signature of one word technique where
the CRC result value is at least two words in size.

For 16-bit polynomials, the maximum designed datmth is generally'2 - 1 bits, which is just less
than 4K bytes. Consequently, a 16-bit polynomiahas the best choice to produce a single result
representing an entire file, or even to verifyragd EROM device, of size 8K or more.

Diagnostic coverage :

DCN =
[z all 1-bit errors+Y_ all multi - bit errorswithinaword +Y_all possiblebit errors

[Zall possibleerrors]

0

99.998%

3.2.1.5 Block replication (IEC 61508-7, A.4.5)

This technique is used to detect all bit errors.

26

The block replication is a technique used for ggerand loading of safety-related data and programs
The block of data is duplicated in different fornaaitd stored in separate memory areas. The contents
of the two memory areas are compared and a faih@ssage is raised if a difference is detected.

The detection of certain types of bit-errors regsithat the data is stored inversely in one ofloe
memories and re-inverted when read.

Diagnostic coverage : high

Il bit +) all d
DCN:[Z all bit errors+Y_ all wor errors]

[z all possi bleerrors]

3.2.1.6 Summary of examples

The table in figure 3.1 lists methods for checkihg invariable memory ranges. The list is not
exhaustive, and other acceptable methods exist.

Method for fault diagnosticMaximum achievable

coverage of invariablgrault diagnosis Reference in IEC 61508- 7

memory ranges coverage

Word saving multi-bit High A4l

redundancy

Modified checksum Low A.4.2 This technique detealsthe
odd errors and some of the eyen
errors

Signature of one word (8 bit] High A.4.3 This terjue detects all one
bit and a high percentage of multipit
errors

Signature of a double wordHigh A4.4

(16 bits)

Block repetition High A.45

Figure 3.2.1 Examples of test methods for invaeabémory

3.2.2 Variable memory ranges

3.2.2.1 RAM test "checkerboard” or "march” (IEC 61508-7, A.5.1)
The RAM checkerboard test is used to detect dbdtierrors.

The checkerboard test is based on a checker-bgaedoattern of 0's and 1's which is written into a
bit-oriented memory area. The cells of the memoeaainder test are inspected in pairs to ensute tha
the contents are the same and correct. The addiélse first cell in such a pair is variable ane th
address of the second cell is derived by bit ineersf the first address.

In the first phase, the variable address is increatkuntil the end of the address space of the memo
area under test.

In the second phase, the address is decremenitstaginal value.

The test is repeated with the checker-board patteerted
A failure message is raised if any difference isurs.

27
Diagnostic coverage : low

D satic failures
~ > all possible failures

DCy

3.2.2.2 RAM test "walk-path” (IEC 61508-7, A.5.2)

The RAM walk-path test is used to detect static dwdamic bit errors, as well cross-talk between
memory cells.

The first step in the walk-pat test consists ofiatising the chosen memory area to be tested. iShis
realised by writing a standard data pattern in themory area. A bit inversion is performed on the
first cell and the remaining memory area is inspect

The second step consists of re-inverting the Geditfollowed by another inspection of the remagnin
memory area.

These two steps are repeated for all memory acellsa memory area under test.

A symmetric test is carried out by performing &ibversion of all cells in memory under test and
proceeding as described above.

Diagnostic coverage : medium

[z static failures+ Y dynamic failures+ Y cross- talk failures
DCN =

> all possible failures

3.2.2.3 RAM test "galpat” or "transparent galpat”
(IEC 61508-7, A.5.3)

The Galpat and the transparent Galpat techniquesused to detect static bit errors and dynamic
couplings between cells.

Description and performance of the method

The first step in the Galpat test consists of atiging a chosen memory area. This is realised by
setting all cells to the value O or 1.

The second step consists of inverting one celiatitne;

For each inverted cell, the value of the remaintefjs are inspected sequentially by single read
access. The inverted cell is checked after eachaeeess.

The same procedure is repeated with the oppodiialisation of the memory range to be tested.

In the transparent Galpat method no initialisat@kes place. When a cell to be tested is chosen, th
inspection of the remaining cells is realised byusmtial read access followed by the generatioa of
signature e.g. S1, which is stored.

28

The next step is to invert the cell to be tested tnrepeat the same inspection process of the
remaining cells followed by the generation of acset signature e.g. S2, which is also stored. The
signatures S2 and S1 are then compared. Any diifergives rise to an error message.

The last step in the method is the re-inversiothefcell to be tested followed by the generatiothef
signature e.g. S3 of all the remaining cells. A panson of S3 and S1 is performed and any
discrepancy gives rise to an error message.

The inspection of all the cells in the memory raagedone in the same manner.
Diagnostic coverage : high

[Z static failures+ Y dynamic couplings
DCN =

> all possible failures

3.224 RAM test "Abraham” (IEC 61508-7, A.5.4)

This technique is used to detect all stuck-at angking errors between memory cells.

Description and performance of the method

The Abraham test is a form of variable memory pattest which identifies all stuck-at faults and al

coupling faults between memory cells. The proportbfaults detected exceeds that of the RAM test
"galpat”. A number of 30n operations is necessargdrform the test of n cells in memory.

Diagnostic coverage : high

> all stuck — at failures+ Y coupling failures

DCy = [
" > all possible failures

3.2.2.5 Parity-bit for RAM (IEC 61508-7, A.5.5 Onebit redundancy - for
example RAM monitoring with a parity bit)

This technique is used to detect all possibletire in the memory range tested.

A very common approach to error detection is theglsi parity check code. This codppends to each

K data bits an additional bit whose value is takem#ixe thekK+1 word even (or odd).

Such a choice is said to have even (odd) paritiyh @en (odd) parity, a single bit error will make
the received word odd (even).

The implementation of this technique for an N*8-memory simply requires an extra block of
memory to realise an N*9-bit memory. If any sinpleof the 8 stored bits is corrupted, the parity b
will be incorrect. This is also the case for 3,06,7 bits errors. However 2 or any even number of
errors will not be noticed.

Diagnostic coverage : low
> all possiblebit errors

DCy =
"7 > all possibleerrors

29

3.2.2.6 RAM monitoring with a modified hamming coe (IEC 61508-7, A.5.6)
This technique is used to detect all odd-bit erralis2-bit errors, 3-bit and multi-bit errors.
Error-Correcting Codes - Hamming Code

Data is rarely transmitted in long continuous strieaf bits. Transmission of data is usually broken
into blocks or message. Each block or messagséparate unit of transmission.
A message of length (n =m +r) consists of :
m message bits (data bits)
r redundant bits (check bits)
The check bits are part of the error protection modvery mechanism built in the message.
The message of bits size, is called an n-bit codeword.
The number of bits which differ in two codewordsadled the Hamming Distance.

The significance of the Hamming distance is th&avid codewords are a Hamming distance d apart, it
will require d single bit errors to convert onearihe other. In other words, errors that involvesle
bits than the Hamming distance can be detected.

In most data transmission applications, dlp®ssible data messages are legal. But, dependihgw
check bits are computed, not all codewords are.used

Knowing how codewords are generated, gives infadonabn how to construct a list of legal
codewords and from that knowledge find the minimdamming distance.
This distance is the Hamming distance of the cotapglede.

The error-detecting and correcting properties cb@e depend on its Hamming distance.

To detect d errors requires a distance d +1 code.

With such a code it is not possible that d singtestrors can change a valid codeword into another
valid codeword.

To correct d errors requires a distance 2d+1 code, so tigat pdewords are so far apart that even
with d changes, the original codeword is still elothan any other codeword and consequently can be
uniquely determined.

Diagnostic coverage : high

DCy =
[z all odd - bit errors+ Y all 2 - bit errors+ Y 3- bit errors+ Y multi — bit errors
> all possibleerrors

3.2.2.7 Double RAM with hardware or software compaison and read/write
test (IEC 61508-7, A.5.7)

This technique is used to detect all bit errors.

The double RAM with hardware or software comparisma read/write test technique is based on
duplication of the safety-related contents of asgmomemory area.

The contents of memory is duplicated in differerniat and stored in separate memory areas.

The contents of the two memory areas are comparec dailure message is raised if a difference is
detected.

Diagnostic coverage : high

30

> all bit errors
> all possibleerrors

DCN =

3.2.2.8 Summary of examples

The table in figure 3.2 lists methods for checkihg variable memory ranges. The list is not
exhaustive, and other acceptable methods exist.

Method for fault diagnosticMaximum achievabl

11%

coverage of variablgfault diagnosis Reference in IEC 61508- 7

memory ranges coverage

RAM test "checkerboard” | Low A.5.1

RAM test "walk-path” Medium A5.2

RAM test “galpat orHigh A5.3

"transparent” Transparency during the operating cycle

can be achieved by partitioning the
memory. The testing of each partition is
later realised in different time segments.

RAM test "Abraham” High A.5.4
Parity-bit for RAM Low A.5.5
RAM monitoring with g High A.5.6

modified hamming code

Double RAM with hardwareHigh A55
or software comparison and
read/write test

Figure 3.2.2 Examples of test methods for variatéenory

3.3 I/0O Units and Interfaces

There are several methods to achieve fault diagnosterage of I/O units and interface of which the
following can be used to reach a specified rateookrage.
This work shall focus upon the methods listed i BC 61508 standard (part 2, A.7).

Test pattern

Code protection

Multi-channelled parallel output

Monitored outputs

Input comparison/voting

3.3.1 Test pattern (IEC 61508-7, A.6.1)

The aim of this test method is to detect the faslites which may affect any input or output linfs.
defined flow of data is fed via the input portstieé control system which after processing gives ris
to the corresponding signals in the respectiveuutpes. The output signal pattern is then comgare
to the expected signals.

The repetition frequency of this test procedureetels of the current application.

Diagnostic coverage : high

31

Example :

Periodic generation of the te
pattern

In(1)l v () l In(n)

System processing

\ \
Out(2) ‘ Out(j) Oul[(m)

(1) out(3) i i

v

@)

c

Comparaison with expected
output signal levels

Test result i

Figure 3.3a Test pattern

3.3.2 Code protection (IEC 61508-7, A.6.2)

The aim of this test method is to detect randongware and systematic failures in the input/output
data flow. A coding procedure or a table systemsisd to limit the number of input or output signal
combinations for which the system operates norm#&ilymeans of a decoding routine the status of
the input and output signals are determined in sualay that any systematic error or random failure
is detected. This information can be further useddd more protection under run-time.

Diagnostic coverage : high

Example:

A two channelled safety-related system is baseidaependent input signals In1 and In2.

By coding In1 and In2, information redundancy isled at the input stage. The parallel processing of
these signals in respective computer results in dwiput signals. If special conditions are set to
generate a common status signal any discrepanceesiedected and result in appropriate safety
measures.

32

In1 In2
Coder Coder
<« —>
Computer
ComA[\)uter > 2
« —
4> <—
——» Comparison <
> <
Out 1 i Out 2

Fiaure 3.3.b Code protectir

3.3.3 Multi-channel parallel output (IEC 61508-7, A6.3)

The multi-channel parallel output feature enables detection of random hardware faults such as
stuck-at faults as well as faults resulting fronteemal devices. Errors/failures such as timing rstro
addressing errors, drift failures and transcieittifes may also be detected with such a method Thi
control technique implies that the system is buiith independent outputs. The error detection
procedure is carried out under the diagnostic vwaleloy external comparators which can switch off
the current equipment. Diagnostic coverage : high

3.34 Monitored outputs (IEC 61508-7, A.6.4)

Individual failures can be detected by using thenmawed output method which is data flow-
dependent. This method enables detection of fauttss and failures originating from external
equipment, timing errors, addressing errors as agetrift failures and transcient failures

The error detection procedure is effective onlthé data flow changes appear under the diagnostic
interval. Depending on the robustness of this @mirechanism, detected failures may sometimes not
be track to a specific output line. Diagnostic gage : high

33

3.35 Input comparison / voting (IEC 61508-7, A.6)5

Input comparison voting is an error / fault methgkd to detect individual failures from external
equipment or units. Errors/failures such as timigors, addressing errors, drift failures and
transcient failures may also be detected with suchethod. This control technique implies that the
system is built with independent input units. Theedetection procedure is carried out under the
diagnostic interval by an external comparator whiah switch off the signal processing in respective
processor unit.

Signal 1 L Signal 2 l Signal 3 L
Input 1 Input 2 Input 3
i i — —Status Input 1

Comparator |— —— —Status Input 2
0]

e T —Stauts Input 3

Processor 1 Processor 2
i Processor 3
Output 1 Output 2 Output 3

! I 3

Fiaure 3.3.d Input comparis
Diagnostic coverage : high
3.3.6 Summary of examples

The table in figure 3.3 lists methods for checkihg I/O units and interfaces. The list is not
exhaustive, and other acceptable methods exist.

Method for fault diagnosticMaximum achievable fault

coverage of /O units and diagnosis

interface coverage Reference in IEC 61508- 7
Test pattern High A.6.1

Code protection A.6.2

Multi-channel parallel output High A.6.3

Monitored outputs High A.6.4

Input comparison / voting High A.6.5

Figure 3.3 Examples of test methods for I/O uniid mterfaces

34

3.4 Data paths

There are several methods to achieve fault diagnosverage of Data paths of which the following
can be used to reach a specified rate of coverage.

This work shall focus upon the methods listed g BC 61508 standard (part 2, A.8).
Multi-bit hardware redundancy
Complete hardware redundancy
Inspection using test patterns

Transmission redundancy
Information redundancy

3.4.1 Multi-bit hardware redundancy (IEC 61508-7, A7.2)
The aim of this method is to detect errors durir@ngmission on the bus and in serial transmission
links. By extending the bus with two or more linestor detection is achieved by using hamming

code techniques.

Diagnostic coverage : medium

3.4.2 Complete hardware redundancy (IEC 61508-7, A.3)

The aim of this method is to detect errors durimg ¢ommunication process between units within a
system. The communication bus is doubled and tb&iadal lines are used to detect errors.

Diagnostic coverage : high

3.4.3 Inspection using test patterns (IEC 61508-A.7.4)

The aim of this method is to detect static failu(esick-at failure) and cross-talk. By using a data
flow-independent cyclical test of data path, a carngwon is done to compare current observation with
the expected values. This method is effective dhlyhe pattern information, the test pattern
reception, and the pattern evaluation are indeperafeeach other.

Diagnostic coverage : high

3.4.4 Transmission redundancy (IEC 61508-7, A.7.5)

The aim of this method is to detect and avoid e failures. The transmission of information is
repeated several time in sequence.

Diagnostic coverage : high

35

3.45 Information redundancy (IEC 61508-7, A.7.6)

The aim of this method is to detect and avoid srinrbus communication. Usually the information
transfer is carried out in blocks, followed by a&cksum calculation.

Diagnostic coverage : high

3.4.6 Summary of examples

The table in figure 3.4 lists methods for checking data paths. The list is not exhaustive, androth
acceptable methods exist.

D

Method for fault diagnosticMaximum achievabl

coverage of data paths fault diagnosis coverage
Reference in IEC 61508- 7
Multi-bit hardware redundancy Medium A7.2
Complete hardware redundancy High A.7.3
Inspection using test patterns High A.7.4
Transmission redundancy High A.7.5
Information redundancy High A.7.6

Figure 3.4 Examples of test methods for data paths

3.5 Power supply

The possible faults cannot be defined in the arcteway, as for example memory faults can be.
Faults in the supply power may be characterised as:

- supply voltage lower than specified minimum limit

- supply voltage higher than specified maximum dimi

- supply voltage drifting within the specified rang

- oscillations.

The voltage variations can further be characterasethst or slow, and intermittent or singular.

Neither is it possible to exactly define the fawifsich are detected by a certain technique to roonit
the supply power. The diagnostic coverage of thegoasupply monitoring cannot be calculated. It
will have to be defined in terms such as low, medar high.

Continuous monitoring without checking for faults ithe circuitry can be defined to have low
diagnostic coverage. A hardware or software faulthe monitoring mechanism may easily disable
the supply voltage monitoring without this beingetved by the processing unit.

Continuous monitoring using dynamic signals candbéned to have high diagnostic coverage. A
fault in the monitoring function must then be retgd as likely to corrupt the dynamic signals. The
processing unit will observe the change in the dyinasignal, and detect the fault.

Machine control systems do very seldom employ ackedror redundant monitoring of the supply
voltage in a single channel. Dual-channel designslly have two independent voltage monitoring
circuits. Most circuits for supply voltage monitogi may be considered to have low diagnostic
coverage.

36

The table in figure 3.5 lists methods for checkihg power supply. The list is not exhaustive, and
other acceptable methods exist.

Method for fault diagnostitMaximum achievable faulReference in IEC 61508- 7
coverage of power supply diagnosis coverage
Continuous monitoring (ndLow

checking in the circuitry)
Continuous monitoring usinddigh
dynamic signals

Figure 3.5 Examples of test methods for power suppl

3.6 Program sequence

Faults in the programme sequence may be caused abywére faults, software faults or
environmental disturbances. It is not possibledgbng the fault modes in a precise way. Neithet is
possible to calculate the number of faults which be detected. The diagnostic coverage cannot be
calculated, but has to be agreed upon by definiean as low, medium or high.

Techniques to detect faults in programme sequereceased on software, hardware or combinations
of both.

A frequently use technique is a hardware circuiafch dog’) triggered by the software of the
processing unit within a periodic interval. Thischeique may be further enhanced by logical
monitoring of the execution. The different partstioé software will check for a correct sequence
between them. Software checking may also be usgwbutihardware circuitry.

Depending on combinations of techniques, diffeteagnostic coverage may be claimed.

There are some hardware aspects which will infleehe diagnostic coverage:

- monitoring time base shared with CPU, or indepenadf CPU time base

- on-chip hardware or hardware separated from tbegssing unit.

- fail-safe monitoring hardware, i.e. a fault irethardware used for monitoring the execution will
cause an alarm.

There are also software aspects which will affeetdiagnostic coverage:

- triggering from a non safety-related part of software.

- testing of the program sequence monitoring fumctit reset.

- software monitoring of the correct sequence ef itidividual program sections by passing "keys”
between software modules, or by "counting”.

Execution monitoring without hardware support isyveensitive to hardware faults in the processing
unit. Faults in the processing unit may disablenlibe execution of the application software, arel th

monitoring software. Execution monitoring basedyooh software must be defined to have low
diagnostic coverage.

A monitoring device integrated on the same chipgh&sprocessing unit, and triggered at a periodic
interval, may be regarded to have low diagnostiecage.

An external hardware circuit dedicated to executimnitoring will be less subject to common cause
failures with the processing unit. It can be regdrtb have medium diagnostic coverage.

37

An external fail-safe circuit, or an external péially tested circuit, can be regarded to havé hig
diagnostic coverage.

Machine control systems do seldom employ advancededundant monitoring of the programme
sequence in a single channel. Dual-channel designally have two independent ‘watchdogs’, and
the processing units may synchronise and therebyitarothe programme sequence of the other
channel.

The table in figure 3.6 lists methods for checkihg invariable memory ranges. The list is not
exhaustive, and other acceptable methods exist.

Method for fault diagnostic Maximum achievable faull Reference in IEC 61508- (7
coverage of program sequence diagnosis coverage
execution
Monitoring device integrated on the Low
same chip as the processing unit
External hardware circuit ¢r Medium
external periodically tested circuit
External fail-safe circuit High
Figure 3.6 Examples of test methods for progranisece
4 Requirements

In the work package 2.1 it is shown that, for systchitectures typical for complex electronic
systems (CES) a correspondence between the cate@dfEN 954-1 and the Safety Integrity Levels
of IEC 61508 is possible if a complete safety fiocis executed by the CES. To get an hierarchical
risk reduction between categories B, 2, 3 and 4dhewing tables can be used. If the designer can
justify that the assumptions for the architectuasthe same than made in chapter 1.3 the following
tables could be used without quantification. Ustmg result of chapter xxx a link can be made
between the categories of EN 954-1 and the Safiseglity Levels of IEC 61508 for these designated
architectures for the machinery sector for CES.

For complex electronic systems according to chap&e of EN 954-1 cannot be used to realize
Category 1. For this reason, the following tablesdt contain any checking principles for category
1.

The requirements listed in this report are combiteetbrm adequate safety principles for a certain
category (B, 1, 2, 3 or 4). Different safety priplels are listed for the different architectures in
category 3 and 4. This is commented in chapter 1.3.

Some of the checking principles may be appliedeeittt power-up, or continuously during run-time.
This will be much depending on the application andspecific requirements are given for when (or
how often) the checking must take place.

4.1 Processing unit

4.1.a Requirement: The CPU shall be checked faksttifailures of registers and internal RAM.
4.1.b Requirement: The decoding and executionstfuations shall be checked.
4.1.c Requirement: All registers must be checked.

4.1.d Requirement: Faults in the processing urall & indicated by the PES.

Requirement Category
B 2 3 4

Single Dual | Dual Triple
4.1.a Registers&RAM X X X X
4.1.b Instruction decoding X X
4.1.c All registers X X
4.1.d Indication X X X X
Minimum diagnostic coverage - - High | Medium| High | Mediun

Table 4.1 Safety principles for monitoring of thegessing unit.

4.2 Invariable memory ranges

4.2.a Basic requirement: The PES shall be abtietect faults in the invariable memory.

4.2.b Additional requirement: The complete addrasgie must be checked.
4.2.c Basic requirement: Memory failures shallfdicated by the PES.

Requirement Category
B 2 3 4

Single Dual | Dual Triple
4.2.a Memory check X X X X X X
4.2.b Complete address range K
4.2.c Indication X X X X X
Minimum diagnostic coverage Low Low High Medium High Medium

Table 4.2 Safety principles for monitoring of im&le memory.

4.3 Variable memory ranges

4.3.a Basic requirement: The PES shall be ablietect faults in the variable memory.
4.3.b Additional requirement: The complete addrasgie must be covered.

4.3.c Basic requirement: Memory failures shalltdidated by the PES.

Requirement Category
B 2 3 4
Single Dual |Dual Triple
4.3.a Memory check X X X X X X
4.3.b Complete address range
4.3.c Indication X X X X X
Minimum diagnostic coverage Low Low High Medium High Medium

Table 4.3 Safety principles for monitoring of vdnliememory.

38

39

4.4 I/0O Units and Interface

4.4.a Requirement: The PES shall automatically kliee input and output units (digital, analogue,
serial or parallel).

4.4.b Requirement: Faults detected in the intezoaimunication shall be indicated.

Requirement Category
B 2 3 4
Single| Dual | Dual | Triple
4.4.a 1/0O check X X X X
4.4.b Indication X X X X
Minimum diagnostic coverage - - High | Medium| High | Medium
Table 4.4 Safety principles for monitoring of IL@its and interface.

4.5 Data paths

4.5.a Requirement: The PES shall automatically lchiee internal communication.

4.5.b Requirement: Faults detected in the intezaaimunication shall be indicated.

Requirement Category
B 2 3 4
Single Dual | Dual Triple
4.5.a Data path check X X X X
4.5.b Indication X X X X
Minimum diagnostic coverage - - High | Medium| High | Mediun
Table 4.5 Safety principles for monitoring of dptghs.

4.6 Power supply

4.6.a Basic requirement: The PES shall be abl#etect decreases in the supply voltage, and the
execution of the processor must be halted in arclhed way.

4.6.b Additional requirement: The supply voltagenmaring circuit must be dynamic, i.e. correct
supply voltage is indicated by a dynamic signal.

4.6.c Additional requirement: The supply voltagenitar circuit must be fail-safe, i.e. a fault ireth
circuitry shall lead to a power fail alarm.

4.6.d Additional requirement: Power supply failusésill be indicated by the PES.

40

Requirement Category
B 2 3 4

Single Dual | Dual Triple
4.6.a Supply power monitoring X X X X X X
4.6.b Dynamic X X

or 46¢ or 46¢
4.6.c Fail-safe X X

or46b or46b
4.6.d Indication X X X X
Minimum diagnostic coverage Low Low High Medium High Medium

Table 4.6 Safety principles for monitoring of slyppower.

NOTE: It is difficult to find a good definition adiagnostic coverage for the power supply checking.

4.7 Program sequence

4.7.a Basic requirement: The PES shall have a watcimplemented in hardware to monitor the
program sequence.

4.7.b Additional requirement: The hardware (esgbcthe time base) used for the watchdog shall
be independent of the processor it is supposedpersise.

4.7.c Additional requirement: There shall be sofewameans of monitoring the program sequence.

4.7.d Additional requirement: The watchdog musab®matically tested by the software at power-
up or a periodic intervals.

4.7.e Additional requirement: The watchdog mustdilesafe, i.e. a fault in the watchdog circuitry
will lead to a watchdog alarm.

4.7.f Additional requirement: A watchdog alarm sl indicated by the PES.

Requirement Category
B 2 3 4

Single Dual Dual Triple
4.7.a Hardware watchdog X X X X X X
4.7.b Independent hardware X X
4.7.c Software monitoring X X X X
4.7.d Tested X X

or4re or4re
4.7.e Fail-safe X X

or 47d or 47d
4.7.f Indication X X X X
Minimum diagnostic coverage Low Low High Medium High Medium

Table 4.7 Safety principles for monitoring of pragr execution.

NOTE: The principle of requiring more functionaliiyr a higher category corresponds to requiring a
higher diagnostic coverage.

41

5 Validation methods

5.1 Processing units

Aim: To validate the checking of processing units, andetermine its diagnostic coverage

Description: The processing unit in a safety-related PES usednBichine control is most often a
microprocessor or a microcontroller. A hardware erehce manual of the semiconductor
manufacturer will be needed to study the processimigg Software routines for checking of the
processing unit shall be analysed. The analysidbessummarised in following check list:

Processing Units

Ap.*) |[Yes | No Comment
A Are the processing units checked f[for
faults?
B Have techniques and measures according
to IEC 61508-2, table A.4 been used?
C Have the software routines used |for
checking of processing units been
identified?
D Have the software routines for handling of
faults been identified?

E Is the instruction decoding covered by self-
checking ?

F Are the internal registers covered by self-
checking ?

G Is self-checking performed at power-up [?
H Is periodic self-checking performed at riin-
time ?
I Has the diagnostic coverage been
determined?
J Has the software implementing the self-
checking been checked without finding
logical faults?
K Are the techniques and measures used
adequate as safety principles for fthe

intended category (see chapter 4)?
*) Ap. = Applicable question (Some questions mayl®applicable for all control systems.)

5.2 Invariable memory ranges

Aim: To validate the memory checking, and to calculsteliagnostic coverage.

Description: Programme code and constants will be storedviariable memory (ROM, EPROM
etc.). A memory map will give an overview of themmy ranges. The hardware circuit diagram or
the microprocessor manual may have to be studieftw&e routines for memory checking and
handling of memory faults shall be analysed. Thayesns can be summarised in following check list:

42

Invariable Memory Ranges

Ap.*) |Yes | No Comment

A Is automatic and periodic checking of the
invariable memory range made at a
periodic interval?

B Is automatic checking of the invarialp
memory range made at power-up?

e

C Have techniques and measures accoiding
to IEC 61508-2, table A.5 been used?

D Have the software routines used |for
memory checking been identified?

E Have the software routines for handljng
of faults been identified?

F Is the complete address range of |the
invariable memory covered by the test?

G Has the software for memory checkjng
been analysed without finding faults?

H Has the software for handling of faultg in
memory been checked without finding
faults?

I Has the diagnostic coverage be¢en
calculated?

J Are the techniques and measures Used
adequate as safety principles for fthe
intended category (see chapter 4)?

*) Ap. = Applicable question (Some questions maylmapplicable for all control systems.)

5.3 Variable memory ranges

Aim: To validate the memory checking, and to calcultsteliagnostic coverage.

Description: Variables and parameters will be stored in végiabemory (RAM, EEPROM etc). A
memory map will give an overview of the memory resgThe hardware circuit diagram or the
microprocessor manual may have to be studied. odtwoutines for memory checking and handling
of memory faults shall be analysed. The analysisbeasummarised in following check list:

Variable Memory Ranges

Ap.*)

Yes

No

Comment

Is automatic and periodic checking of
variable memory range made at
periodic interval?

he
a

Is automatic checking of the varial
memory range made at power-up?

Dle

Have techniques and measures accoiding

to IEC 61508-2, table A.6 been used?

Have the software routines used
memory checking been identified?

for

Have the software routines for handl
of faults been identified?

ng

Is the complete address range of
variable memory covered by the test?

the

Has the software for memory check
been analysed without finding faults?

ng

Has the software for handling of faultg
memory been checked without findi
faults?

n

Has the diagnostic coverage be
calculated?

een

Are the techniques and measures
adequate as safety principles for

Ised
the

intended category (see chapter 4)?

*) Ap. = Applicable question (Some questions maylmapplicable for all control systems.)

43

44

54 I/0O Units and Interface

Aim: To validate the checking of I/O units and inteda (external communication), and to
determine its diagnostic coverage.

Description: The control system may be equipped with I/O uaitd interfaces for communication
with external units. A hardware circuit diagram,dapossibly also the reference manual of the
semiconductor I/O circuits, will be needed for grealysis. Software routines for checking of externa
communication shall be analysed. The analysis essummarised in following check list:

I/0 Units and Interface

Ap.*) |Yes | No Comment

A Have all 1/0O units and interfaces begen
identified?

B Are the I/O units and interfaces checked
for faults at power-up?

C Are the I/O units and interfaces checked
for faults at run-time?

D Have techniques and measures according
to IEC 61508-2, table A.7 been used?

E Have the software routines used (for
checking of 1/0 units and interfaces bgen
identified?

F Have the software routines for handljng
of faults been identified?

G Is self-checking performed at power-up ?

H Is periodic self-checking performed |at
run-time ?

I Has the diagnostic coverage beéen
determined?

J Has the software implementing the self-
checking been checked without finding
logical faults?

K Are the techniques and measures used
adequate as safety principles for fhe
intended category (see chapter 4)?

*) Ap. = Applicable question (Some questions mayb®applicable for all control systems.)

45

5.5 Data paths

Aim: To validate the data path (internal communicatiomcking, and to determine its diagnostic
coverage.

Description: Communication between modules of the PES is madeigh different data paths. A
block diagram of the hardware has to be studiecbmbination with the circuit diagrams. Software
routines for checking of internal communicationlsba analysed. The analysis can be summarised in
following check list:

Data Paths

Ap.*) |Yes | No Comment

A Have all data paths for communication
been identified?

B Are the data paths checked for faults at

power-up?

C Are the data paths checked for faultg at
run-time?

D Have techniques and measures according
to IEC 61508-2, table A.8 been used?

E Have the software routines used |for
checking of data paths been identified]?

F Have the software routines for handljng
of faults been identified?

G Has the diagnostic coverage bgeen
determined?

H Has the software implementing the self-

checking been checked without finding
logical faults?

Are the techniques and measures used
adequate as safety principles for fhe
intended category (see chapter 4)?

*) Ap. = Applicable question (Some questions mayl®applicable for all control systems.)

46

5.6 Power supply

Aim: To validate the power supply monitoring, and tcedeine its diagnostic coverage.

Description: The monitoring of supply voltage requires a cormabion of hardware and software
measures. An analysis of the hardware circuit diagris often the best way to commence. The
sensing of the power alarm signal, and the powevndmutines should be analysed in the source
code. The analysis can be summarised in a chetck li

Power Supply Monitoring

Ap.*) |Yes | No Comment

A Is the supply power monitored to give
alarm at low voltage ("brown-out") ?

B Is the supply power monitored to give
alarm at high voltage?

C Have techniques and measures accoiding
to IEC 61508-2, table A.8 been used?

D Have the hardware circuit diagrams been
analysed without finding faults?

E Have the software routines used [for
power supply monitoring been
identified?

F Have the software routines for handljng
of faults been identified?

G Has the interface between hardware [and
software been analysed without finding
faults?

H Has the control flow at low voltage
alarm been analysed without findiphg
faults ?

Has the time from low voltage alarm |to
entered ‘safe state’ been analysed
without finding faults ?

J Has the action taken at high voltage heen
analysed without finding faults?

K Has the diagnostic coverage beéen
determined?

L Has the software implementing the self-

checking been checked without finding
logical faults?

M Are the techniques and measures used
adequate as safety principles for fhe
intended category (see chapter 4)?

*) Ap. = Applicable question (Some questions mayl®applicable for all control systems.)

47

5.7 Program sequence

Aim: To validate the programme sequence monitoringdwebpg), and to determine its diagnostic
coverage.

Description: The programme sequence monitoring may be implezdent combination of hardware
and software, or just in software. The hardwareutirdiagrams should be analysed for the measures
in hardware. The source code should be analysediggering of hardware, monitoring mechanisms
in software and handling of watchdog program seqgeetarm.

Programme Sequence Monitoring

Ap.*) |Yes | No Comment

A Is there a hardware device (watchdog) to
monitor the execution of the software?

B Is there a software monitoring of the
execution of the software ?

C Have techniques and measures accoiding
to IEC 61508-2, table A.10 been usedp

D Has the hardware circuit diagram been
analysed without finding faults?

E Will a watchdog alarm result in a reget
of the microprocessor?

F Will a watchdog alarm result in the lgss
of the calculated values, and machine
state?

G Is the watchdog triggered at a period |ess
than 5 seconds?

H Is the time base of the hardware

watchdog independent from the
processor time base?

Is the watchdog a separate hardware
circuit (not integrated into the
microcontroller) ?

J Is an unintended change in the program
flow likely to lead to a watchdog alarm|?

K Is the watchdog triggered during the
execution of the main program ?

L Has the diagnostic coverage been
determined?

M Has the software implementing the self-

checking been checked without finding
logical faults?

N Are the techniques and measures Used
adequate as safety principles for fhe
intended category (see chapter 4)?

*) Ap. = Applicable question (Some questions mayb®applicable for all control systems.)

48

6 Conclusions

Summing up the results of this work, it appearsauit any doubt that when safety-related functions
are at stake, safety-principles shall be implentittethe design of the control system. The level of
safety or the category shall be the starting pminthe choice of architecture to be implementdusT
architecture shall be supported by adequate teabaigqnd measures to detect and control faults, to
minimise their repercussion on the whole systememhtually to provide a soft transition to a safe-
state.

Checking of processing units, memory ranges, l/@sutinterfaces, data paths, power supply and
program sequence are regarded as state-of th@fat.selection of checking techniques and the
diagnostic coverage needed, will be depending @n ritks associated with the machine to be
controlled. A complex electronic control systemaohigh-risk machine shall be able to find most
faults in the control system before hazardous siina can be caused. That calls for elaborate
checking facilities with high coverage. A low-rigkachine must also have safety principles
implemented, but lower coverage can be accepted.

It has been possible to use the techniques andunesasuggested in the IEC 61508 safety standard, to
prescribe safety principles required by the EN @%tandard. The IEC 61508 has established a frame
of reference which is well possible to use alsdwlite EN 954-1. However, the recommendations for
the safety integrity levels of IEC 61508 will hateebe modified for the categories of EN 954-1.

The safety measures to be implemented are desaifgt@dssociated to the current architecture for a
specific category. The checklists presented in ibyrt will be of help both to the developer and t
the assessor.

