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FOREWORD

STSARCES -Standards for Safety Related Complextibleic Systems- project is funded by
European Commission SMT programme. The projectiveded into six research work

packages and this report is part of work packatfgaBety validation of complex components”
documentation. This report introduces the resuitthe work package 3.2 Intercomparison
black box/white box tests. We wish to underline twentribution of the Fault Tolerant

Systems’ Group of the Computer Engineering Departna¢ the Technical University of

Valencia (particularly, Dr. Gil P., Mr. Gracia JacaMs. Blanch S.) to the development of
WP3.2, which has participated as a subcontractor.

SUMMARY

The goal of this work package was to investigageitinerent characteristics of black box and
white box approaches to be used as testing stestagid the effectiveness of common testing
criteria corresponding to each approach, to disctaets.

The first part of the report introduces the conseytblack box and white box and puts them
in perspective with respect to the whole life cyale product.

After that the study concentrates on the fieldesting and analyses black box and white box
approaches among other basic criteria normally wsetlassify the different tests like, for
instance, purpose of testing, input data generatitteria, fault or criteria based testing, etc.
This set of selection criteria produces a wide eamj combinations. Some of these
combinations are named with generic terms that mefleeence to the fundamental criteria for
a type of tests, and thus there are terms likehghtistic tests, fault injection tests, or just
black box and white box tests.

From this point, the study considers in depth lfirttte field of tests known as black box and
white box and secondly explores the use of theapmroaches in fault injection testing.
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1st Part

1. Introduction

When one refers a system in any phase of the dpsigess (specification, modelling, design,
testing, etc) can adopt two main approaches. Taeseharacterised depending on the aspect
the analyst, designer or tester focus its attentibat is, in the operation of the external
functioning or behaviour of the system, or in tle¢ails of internal operation or structure.

In general, it is said thatfanctional approach is used referring a system, when the system is
considered as a whole, emphasising its externabped behaviour. That is, when the system
is viewed as @lack-box that interacts with other entities or systems thrtsavnputs and
outputs. It is the definition of a system from tieer point of view.

On the other hand, undstructural approach a system is defined as a set of components
bound together in order to interact; every compbmgem turn another system. The recursion
stops when a system is considered as being at@amycfurther internal structure can not be
discerned, or is not of interest and can be igndrethis case, the system is transparent to the
person handling and this is why structural viewpdasncalledwhite box, though it would be
more appropriate to use the term glass box.

Although at first glance they seem two clearly eliéint approaches, in practice the boundary
between function and structure is fuzzy.

If a system is seen as built in layers, the outstrfayer is a layer of pure function and each
layer inward will be less related to the systemaisction and more constrained by its structure:
so, what is structure to one layer, is functiothi® next.

As we will see later on, there are many methodsdéscribe or represent a system
(specification in natural language, functional ldatagram, detailed electrical circuit, VHDL
program, control flow graph, the source code, eitthough some of them are in principle
methods better adapted to a functional or glob@aiMwf the system and others to represent the
details of a specific characteristic or componeg@ration, in practice, they can be oriented in
both directions depending on how comfortable thagieer fells or its experience about the
method.

Nowadays there is no controversy between the us@ absolute structural versus functional
approach: both have limitations and both targdedsht aspects.

The programmable systems usually are decomposetivaldin: HW and SW, to better deal
with the specific nature of each component. Thectional or structural approaches are
applicable both of them.

Finally, it can be said that the meaning of funtéiband structural concepts has a strategic
sense (a manner to consider or model a systemar@ndot referring to a particular kind of



technique or method. However, in the testing fidits terminology is used to group a number
of SW and System testing methods which principaiey characterised by these view.

This WP deals with studying the application of fiimeal and structural strategies to test
whatever of the two “components” of a system (HW &\V) during validation stage.

WP3.2 has been structured into two parts. The dingt is intended to make a classificacation
of black box and white box testing methos and theselection of the most suitables. The
second part will concentrate on a intercomparisodysof the selected methods.

2. Validation of complex electronic systems (according to EN
954)

According with EN 954, validation of the Safety-Related Parts of the Control System
(SRPCS) is the process by which one determinesetred of conformity of the SRPCS to
their specification, within the overall safety regments specification of the machine.

The standard gives some general guide lines (ptag)i on how carrying out the validation of
each class of requirement, but the current contémtaot result very helpful in the case of
electronic complex system validation.

It is said that, validation consists of applyingagsis and if necessary, executing tests in
accordance with a plan. Validation is structured in

+ safety function validation;
+ category validation; and

« environmental requirement validation.

To do that, just as said above, it is firstly recoemded to apply appropriate analysis
techniques (deductive or inductive) and check;liatal if it were not sufficient, complete the
analysis with tests. Among the possible tests toezhout are mentioned:

» functional testing, which takes into account nornaid expected abnormal
conditions and exercised the system functions atprototype or into a model,
simulating, in the latest the system behaviour lotatic and dynamic;

+ concerning with categories it is recommended tdyafgult injection into the real
system or into HW and/or SW models.

Eventually, the standard EN 954-1 references tladt ¢EEC 61508 for guidance on further
validation procedures in case of PES (Programnialeletronic System).

If the purpose is to cover even the scope of praograble electronic systems, at a first glance
seems that it poses a modification of the desigicgss presented in the paragraph 4.3
“Process for the selection and design of safetysomes”, in order to represent at least the



basic stages of the design of a complex electrsystem and later include the corresponding
requirements.

A general framework that introduces the principaldation techniques and helps us to situate
the BB/WB test strategies in a global validatiomtext, could be that in the figure 1.
[ESPRIT 95].

3. Design process of a system

Figure 1 of EN 954-1 standard shows a possible moidéhe process for the design of a
safety related control system, included programmabéctronic systems. It is a simplified
model, which tries to be valid for a great varietysystems and technologies.

Starting from this model and adding some key stéps possible to represent in a bar

diagram the sequence of stages and basic actigiteegeneric process for the development of
a programmable electronic system. This way, it bélable to define, at least roughly, the test
processes for HW and SW to which we refer along tleport and situate more relevant

testing activities in the corresponding stages figeee 2).

Logically behind the steps showed is hidden a m®ad activities (planning and managing,
development, verification, quality assurance cdntfp and transition criteria between steps
(objectives, decision criteria, etc), that willnee to define more in detail the development
model, with its returns and iterations.

The total different nature of HW and SW, makes thighin the general model there will be
additionally a branch that leads to two paralldfedent processes although closely related.
These processes set off from design specificati@s® (design, in the case of figure 2), and
converge in the integration phase.

In turn, for each of them, there exist several ggemodels. It could be said even that each
company has its own model, as a result of the sacgsdaptations of a more or less known
model (for instance V model for SW), to the compamnganisational structure and
manufactured product features.

Figure 2 includes an explanation about the stepsidered, which emphasises the principles
that must be considered to achieve the objectives.

All of these explanations will serve to lay dowiirat approach on the use of structural and
functional views.
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It is a step in which are defined the specificasiof| Design stage purpose is to define a componefiDaring this stage is proceeded to the construd
the system in terms of functional and performamyestem with the smallest details so that it car] @& the integration test of a physical prototymenf
requirements at the highest level (extegnmablised physically (internal design specification) | all the components and subsystems developed i
specification) In a preliminary step, specifications are transfediprior stage.

tonce there is a prototype, that apparently opel
correctly, it will be submitted to a complete pha$
ntélses to determine the degree of conformity off
prototype with its specifications written at §

what the system must do and not how to do
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correct implementation.

the use of modelling principles (to make easiat
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separate functionality from implementation). T
specification written should be complete, consis
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systematise the analysis job — model simula
(animation) allows to define the information fig

he define in detail

feomponent.

tiewels of functional modules or sub-designs.
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Thaving participate in the design, for instancelgy
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without function interpretation), and partiti
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and texts.
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@ngineering) There exist automatic tools (EDA) 3
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NOTES: a)

To describe the first part of the lijele of a product that take place before the begigof its manufacturing, we have used the ternigpeBrocess to be coherent with EN 954-1.
b)

In this process it has not been included trejaus stages of Definition, Risk Assessment arda@Requirement Specification and Allocation matian application level (machinery). Thus, it
uses as inputs, among other external requiremengs, (performances, dimensions, environmental gtheretc), the safety requirements in terms oftgdfmctions and categories.

Figure 2 - Lifecycle of a SRPCS



3.1. Domains of description and levels of abstraction in a system

In the introduction of this report it has alreadgeh presented the functional and structural
approaches in a generic frame. Now, they are gtrge situated/placed in a more specific
context (design of programmable electronic systenws)show the design space where a
designer or tester usually moves/work on.

To describe a system may be use one or sevefa dbllowing description domains:
« functional,

« structural

+ physical.
Moreover, within each of them, it is possible tinkhin a description at different levels of
detail or depth, what we will call, level of abstian. In the figure 3 has been summarised the
description domains and abstraction levels chanatitss of HW and SW components in a
system.

Algarithms of boards &
moadules

Axis of transistar
abstraction
foverl

Arehitectural

¢ Irtegrated fundions

Agorithmic
Function al block

@ Components

Circuit & device

4 Bosrds & modules

i System

5V coomponent

I S componet
Pinys icaf
domIin

Figure 3 - Description domains and abstraction levels of a system
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The use of one or another domain and the levebsiraction will come determine mostly by
the stage of the design process and the spectiic dathe person or department involved
(analyst, HW or SW engineer, tester, etc).

Referring to the functional and structural domaindiich attract our interest, it can be
advanced in a generic way that their degree agatibn is that in the figure 4.

I | ' /— BEHAVRORAL MOFED
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wy

| I

[l

| T
Concegat amd | Desian and |

| cahstruction |

| |

| Protobype model System valdation
defingion dleve ket |

| Irbegeation (RAY +

| =1

|

Fig
ure 4 - Degree of utilisation of functional and structural models

3.2. Testing during design process

When testing is undertood, in a wide sense, asgbajtiality assurance that allow to prevent
and explore possible faults introduced in the sys{@giWw and SW), and evaluate the
behaviour of the system in case of fault, it issexied along the whole design process.

Nevertheles, the tertesting is usualy interpreted as the process of checkigifpev a system
meets its features exercising it with some aprorilgput data, being precisely this dynamic
nature its distintive feature. Then, from this iaditconception of the term, all the analytical
and modeling methods are excluded.

As a result we find that the field of testing istrected only to those stages in the design
process where exist a real item (HW or SW), whiah be exercised in an adecuate physical
environment. In this report is also considerecdeatinig, any kind of functional analysis carried
out in a simulation environment which models propel the dynamic features of the
component or system.

The preventive objective of testing, responds ® photentiality of test planing and design
phases to prevent faults before being implemented.

On the other hand, and despite this WP 3.2 dedls wailidation (i.e., what is considered as

the last stage of the design process), sometimeitt possible to conclude this final stage
(to make a judgement on the degree of conformity ihe safety requirements) isolately,
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without taking into account other measures andieations applied in previous stages. They
are either measures to prevent faults from beitdaced (fault prevention measures), or
measures adopted to detect slipped faults by meéranalysis or tests (fault removal
measures), which could be both synthesized asdaaltance.

This reasoning, has motivated that this WP 3.2oislimited exclusively to validation stage,
and takes into account also contributions maddfraraneasures in other stages.

According with the design process representedgurd 2, it has been stablished three testing
levels for a programmable electronic system. THeatives in each of them are different and
it is spected that the set of methods used in eatttem will differ. The testing levels are:

o Components and Subsystems testing

A component can be considerer like the smallesh ithich is possible to test. HW
components cover from discrete components (resist@pacitors, transistors, sensors,
etc) and ICs, to small circuits with a concrete amehningful function. Hw components
isolated are considered well proved, and then duromponent testing is only checked its
behaviour in the circuit (its application). Withi@s, logic programmable devices need a
separate treatment because they generate adititenifitation and validation problems
(field of WP3.3 research).

In relation with SW, sometimes it is made a digio between unit and component. Unit
is usually the work of a programmer that consistsubprogramms or routines that at
most have hundreds of code lines. However, a coemios an agregate of one or more
elementary units that have an entity in the archital design of the program.

Component testing, must demonstrate that these ao satisfy their functional
specifications and/or the implemented structurendb match with that planned in the
design.

They are tests carried out at very low level anchany cases will require the creation of
auxiliar circuits to feed and load the componendarntest with neccesary data. In Sw
testing are used stub and driver modules.

Unfortunately, many components can not be testegguly with a simple circuitry or
additional software, and in those cases the compdsting is (use to be) postponed to the
next testing stage (integration testing).

There exist techniques and criterions that makeeasmponent testing. For instance, it
is called/talked of/about design for testabilityVSests are simplified when components
are designed with a high degree of cohesion andaivest coupling (i.e., a modular
design with functional independency).

In all the test process, component testing is thgeswhere more is used simulation
technique.

12



A subsystem is considered from a group of circaitsSW components to/of a certain
degree/order, to the final agregate (HW or SW stineg. Subsystem testing in the case of
SW is called integration test.

Subsystem or integration testing is carried outiémonstrate that the combination of
components is not correct or consistent, in spiteconponents having demonstrated a
satisfactory individual behaviour

These tests revel interface and interaction fdadtsveen components (e.g., the hold time
of a data at the input of a component is not endagdde read; or an incorrect handling of
data objects in a program ).

To built and test the structure, in the developnsage, one can adopt two strategies
mainly: non incremental integration or big-bangd déime incremental. And into/within the
incremental the approaches top-down and bottom-up.

From all the above, it is possible to deduce tloahmonent and subsistem or integration
testing, require a detailed knowledge of the irdefanctions, performances and structure
of the components, wath leads to the fact that #reyusualy realised by the designer
themselves.

HW and SW integration testing

Till now it has been developed and tested the HW @W separately. In this stage it is
proceeded to merge the SW with the HW prototypé,kand to the integration of external
components (sensors, actuators, other modules, etc)

As indicated in figure 2, the engineering team fyettiat the system as a whole behaves
according with the design specifications, and splciwith some internal functional
details refering to the interaction between HW &W. If these tests detect some/any
fault, the proposed changes must be first analyggsednsider their extent in the system, as
well as, to foresee design documentation updatnagpsoper develops.

Finally, there will have to initiate all the necassre-verification activities.

System testing

It is intended to determine the degree of conformitthe final prototype (which is judged
as a system that meets all the requirements bgrigmeering department) with its initial
or external specifications, whenever they represdrg original objectives without any
error.

System tests are not restricted to the developetersy but they consider also the
surrounding environment: other related systemmitels, operators, etc, as though all the

tools used to create and test it.

Tests carried out in this stage range from funetidasts at the highest level, workload
tests, stress tests, performance tests, stora¢®e te=haviour in case of fault (fault
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tolerance), recovering tests, EMC inmmunity testksnctional tests under limit
environment conditions, etc, to the test or revissbuser manuals.

In this stage is therefore predominat a view of sigstem as a whole, because it is
concerned of all the issues and behaviours that cerh be explored testing the whole
system.

The need of dealing with large size items makesaisible, or al least rather difficult, in
practise to consider structural details, excepy ymrticular cases (e.g., safety critical
components, etc).

It is recommended that these tests be practiceabfgctive people, free of prejudice or
bias, created as consequence of the design knosviettydirect participation in it.

In search of discrepancies between the built systach their objectives, it is paid an
special attention to the possible translation ermmade in the process of writing the
specifications.

Some principles of testing valid for all the seesting levels are shown on table 1.

Some other relevant aspects of testing that aréhvio@ing treated shortly before going on, are
thetest coverageandtest completeness criteria

The notion of coverage changes according with igfld fvhere it is applied. For instance, in
the field of SW testing, it is a concept simplyated to the extent of the test. Thus, when it is
said that an statement test carried out on a prodpas reached a coverage of 80 %, means
that that test, in total, has executed the 80 the&tatements present in the program.

When we refer to the coverage during a test campaidigiressed to evaluate fault tolerancy,
this term is used as an indicative of the abilityacspecific mechanism or even the whole
system, to detect faults.

If, in a higher level, instead of refering only @aoparticular test we refer to the set of tests
realised in each field (e.g., SW testing, injectiesting, etc), the term coverage indicates the
measure or extent that has been considered d@stigd the possible faults in this field (e.g.
errors of requirements, features/functionalityustural, implementation/coding, integration,
etc., in the case of SW). In this case, it is tdlldout the coverage of the complete SW
testing, asociating the term to the ability of testthods used, to test “all’potential kind of
faults of a program. Similarly, by the coverageaofnjection test we will understand the
degree in which the testing techniques used (paly$ault injection, software implemented
fault injection, etc) cover the possible type of HaMlts and transient disturbances produced
mainly by electromagnetic interferences.
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Table 1: Principles of testing

Principles

Remarks

Plan tests long before it is time to test

A designer or engineering departm
should avoid attempting to test its o
system (some level of independence
recommended specially for  systg
validation).

)own systems because they can not b
themselves to form the necessary meg
pattitude (wanting to expose errrs

gvibst designers can not effectively test their

ring
ntal

The objective of testing is to find faul
Thus, a good test case is one that has a
probability of detecting an as-y
undiscovered fault, and it will &
successful if it detects the fault.

[F his objective of testing is higher product
thgih that which tries to demonstrate tha
eystem has no faults (i.e., it performs
éentended functions correctly), because
human psychology is highly goal oriented.

ve
it a
its
of

Due to the fact that an exhaustive input
of a system is impossible, in addition
the principle above, when the tests
carried out one wants to select a sr
subset with the highest probability
finding the most errors, for all the possi
inputs. Thus, a well-selected test ¢
should have these other properties:
It reduces the number of other test @
needed to achieve the predefined ¢
of testing.

It covers a large set of other possible
cases.

tébie first property implies that each test g
should invoke as many different ing
a@nditions as possible in order to minim
rake total number of test cases necessary.
dihe second one says something about
beesence or absence of faults over or al
abes specific set of input values (partitioni
of input domain into a finite number
a&splivalence classes).

joal

test

ase
ut
ize

the
pove
ng
of

Testing exposes presence of faults.

It can not be used to verify the absencg
faults. It can increase tester confidence tf
system is correct, but it can not prg
correctness.

b of
at a
ve

A test case must consist of t
components: a description of the input g
and a precise description of the cor
output or expected result.

b the expected result is omitted, there is
atay to determine wheter the syst
acicceeded or failed. Furthermore, a tg
may assess an incorrect result as co
because there is always a subconscious ©
to see a correct result.

no
em
ster
rrect
esire

The results of each test should
thoroughly inspected and when a failurg
detected, the causes shall be analyzed.

beany times the tester fails to detect cer
pfalts or errors even when symptoms of th
were clearly observable on the output listir
A detected fault analysis will contribute

ain
ose
1g.
by

preventing them for occurring the next tim

3
C

NOTE: Part of these principles are dicussed in gaegph 4 “Black box versus White box

testing” of this report.
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Finally, we could say that the coverage refershe measure of representativity of the
situations to which the system is submitted duritsgvalidation, compared to the actual
situations it will be confronted with during its enational life.

The simple application of a combination of tesesf(tcriterias or test techniques), designed
considering all the possible types or classes aftda(according with the accumulated
experience), seems to be a reasonable strategygleramverage), but it is not accepted for
some authors. They suggest to adopt some otherofypeference on the test completeness
and stoping criteria (i.e., to judge when an iteartasted enough, and a phase of testing is
finished), instead of simply executing the testesadesigned using those test criteria without
detecting any fault.

There exist several ways of limiting the periodesting:

+ stop when the scheduled time for testing expires;

« stop when all test cases designed from a genestkteategy are executed without
fault detection;

« stop when a set of tests representative enoudheqgidssible faults in the item under
test is applied with satisfactory coverages anthout fault detection (i.e, an specific
strategy);

« stop when a predefined number of errors are deted@®., when three errors are
detected);

« stop when the number of faults found in a periodtiofe becomes equal to an
established low value;

+ etc.

Some standards offer a structured classificatiotesf techniques in such a way that they
allow, in each particular case, to define the mgsttrategy in terms of safety requirements. It
could be said that the stoping criteria used isahy@ication of all test cases designed from a
specific testing strategy. This kind of criterisshthe objection of not defining a target for the
test, as it can be the number of detected errarsrpe unit.

Another term used to define the tests, sometimedused with the coverage, is the
effectiveness. In this report, effectiveness isduse define the degree of attainment of the
objectives in the shortest time. Then, we say thaést is very effective if it has a high
probability of revealing faults with a small numhsrcases. This term can also be applied to
the implemented fault control measures.

4. Black box versus White box testing

A test can be designed from a functional or a smat point of view. Infunctional testing

the system is treated as a Black-box, that istekter is completely unconcerned about the
internal behaviour and structure of the systemh&atthe tester is only interested in finding
circumstances in which the system does not behasgding to its specifications.
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Test data are derived solely from the specificatigne. without taking advantage of
knowledge of the internal structure of the system).

If one wishes using this approach to find all theltls in a system, the criterion is exhaustive
input testing (i.e. the use of every possible irgaridition as a test case). However, this would
imply that one should test not only valid inputg.(ito check for what should be done), but all
possible inputs, included invalid inputs (i.e. teeck for what should not do). And to single or
individual data would have to add all combinatiafsinput data or dependent sequences
needed to test the respective functions. Henceestoa system, one would have to produce a
huge number of test cases.

This reflection shows that in general, exhaustiaut testing is impossible in big systems.
And from this statement are deduced two fundameatasequences:

a) the test of a complex system can not guaranteattisaault-free; and
b) afundamental consideration in complex systemrtgssi one of economics.

Then, since exhausted testing is out of the questiee objective should be to maximise the
yield on the testing investment (i.e. maximisenbenber of faults found by a finite number of

test cases). Doing so will involve, among othendisi being able to peer inside the system
(specifications) and making certain reasonable, mit air-tight, assumptions about the

system. This will form part of the test case desigategy.

Structural testing does look at the implementation details. In ugimg strategy, the tester
derives test data from an examination of the systdemnal logic (often at the neglect of the
specification).

Structural tests are inherently finites, one exawirfor example, specific internal unit
functions or performances of HW, or specific cheedstics of SW such us module
interfacing, critical paths in the program, etc.likithe functional testing, it is assumed that
structural testing can not make a complete teshefsystem. If one try to do an exhaustive
structural test (to achieve a complete testing) tomplex system will find right away that the
number of unique test cases tend to infinite. Meeepa structural test in no way guarantees
that a system matches its specification (due teoniseptions, missing parts, etc).

If one analysis these strategies from the involpedsons point of view, in particular the
designer and tester, will find that designer wheheas a tester are by nature biased toward
structural considerations while independent teshee to his ignorance of structure (no
preconceptions) are bias-free and can better déafunctional tests.

It is noteworthy to mention the psychological peyhlassociated with designers when testing.
Most designer can not effectively test their owrstegns because they can not bring
themselves to form the necessary mental attituddegeructive frame of mind) after having
had a constructive perspective during the design

NOTE: Beizer calls this a constructive schizopheeaititude and makes an analogy
with Dr. Jeckill and Mister Hide personality.
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Another significant problem related to the desigiiteis the fact that, the system may contain
design faults due to misunderstandings of the fipaton and when testing it is likely that
the designer will have the same misunderstanding.

In conclusion, neither functional nor structuratteprove to be absolutely useful strategies:
both have limitations and both target differentlfauWhat is proposed, it is to combine
elements of both BB and WB testing to derive agpable, but not air-tight, testing strategy.
The art of testing, in part, is in how the testeo@ses between structural and functional tests.

5. Classification of test methods

Being our wish to give this first phase of the patja general character, the study has being
extended beyond the traditional field of WB and 8Eategies, as they are, software and some
system testing. Thus, it is decided to include #igosystem behaviour testing in case of faults
(injection testing), given its relevancy in safetlated systems validation.

5.1. Fault injection

5.1.1. Introduction

EN 954 standard includes the fault injection tegbei as a method to validate complex
electronic systems.

NOTE: Fault injection is defined in [Arlat 90] as the dependability wiion
technique that is based on the realisation of caliéd experiments where the
observation of the system behaviour in presendautfs, is explicitly induced
by the deliberate introduction (injection) of faulhto the system.

In the design process of a systel{Refer report, fig. 1), the injection techniquamainly used
for fault removal andfault forecasting [Laprie 92] [Gil 96] and, as it will be shown late
this technique can be applied either as a whiteds@black box approach.

Fault removal involves a system verification to reduce the ontes produced by possible
faults introduced in the design, development araopype construction stages and also to
identify the proper actions in order to improve thesign. Fault injection tries to determine
whether the response of the system matches witpésifications, in presence of a defined
range of faults. Normally, faults are injected ierfectly chosen system states and points,
previously determined by an initial system analy$isster knows the design in depth and so it
designs the test cases (type of faults, test poinjisction time and state, etc.) based on a
structural criteria and usually in a deterministiay. In this case, fault injection is being used
as awhite box or structural strategy.

Fault forecasting estimates the influence of the occurrence, presandeconsequences of

faults in safety systenduring its operational phase Then, a forecast based on the massive
and random fault injection may heseful to determine the designed system category
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Moreover, we will be able to achieve results sushha system fulfils all the safety functions
on a percentage basis of injected faults. Fawtiign tests described before uddack box
strategy, since the required knowledge of the inner pdres ystem is minimum.

In practise, frequently fault removal and faultdioasting are not used separately, but one is
followed by the other. For instance, after rejegtm system by fault forecasting testing,
several fault removal tests should be applied. &hesv tests provide actions that will help
the designer to improve the system. Then, it walldpplied another fault forecasting test, and
SO on.

The methods introduced here below are not subdivaderiori in WB and BB, because in this
field (injection testing) testing methods or tecjues have not a defined borderline. For
instance, it is possible to inject all combinatmfishort-circuits in pairs systematically at the
pins of all ICs or only to a group randomly selecte a board (BB approach). Or in the
contrary, just to apply only a few specific shartuaits to some selected components in
specific operational states and times (WB approach)

5.1.2. Fault injection techniques

There exist several techniques that allow to infaatts at different abstraction levels of the
system, offering then the opportunity to verify 8ystem behaviour in presence of faults from
the very early stages of the design process.

In [Arlat 90], [Gil 92], [Jenn 94], [lyer 95], [Ck& 95], [Pradhan 96], [Vigneron 97] are
shown different states of the art on fault injeatierom these references we can deduce that,
depending on the abstraction level of the systebetwalidated, fault injection techniques can
be grouped as follows:

« Injection in a simulation system model (fault irfjea based on simulation).

« Injection either in a system prototype or in theafisystem. In turn, this group can be
divided in:
« Fault injection at physical level (physical fauljaction).

« Software implemented fault injection.

Fault injection based on simulation techniquess applied into simulation system models.
With this technique it is not necessary to builphgsical system and it can be applied at the
very early development stages, that has a greatriance in the premature design decisions
about the system structure.

On physical fault injection techniques faults are induced inside the system prototyper o

their own hardware (in a transistor, a logic gaehit of a register, etc.), disturbing their
physical or electrical properties.
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Software implemented fault injection techniques(SWIFI) perform a hardware faults
emulation (both internal faults and external fgultSor example, the program can be
corrupted or the internal registers modified thitoagparticular fault injection routine.

Figure 5 shows a summary of fault injection techei which will be explained in depth in
the following paragraphs.

] VHDL simulation model
[fln a model:51-

mulation-bazsed

fanlt mjection Simulation model inother

language " Pin level fault injection
i Extemmal =
Electromagretic radiation
Fault (" Physicalfault < = _ o
Injection ‘< injection Heavy ion radiation
L Intermal < Laser radiation
Scan chain baged fault injection

Inaprototype 4

S oftware irapleren- [ ade with extemal tools

ted fault injection <

k\_ L xI‘-.-'Iade with internal tools

Figure 5 - Summary of the different fault injection techniques

5.1.2.1.Fault injection based on simulation

Objectives

The goal of fault injection based on simulatiortasdetect, mostly in an early phase of the
design process, whether the behaviour of a systaherudevelopment in presence of faults
matches with its design specifications. The systam be an integrated circuit, a functional
unit or subsystem or the whole system. The firgirement to achieve the goal is to perform
a system model (based normally on VHDL, a hardvesscription language). After that, it

will be possible to simulate its behaviour in prese of injected faults. The simulation is

based normally on EDA tools, and the fault injectom special tools.

Moreover, this technique is currently also appiedault forecasting. That is possible due to
the existence of special tools for the massiverandom fault injection in simulation models,
as described below.

Description of the technique

Fault injection based on simulation can be usedifférent abstraction levels in complex
electronic systems:
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« integrated circuits level,
+ processor level,
« full computer level,

« top level of a distributed computer system.

Typically, fault simulation has been applied inegitated circuits manufacturing. However,
this kind of fault simulation is not related to Rainjection, but to generation of test patterns,
in order to detect faults in the production of VL&icuits. In this case, fault simulation used
for validating test patterns, works with logic silation to verify design functions.

Table 2 [Vigneron 97] shows a summary of the conmmakfogical simulators associated with
EDA (Electronic Design Automation) tools. Sometbése logical simulators have a fault
simulator associated. These simulators can be msadmanual or semiautomatic way, to
verify several safety system mechanisms. Neverdhketbey are always oriented to systematic
faults testing in integrated circuits or in fullipied circuit boards. Currently, due to the wide
diffusion of the VHDL hardware description langudtet allows the system simulation in all
the abstraction levels), most of fault injectiorsteyns based on simulation use the VHDL
language and their associated simulators.

A desirable goal in the design process of safesyesys is to tightly couple both design and
fault injection-based verification tasks. Thenwill be possible to implement incremental
steps during the design process. That deriveseimptimisation of the design choices and the
corrective actions. The development of integratedi @herent design methodology for safety
systems will be reachable if we take into accoum tmerging hardware description
languages. In this context, the VHDL language heentrecognised as a very useful, since it
presents the following interesting features:

« possibility of describing either the structure (tehbox view) or the system behaviour
(black box view) in only one syntactic element;

« wide diffusion in the current digital design;

+ inherent capability to perform hierarchical destoips at different abstraction levels
[Dewey 92] [Aylor 92];

« good performance in the modelling of digital systeahhigh level.

Table 2: Commercial fault simulators

Distributor Product Simulator Abstraction Level Lan guage
Cadence Verilog XL Verilog XL Behavioural, gates ey
Ikos Voyager Voyager VS |Behavioural VHDL

Voyager CS |Behavioural, gates
Behavioural, gates with
Voyager CSX|accelerator

Mentor Idea Station Quicksim Gates BLM
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Graphics Entry Station| Quick HDL | Behavioural, gates VHDL, Verilog
Quick  HDL|Quick HDL |Behavioural, gates VHDL, Verilog
Pro Quicksim Gates BLM
Simucad Silos Silos Behavioural, gatey/erilog,
(Intsys) transistors Verilog - A
Summit Visual HDL | Visual HDL | System, behaviourglyHDL
(Backstreet gates
Intsys*) Visual Verilog| System, behaviouralyerilog
gates
Veda Vulcan Vulcan Behavioural, gates VHDL
Viewlogic Fusion HDL | Speedwave |Behavioural VHDL
VCS Behavioural, gates Verilog
Viewsim Gates
Zycad Paradigm Paradigm VIP Gates VHDL, Verilog
Microsim PSPICE PSPICE Gates, transistors ABM
(ALS Design)

* INTSYS distributes the fault simulator

There are two main fault injection techniques bamed/HDL [Arlat 93] depending whether
the code is or not modified:

a) Modifying the code:

a

Injection by means of additional components cafiadoteurs.A saboteur element is
a VHDL component that changes the value, or theteary features, of one or more
signals when it is activated. It remains inactiveing the normal system operation and
is activated only to inject a fault. #eries saboteurbreaks the connection between a
driver (output) and its corresponding receiver (i)pand modifies the value of the
receiver. It could also modify a set of drivers dheir corresponding set of receivers.
A parallel saboteur is implemented easily adding an additional driteera set of
drivers connected in parallel. The resolution fiorctof the VHDL, that permits the
selection of one signal between several paraltphads, is useful to implement this
type of injection.

Injection by means of special components caltedants that have a function in the
circuit. A mutant is a component that replaces another capygoWhen it is inactive,
it performs the function that the original componeloes. However, when it is
activated, its behaviour is an imitation of the mibed faulty component. VHDL
configuration mechanism is useful for this type mofitation since it permits the
assignment to an entity of an architecture amongraé possibilities (there will have
one fault free and several faulty architectures).

There are several forms of performing the mutation:

- modifying structural descriptions by means of teplacement of sub-components.
For example, a NAND gate may be replaced by a N&R;g
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- modifying manually behavioural descriptions to abtéull and detailed fault
models;

- modifying automatically instructions in behaviourahodels. For example,
generating wrong operators or changing identifiefs some variables. This
approximation is similar to the mutation techniqueed in software validation.

a) Without modifying the VHDL code. Then, the injectios performed using simulator
commands allocated with the VHDL compiler.

As an example of VHDL-based fault injection envimeent, figure 6 shows the block diagram
of the tool developed by the research group GSTEhefDISCA Department (Technical
University of Valencia, Spain) [Gil 97][Gil 98].Tke main blocks can be distinguished in it:

- Experiments’ set up block. With the help of a peogr it is written a configuration
file containing all the faults and points of inject for the subsequent injection
campaign.

- Simulation block. An injection macro generator @sita file, using the configuration
file, with all the macros that will carry out thgjection.

« Readouts block. A data analysis program determihes system behaviour in
presence of faults. This task is carried out compgathe results of each injection
with the respective results without faults.

Other examples of injectors based in VHDL are tHeERVSTO-L [Boue 98] of the LAAS, in
Toulouse (France) and the MEFISTO-C, [Folkesson &Bjthe Chalmers University of
Technology, in Goteborg (Sweden).

Generally, the kind of injected faults are stuckagen line, delay, bit flip, short circuit and
bridge between connections. Respect to the timanpeter, the faults can be permanent,
transient or intermittent.

Advantages

 Possibility of injecting faults before the protogypas been built,

- arbitrary reachability, just depending of the ddtaiel into the model,
- arbitrary controllability, depending of the modeV¢l detail,

- arbitrary observability, depending of the modekledetail,

- the faults are easily reproducible,

- evidently, no component can be destroyed with #udt injection process, or due to
disturbances caused by the injector in the systasentest,

- easy application, since it is only needed a compuiéh the specific compiler
language, the simulator and the injection tool,
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- low cost of the necessary infrastructure (if thesea disposable computer and
simulation tools),

- the latency times in the error detection or recafi@n can be easily measured,

FAULT INJECTION TOOL ON VHDL MODELS
| user I
I gaphic | | acquisition program I
interface
| VHDL | Experiment Set-up
I statistics config . ?Onﬁguratioq file I
distributions injcction experiments
lexicographic and
I syntactic analysis I
injection macros
| generator program |
| VHDL macro injection macros |
COll‘lpOllel'ltS ﬁle
I library I
| Simulation
I system . V-System Model I
: VHDL model | simulator Technology
I VHDL
inyectors I
I library
[ simulation file |
<>.lst (signals/variables) I
I —————————————— data analysis program Readouts
I result I
e e e e e e e men e e me— e m—

Figure 6 - Block diagram of a fault injector for VHDL models

Disadvantages

High simulation times, causing thatfault injection process spends a lot of time with a
medium speed computer (in [Folkesson 98] the igacbf 1000 faults spends about 6 days
for a UNIX workstation with a clock frequency of KHz)

« Accuracy of the results depends on the goodneiseainodel used. Obviously, the
greater accuracy (high level of detail of the ded model), the greater simulation
time.
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« No real time faults injection possibility in a pobgpe.

This technique is implemented in some researchréégties (see table 3) and there are not
any commercial tool.

5.1.2.2.Physical fault injection

Objectives

As any other fault injection technique, it triesdetect any difference between the specified
and observed behaviour in presence of faults bid¢hse, the injection is carried out on a real
system (prototype). The advantage is that the tesuk closer to the reality than in fault

injection based on simulation. All physical fauljaction techniques described below perform
a physical fault injection, either at integratedcuits terminals, or signal lines between

components or even inside components.

The physical injection technique is used eithernrdupartial verifications of the design, in
order to eliminate faults, or on the final proceadation, to determine the conformity of the
prototype with the category specifications. Thet lage is referred to the behaviour in
presence of random faults (fault forecasting).

Description of the technique
There are two injection techniques involved at lénel:

- theexternal physical injection

- theinternal physical injection.

With external physical injection, faults are ingdtoutside the system to validate. For
example, at the pins of an integrated circuit.

With internal physical injection, faults are injedtinside the system to validate. For example,
by means of a laser beam, heavy ion radiation,ithr special mechanisms integrated inside
the hardware of the system (fault injection basedaan chains).

5.1.2.2.1.External physical fault injection

External physical fault injection is performed nigiat pin level on integrated circuits (pin
level fault injection) [Arlat 90], [Gil 92], or atircuit level by electromagnetic disturbances
[Damm 88], [Karlsson 95]:

a) Physical fault injection at pin level uses a special fault injection tool to modify lcai

values at the pins of integrated circuits inside sgstem to validate. Two fault injection
techniques are included at this level:
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Forcing technique: The fault is injected directly into iawegrated circuit terminal,
connector, etc, without any part disconnection. fehdt injector probe forces a low

or high logical level at the selected points.

Insertion technique: A special device replaces a part of dheuit previously
removed from its support (socket for an integratiecuit, connector for a bus, etc.).
That device injects the faults. The connection leetwtwo circuits is cut off before
injecting the fault. Thus, the injection is perf@don the side that remains at high
impedance (in other words, this side is an inpgBgcause of there is not any signal
forcing, there is not any danger of damage in tjected component.

Figure 7, shows an example with both fault injatttechniques. FFIM is a forcing fault
injection module and IFIM an insertion fault inject module.

Referring the time parameters, faults can be peemtatransient or intermittent.

I b I b INTEGRATED CIRCUIT BOARD
o o 0 o = PA 11 o] d " b
OIC lc 3IC 20 21013 g ,'," o CIOICQO
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FFIM IFIM

Figure 7 - Physical injectors of forcing (FFIM) and insertion (IFIM)

Currently, there are several pin level injectioalspamong them it is worth to mention the
following:

The MESSALINE injector from LAAS [Arlat 90], [Arla®0a], in Toulouse (France),
which can inject multiple faults, at any time, aliog also the automation of the
injection experiments. This fault injector impleneerboth forcing and insertion

injection techniques.

The RIFLE injector [Madeira 94], from the Univeksibf Coimbra (Portugal),
includes a trace memory circuit which allows to expeup of the injection
experiments. This injector uses only the insertemnique.

FAC (DEFOR) [Vigneron 97]. Forcing injector with 4fins probe, composed by
power MOS transistors that have a short-circuitadgnce of some ohms, reducing
the possibility of circuit damage.

The injector from the Technical University of Vatem (Spain), that has two
versions. The first version [Gil 93] allows botlrdmmg and insertion techniques. The
second one [Gil 97], named AFIT (Advanced Fauledtion Tool) allows high-speed
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fault injection (the minimum length of time of tirgected fault is 25 ns). This fault
injector only implements the forcing technique hessanowadays is very difficult to
implement the insertion technique due to the higlqudencies and packages (surface
mount) of the integrated circuits

Figure 8 shows the block diagram of the AFIT fanjéctor. It is divided in the following
blocks:

« PC bus interface block. The injector is plugged iat PC through its ISA bus
interface.

- Timing block, which consists of several programmneabbunters that generate the
different clock signals for the other modules.

- Synchronisation and triggering, which starts in@ciwhen a predefined system state
matches a triggering word and a subsequent progedohendelay.

- FTS system activation, which is used to initiate sigstem to be validated with a set
of convenient inputs. This task is carried out befajecting the faults.

« High speed forcing injectors, which can inject fawf 25 ns resolution.

- Events reading, which consists of a transitiongidal analyser that is able to read
from the experiment both fast and slow events. Wdreimjection sequence finishes,
collected data is recorded in the PC disc.

PHYSICAL
=———N
FAULT = =
PC: INJECTION
INJECTOR SOFTWARE
t PC BUS
| PC BUS INTERFACE |
INJECTION BUS t
i - HIGH SPEED
SYNCHRONIZATION SPEE
READING ACTIE/—I;ETION == | TIMING AND TRIGGERING AERCING
40MHz
FTS PROTOTYPE {9

Figure 8 - Block diagram of the AFIT fault injector

These are some of the existing European injeckansmore information, especially about
American injectors, [lyer 95], [Pradhan 96] andgieron 97] can be consulted.

Concerning the types of faults injected, the follogvclassification can be done:
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« "stuck at" faults at O or 1 logical value. Thigh® fault model most frequently used,
because it is the easiest one to implement andvigrs a great number of faults at
transistor level.

« Open circuit faults, short circuit and bridge betweconnections, that are used to
cover the faults at transistor level that are mvieced by the "stuck at" model.

- Single (single pin alteration) or multiple faultsaltération of some pins
simultaneously).

Advantages of physical fault injection at pin level

- Possibility of injecting faults in the physical s, so the results are real.
« Real time injection.

- Testing time is not very long whenever an automitad is used (injection control,
outputs registration and analysis of the results).

- The faults are easily reproducible.
+ In the case of pin level forcing technique, eagynextion to the prototype.

- Some tools make an analysis of the pins logic agtte discard the test cases that
are not effective and thus reduce testing time.

« Good space controllability (faults are injectedperfectly specified places). Less
time controllability (injection time can be moreffdiult to synchronise with the
prototype in high frequency systems).

- It can easily measure latency times in the errteadi®n or recuperation.
Disadvantages of physical fault injection at pin heel

- Restricted reachability, especially in the new gatiens of VLSI integrated circuits,
which have a very high complexity/number of pintsora

- Low observability. It depends on the integrateduwiis complexity and if its design is
oriented to testability.

- There is a low probability of a component to be dged in the process of fault
injection using the forcing technique. Using the&eriion technique it is almost
impossible that a component is damaged.

- Difficulties when preparing the injection experinieloy the difficult wiring between
injector and prototype, particularly when we usdae mount components (SMD).
With components in these packages, the insertidmtigque is practically impossible
to carry out.

- High cost of the necessary infrastructure (it isessary a special equipment for the
fault injection).

- Disturbances of the injector on the prototype, ey in systems with high clock
frequencies. These disturbances can impede thectaperation of the prototype.
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It is a widely used and experimented technique,ciwhih many cases is still applied
manually. Existing tools are privates and in mases belong to universities, companies
and test houses (see table 3). Currently, thereao®mmercial tools available.

a) Physical fault injection with electromagnetic inteference(EMI [Damm 88], [Karlsson
95]. It uses a burst generator to interfere the pmmment or system under test. The test
equipment generates pulses according with the atdrieN 61000-4-4.. The disturbances
are injected on the printed circuit boards of th&tesm, in two different ways (see figure
9):

« With the printed circuit board located between wamducting plates connected to
the burst generator (left part of the figure).

« With the aid of a special tool that permits the @sipon of a smaller area within the
printed circuit to the electromagnetic interferefiwght part of the figure).

The injected type of faults try to model those pdrations produced by some external
electromagnetic interferences.

EMI-Probe
h /Target Circui
D 'l 000
— O
OO0
© Computer Board
Computer Board Burst-Generator

Figure 9 - Experiment of fault injection based on EMI radiation

Advantages of physical fault injection with electronagnetic interference

- Possibility of injecting faults in the real systeso, the results are real.
« Real time injection.

« The duration of an injection campaign will not berywhigh whenever an automatic
tool is used. Nevertheless, if it is necesary tovknwhether or not there have been
errors after a burst injection, it would have tong@are the behaviour of the system in
presence of faults with other system without fa(it®lden unit"), what slows down
the process.

- Easy to apply on the prototype, because there iphysical contact between the
injector and the system.

- Low probability of damaging the prototype.
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Disadvantages of physical fault injection with eledcomagnetic interference

+ Restricted reachability, since disturbances aptratevel, as the previous case.
« Low space and time controllability.

« Low observability. It depends on the integrated@dwiis complexity and if the design
is oriented to testability. It must be taken intz@unt that error syndromes will be
detected with the comparison of both systems, anith without faults.

« The disturbances can provoke multiple faults, foaneple, induced through power
and ground lines. The activation of these faultgeiy difficult to detect.

« The experiments are very difficult to reproduce.
« High cost of infrastructure (it is necessary a sggdeaqjuipment for the fault injection).

« Latency times difficult to measure. It could be dactomparing the execution of a
prototype with faults with other without faults @iglen unit”), but it is difficult that
the radiation does not affect the “golden unit”.too

This technique has been implemented in some rds&dyoratories (see table 4).

5.1.2.2.2.Internal physical fault injection
Objective

As always, this technique tries to summit the systeder test to a number of specific kind of
faults to verify if the behaviour of the system nsethe specifications. In this case, faults are
injected into the components at transistor levehtarnal parts.

Internal physical fault injection is currently acaplished in three ways:

+ by means of heavy ion radiation,
+ laser radiation, or

« through special mechanisms integrated inside théwaae of the system, connected
to its periphery through a test access port (TARY,the JTAG port of the boundary
scan. This last technique is named scan chain baskdnjection.

Description of the techniques

a) Heavy ion radiation injection technique [Gunneflo 89] and [Karlsson 95]. It itwes the
generation of transient bit flip errors inside tinediated integrated circuits. It uses a
Californium 252 source. These faults simulate fearisfaults in the transistors originated
by external sources, as electrical, electromagneticradioactive interferences. The
irradiation must be accomplished within a vacuurancher because molecules contained
on the air and other materials can stop the heavy. ilt is necessary to remove also the
package from the circuit (or circuits) to be irrzteid.
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This technique has been used to evaluate the a@ltemnor detection mechanisms of a
MC6809E microprocessor [Gunneflo 89], as well asvilidating the MARS architecture
[Karlsson 95].

The foremost feature in this kind of injection &t the faults can be injected, within the
VLSI circuits, in places impossible to reach byestinjection techniques, such as pin level
fault injection or software implemented fault injea.

Advantages of the heavy ion radiation injection

« Possibility of injecting faults on the real systesn,the results are real.
« Real time injection.

« The duration of the injection campaign will not\ery high whenever an automatic
tool is used. Nevertheless, if it is necessaryrtovk whether or not there have been
errors after the ion radiation, it would have tanpare the system behaviour in
presence of faults with other system without fa(ig®lden unit"), what slows down
the process.

« Good reachability, since the faults can be injedteside the VLSI chips at great
depth.

« Low interference in the prototype chips that areioo irradiated.
Disadvantages of the heavy ion radiation injection

- Difficulty in preparing the experiments. The intatgd circuits package must be
removed, a vacuum chamber is needed, etc.

« Components are destroyed during the fault injecparcess (the package must be
removed).

« Experiments are so difficult to reproduce becabsefault (or faults) is injected in
unknown positions.

+ Low space controllability (the place of injectiors iunknown) and no time
controllability (the injection time can not be cmited since the generation of heavy
ions is a random process).

« Low observability. It depends on the integratedwir complexity. It must be taken
into account that error syndromes will be detecteth the comparison of both
systems, with and without faults (“golden unit”).

This technique has been implemented in one reséavohatory (see table 4). There are no
commercial tools available.

b) Fault injection based on laser radiationtechnique [Sampson 98]. It is a better alternative

than heavy ion radiation since it can inject saftlfs (transient) in a very controlled points
inside of an integrated circuit without packagee Thjection is carried out pointing a laser
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beam over the chip, which is more accurate and ¢asynplement than heavy ion
radiation. The physical principle to generate dtfaising laser radiation, is based on that
the laser energy generates electron-hole pairb@nsemiconductor material, just as the
SEU (Single Event Upset) pairs generated by higiggnparticles.

As in heavy ion radiation, the fault can be injelctdth the desired depth, but this method
has the advantage that the fault is better repibbijcsince both the direction of the laser
beam is very accurate and the chip site, wheréatlleis injected, is also delimited. Figure
10 shows an experiment presented in [Sampson 9&].ekperiment uses a fixed laser
beam and a mobile 6 degrees freedom table (X, YZaaxiis, table turn and tilt axis in X
and Y). The laser beam accuracy is [@. According to this article, fault injection could
be possible over a full printed circuit board, aligh the entire integrated circuit packages
must be removed.
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Figure 10 - Experiment of fault injection based on laser radiation

Advantages of the fault injection based on laser @iation

Possibility of injecting faults in the real systeso, the results are real.
Real time injection.

The duration of the injection campaign is not vieigh because an automatic tool is
used. As in the previous case, if it is necesaikntmw whether or not there have been
errors after the laser radiation, it would havectimpare the behaviour of both
systems with and without faults ("golden unit"),atlslows down the process.

Good reachability, since the faults can be injeatsdle the VLSI chips in depth.

Better reproducibility than the case of heavy i@diation, since the faults are
injected in perfectly delimited points, due to thgh precision of the laser beam.

High space controllability (the injection point che determined with precision).

Low interference in the chips of prototype that aoéinjected.

Disadvantages of fault injection based on laser raation

Low observability. It depends on the integratedwircomplexity and if its design is
oriented for testability. It must be taken into @aat that, as in the previous case,
error syndromes will be detected with the comparisbd both systems, with and
without faults (“golden unit”).

Low time controllability (if the injection tool isot synchronised with the prototype).

Difficulties in preparing the experiments. The grated circuits package must be
removed, also we need a special table to movertitetgpe, etc.
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- Components are destroyed during fault injectioncess (the package must be
removed).

« Not multiple injection allowed.

This technique has been implemented in some rdséaboratories (see table 4). There
are no commercial tools available.

c) Scan chain based fault injection technique.lt involves the use of additional circuitry
inside the VLSI chips to ease the fault injectibhe best way to insert test patterns within
the integrated circuits is using shift registeriobaof the test access port (TAP), like the
JTAG of the standard boundary scan, or may be @tiler special TAP. This port is also
useful to read the injection results (error syndesjnand other internal signals from the
integrated circuit. Injected faults model transiant permanent faults in the internal flip
flops due to physical faults (external and internal

A first approach for this technique could be th@erkments such as those described in
[Vigneron 97]. There, faults are injected in ASIG&:r functional test terminals (used for
fault injection purposes), or over special ternsredided to ease the fault injection.

A meaningful example is shown in [Folkesson 97]thwiFIMBUL (Fault Injection and
Monitoring using Built in Logic), a tool from Chakns University of Technology, of
Goteborg (Sweden). In this paper, jointly with MBFO, FIMBUL provides a validation
of Thor, a microprocessor specially designed fattfeajection.

FIMBUL generates an injection control file. It camis both the microprocessor load test,
and break points in the program where the faultslve injected. When a break point is
detected, FIMBUL halts the process and injectsfthdts in the internal registers of the
microprocessor by changing predetermined bits emtiffault model of bit flip). This step
is accomplished first by reading the values ofititernal register chain (using the TAP)
and then, changing some of their bits. The modifiedlies are loaded again in the
microprocessor via the TAP, and the process ruamggow in presence of faults). The
process continues until an error occurs or untiheer stops. In both cases, the values of
the internal register chain will be read again ggime TAP in order to determine the error
syndrome.

This technique allows fault injection inside a chipany depth. Just one condition is
required that the injection site belongs to the scan chairjFolkesson 98] can be seen a
comparative study between this technique and VHB&eld fault injection, using in both

cases the Thor microprocessor as example.

Advantages of chain based fault injection

- Possibility of injecting faults in the real systeso, the results are real.

- Good reachability since faults can be injected éptd inside the VLSI chips
(depends on the number of registers connectedthatiscan chain).

« Good observability, since the error syndromes mglread through the scan chain.
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- High space controllability (precision in determigithe injection place) and time
controllability (precision in determining injectiagime).

« Good reproducibility of the experiments.
« No possible damage into the prototype.

- There are no interferences in the prototype.
Disadvantages of chain based fault injection

« No real-time injection.
- Experiments need a long time to conclude.

- Complexity in application. A special design of theegrated circuits is needed, with
internal scan chains.

This technique has been implemented in some rdséaboratories (see table 3). There
are not any commercial tools.

5.1.2.3.Software implemented fault injection
Objective

As above, software implemented fault injectiondrte verify the behaviour in presence of
faults of a physical prototype. In this case thehteque applied consist of modifying the

program according with some algorithms or critanasuch a way that the modifications

model internal or external faults (HW faults, esranduced by external interferences, or even
program design and implementation errors [lyer 9bhat is, it is assumed that the

consequences of faults often translate into chawofiggrogram or data memory contents,

erroneous addresses of memory, etc.

Unlike other techniques described before, softwmanplemented fault injection is only
applicable on advanced prototypes.

Description of the technique

This technique is based on several practical method injection, such as the data
modification in memory, or the mutation of the apation software. A first interesting feature
of this technique is that it can be applied to jptglanodels as well as to information models.

There are two types of injectors. Those which usexdernal tool for the corruption of the
programs (such an emulator), and those which aegrated inside the own systemtérnal
tools). These are implemented both as agents that ifgatts (injector processes) and agents
that observe the response of the system (observeegses).

In general, the injection techniques that emuladedivare faults by software produce a
modification of memory contents. Within these kiofitechniques we can distinguish two
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groups: those which consider the program memowy tble of independent data, and those
which interpret the contents and takes into acctheaxsemantics.

In [Chillarege 89] is described an example of thet fcategory, where randomly selected
memory pages are filled with specific values.

The second category involves the following techagu

Q

The technique used DEFI [Gérardin 86] andITA fault injection tools, is based on the
modification of memory values, replacing the orairtontents by other erroneous, in
order to emulate the system behaviour in presehpéysical fauls. This modification is
accomplished with an external tool independenhefdystem to be validated.

The FERRARI tool [Kanawati 92] is the first example of an ictjen tool integrated
within the system to be validated. This tool offarset of mechanisms that allows the
logic emulation of transient and permanent phydialts into memory, external buses of
the processor, decoding logic of the instructiodegocontrol unit, internal registers and
the arithmetic and logic unit. At a higher levélese hardware faults produce errors in the
address and data buses. The objective of FERRARIeisnjection of these errors via
software. The technique used is based on the dmviaf the control flow by means of a
logical interruption. The interruption routine pemtls to modify the executed instruction
into the main program, the value of the instructiminter, the condition flags, the value
of a memory data, etc, according to the hardwark fa be emulated.

The SFI tool [Rosemberg 93] allows the permanent and ieabhdaults emulation at

memory level of certain processor functional urfadd and product units) and certain
communication network in a distributed real timsteyns (HARTS). Every fault calls to

an integrated specific mechanism. This mechanistallsed while runs the compilation in

case of fault injection into memory, in the comnuation protocol in case of fault

injection into a communication network, and in @msembly code in case of the fault
injection into processor functional units.

FIAT tool [Segall 88] [Barton 90], allows fault injeati either into the code or the
application data, and either into the sequencasKst (delay and abnormal completion of
them), or the messages exchanged between thenmugtiorr of its content, loss and
delay).

The approaches of Echtle [Echtle 91] and Avreskyrg&ky 92] use fault injection by
logic emulation technique to test fault tolerandtpcols. They consider in this case test
vectors that are obtained with deterministic meth@ing an heuristic method in the first
case). These faults correspond to the messageldiates exchanged with the needs of
the protocol.

These kind of fault injectors contrast with thabptéd by IBM in the validation of IBM 3090
systems [Merenda 92] where certain processor padls as the general purpose register can
be disturbed with instruction sequences interprbtethe service processor.

Advantages of software implemented fault injection
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- Possibility of injecting faults in the real systeso, the results are real.

« Reachability depending on the accessible varidbtes the injector, but in any case
better than pin level physical injection.

- Good observability, since modern processors haviernal exception-based
debugging that gives the possibility to detectresgmdromes in depth.

+ High space controllability (the injection place daadetermined with precision) and
time controllability (the injection time can be seled with precision).

- Good reproducibility of experiments, since the fauare injected at perfectly
delimited points.

« There is no probability of damaging the prototype.
- There is no interference over the prototype.

- Easy to apply on the prototype, although if thedtipn is made with internal tools,
the software has to be modified.

Disadvantages of software implemented fault injeatin

- Injection is not possible at real time: injectioropesses (agents) interfere with the
normal system processes.

- Each experiment spends a long time to conclude.
- Model representativity is questioned.

- Difficult to apply.

This technique is implemented in some researchrdaboes (see table 4). There is no
commercial tool available.

5.1.3. Summary of the main features of fault injection techniques

Table 3 summarises the main featureall injection techniques presented in this ckaus
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Table 3: Summary of the main features of fault injection techniques

TECHNIQUE Type of faults injected Testability and accessibility | Applicability Cost — effectiveness Wite — Box Test Black — Box Test
Based on simulg Model of physical faults High accessibility Low difficulty of application Low infrastructure cost Yes Yes
. Any level of abstraction (it High observability No damage to the system Very high time cost
tion models. depends on the model) High space controllability No disturbances
Very high reproducibility High time controllability Impossible the real time injection
Pin level. Real physical faults Low/media accessibility Media difficulty of application High infrastructure cost Yes Yes
Pin level injection in prototype Low/media observability Low damage to the system Low timecost
High reproducibility High space controllability High disturbances
Media time controllability Real time injection is possible
EMI radiation. External temporary physical faultsLow/media accessibility Low/media difficulty of application High infrastructure cost No Yes
Pin level injection in prototype Low/media observability Low damage to the system Medium time cost
Low reproducibility Low space controllability High disturbances
Low time controllability Real time injection is possible
Heavy ion radia Temporary physical faults (bjtHigh accessibility High difficulty of application Very high infrastructure cost | No Yes
. flips) Low/media observability High damage to the system Medium time cost
tion Internal level injection in prototypeLow space controllability Low disturbances
Low reproducibility No time controllability Real time injection is possible
Laser radiation. Temporary physical faults High accessibility High difficulty of application Very high infrastructure cost | No Yes
Internal level injection in prototypelLow/media observability High damage to the system Medium time cost
Medium reproducibility High space controllability Low disturbances
Low time controllability Real time injection is possible
Based on sca Physical faults High accessibility High difficulty of application High infrastructure cost Yes Yes
. Internal level injection in prototypeHigh observability No damage to the system High time cost
chains. High reproducibility High space controllability No disturbances
High time controllability Impossible the real time injection
SW implemented. Physical faults Media/High accessibility Low difficulty of application. Low infrastructure cost Yes Yes
Internal level injection in prototypeHigh observability No damage to the system High time cost
High reproducibility High space controllability No disturbances
High time controllability Impossible the real time injection

NOTES: Accessibility (physical reachability): ability to reach possildfteult locations (nodes) in a system.
Controllability: it can be considered with respect to both thecgpand time domain. The space domain correspondsrtolling where faults are injected, while thimé domain corresponds to controlling when faules a

injected.

Observability: ability to observe a circuit or system (interdagic) from its primary outputs. This attributed§ great relevance in order to observe the syndrprogluced by the errors due to injected faults.
Reproducibility: ability to reproduce results statistically forgiven set-up and / or repeat individual fault ictjen exactly. Statistical reproducibility of ressiis an absolute requirement to ensure the cibityitof fault
injection experiments. The possibility to repeapezinents exactly, or at least with a very high egof accuracy, is highly desirable, particulanlyhen the aim of the experiments is to remove fiaten
design/implementation faults in the fault tolerameechanisms.
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5.1.4. Main fault injection tools summary

Table 4 shows some of the existimgection tools (the ones commented in this repornd

some others too). As far as we know most of thewe ot been commercialised. DEFI and
DEFOR were commercialised for a time.

Table 4: Fault injection tools

TECHNIQUE Tool Developed by
Based on simulg MEFISTO-L LAAS (Laboratoire d’Analyse et d’Architectufe
tion models. des Systémes, at Toulouse (France)
MEFISTO-C Technical University of Goteborg; (Sweden)
Without name GSTF research group, DISCA, Technical
University of Valencia (Spain)
Pin level MESSALINE LAAS (Laboratoire d’Analyse et d’Architectufe
des Systemes, en Toulouse (France)
RIFLE University of Coimbra (Portugal)
AFIT GSTF research group, DISCA, Technical
University of Valencia (Spain)
FAC INRS / ESS (France)
IDEE INRS / MDP (France)
EMI radiation Without name Technical University of Vienna (Auajri
Heavy ion radia| Without name Technical University of Goteborg (Ses)d
tion
Laser radiation |Without name Florida University (USA)
Based on scal FIMBUL Technical University of Vienna (Austria)
chains.
Software DEFI INRS (France)
implemented DIAL INRS (France)
DITA Technicatome (France)
SOFI GSTF research group, DISCA, Technical
University of Valencia (Spain)
FERRARI Texas University (USA)
FIAT Carnegie Mellon University (USA)

Without name

University of Essen (Germany)

5.1.5. Conclusions

After this review on injection tools and techniqutee following general conclusions can be

extracted:

- The simulation fault technique seems to be vergretting because it allows the
safety validation from the beginning, so it is pbsto make corrections in the early
stages of development. This technique also alloyexiing great variety/different of
types of fault models, with a good accessibilitgservability, reproducibility and it
is ease to use. Nevertheless, the difficultiectmanplish simulation models adjusted
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to reality andbesides, the long delay simulation times, maketdtchnique very time
costly. Despite all this drawbacks, the fault siatign based on the standard
language VHDL seems to have a future. In factetlaee a lot of fault injection tools
based on VHDL simulation that are being developgqutesent.

The pin level physical fault injection techniqueshaeen very well developed and
systematised, with the advantage that it injectal raults. Furthermore, its
reproducibility is good, the injection is at reahé, and the required time on an
injection campaign is not so high. This techniqam de adequate in the safety
validation of complex electronic systems that hailready been built, specially if
we don’t have much information of them. Neverthgldhis technique has several
problems, over all, the difficult application inreent electronic systems, with great
complexity/number pins ratio. This causes that sibdity and observability will be
less every time. Other problems are the high cfoeffuencies of integrated circuits
and its connection with the prototype to validaiace the packages of these circuits
are surface mount. These packages are getting esmatld smaller, with the
consequent difficulty to access at its pins.

The physical external fault injection techniquehnélectromagnetic interference may
be useful too when we must inject faults into ptyes, specially if we don’t have
much information of them. It is because it can beatly applied to printed circuit
boards. It allows, as the previous technique, ¢hdt finjection in real time systems.
Nevertheless, poor reproducibility of the experitsesauses that it seems less
advisable that the previous techniques for theda#ibn of the safety of complex
electronic systems.

The internal physical fault injection techniquesdxh on heavy ion radiation and in
laser fault injection would be a good practicepedalised research laboratories. But
in other organisations, like certification laborés, validation could be almost

impossible. It is because there are so many regeinés to carry out the experiments,
such as the set-up, the removing of the integreitedits package previously to the

tests, and the arrangement of specific equipment.

The technique of internal physical injection bassul scan chains is now in

experimental phase. It is an alternative to ingactat pin level, since nowadays the
complexity of the integrated circuits is very highd requires the design oriented to
ease the test and the fault injection. This edsestcessibility, controllability and

observability. The use of injection based on sdaairns is not possible to validate
real-time systems.

Finally, all fault injection techniques implementieg software have the advantage of
being useful to validate current high-speed systehhsis, most laboratories, that
were accomplishing physical injection at pin level the past, have begun to
implement this technique. Comparing with externhigical fault injection, this
technique is considered easier to implement. Howetie addition into the system
of fault injection processes.
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5.2. Software Testing

5.2.1. Introduction

Software testing tries to detect systematic fantt®duced during the design process.

When speaking about testing we refer to the test dasign (the expectations or previsions,
the detailed test procedures, and the results efctincrete tests), their execution and the
analysis of results. The result of a successful wals be a series of anomalous or strange
symptoms that will not correspond with the expedetect behaviour, and will show that the

program has errors.

After observing that the program fails it is neededfind the error or misconception that
produces it (i.e., its exact nature and its locgtiand then design and implement changes to
correct it.

The process following testing, just described, aled debugging. Debugging differs from
testing in their objectives (goals), methods andemmportant, in the psychological aspect.

In this report, debugging process has not beenlalee®. For more information on this matter
[Myers 79] is a good reference for beginners.

Unlike fault injection technique classification software testing, one of the more relevant
attributes for classifying the testing methods riteda, and doing a subsequent selection of a
test strategy, is the approach applied to the testtional and structural. That is way, it is
relatively easy to establish a subdivision of tasthods under these attributes.

There are some publications or references in teeature concerning with the classification
of SW faults and their distribution. That classation must be the base that supports any test
strategy. For instance in [Beizer 90] it is presdnd chapter “The Taxonomy of Bugs” which
includes the statistical data of table 5 taken froemy different sources.

The absolute frequency of faults, in programmestte&ri by good programmers, is
approximately 2.4 faults per thousand source sttésn This rate includes mostly integration
testing and system testing, carried out by an ieddent tester after thorough component
testing by the programmers. The rate becomes 1 3% when considered all the faults,
included those discovered by the programmer dusglifitesting and inspection. The author
warns that absolute frequency should not be takenusly as a reference given the variation
in the sources. However, he recommends stronglyetlaéve frequency of various fault types
as a guide to selecting effective testing stragegie

In short, it is necessary to adopt a fault clasaifon similar to above, personalised (well
understood by the programmer or tester) and addptdide particular characteristics of the
product, and keep it updated.

Table 5: Fault statistics in programmes
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Fault statistics
Size of sample — 6.877.000 statements (commentduded)
Faults per 1000 statements — 2.4
Type or category of fault Relative frequency (%)
Requirements 8.1
Features & functionality 16.2
Structural 25.2
Data 22.4
Implementation & coding 9.9
Integration 9.0
System, SW architecture 1.7
Test definition & execution 2.8
Other, unspecified 4.7

5.2.2. White Box Tests

White Box Tests are actually a set of differentezia which use a structural model of the
program for the selection of test inputs.

The adoption of a program model focused on a @etailiternal view makes this strategy be
preferably applicable to small size componentggasing rapidly complexity with size.

To represent the different structural features pfagram usually are employed the following
notations:

« Control flow graphs;

- Data flow graphs, often it is used a control flonagh adapted to represent the
operations on data or variables, and;

- Call graphs.

Under these notations are grouped the main famdfesxisting test case design criteria,
related to structural modelling. That is to say ttriteria based only on the control flow
graph, those which take into account control artd @law, and those criteria more adapted to
integration testing.

Using structural criteria, it is intended to desigst cases that exercise at least once “all”
structural elements of a program (if not all, aaskethe most fault prone) and so ensure
selectively its validity. For instance, executioh @l paths related to functions, logic
decisions, invoking both the true and false outcgrwops, internal data structures, etc.

Structural testing often is also called path tgsbecause when structural test techniques are
applied, different program paths are executed thighobjective of finding determined classes
of structural errors.

Some reasons that justify the structural tests are:
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« The certainty, that the probability of a determirpadh being executed is inversely
proportional to the amount of logic errors and meot suppositions (the normal
processing tends to be more understandable, wioleepsing “special cases” tends
to be chaotic). During black box testing it will lBfficult to find some errors
because surely we will not exercise the erroneaus f the code.

« The erroneous assumptions about which are the hammaore frequent paths of the
program (the program's logic flow sometimes isinttitive).

« Typographical errors are introduced randomly (& tlee same probability that there
exist a typographical error in a dark path as pmiacipal path).

« The assumption of, complete functional testingnfeasible (black box test), and it
needs to be complemented with some structural testsrder to achieve an
acceptable test strategy; etc.

According to [Beizer 90], faults lurk in cornersdacongregate at boundaries, being easier to
discover them with white box tests.

In short, structural tests will be mostly appliedhen developing new programs, by
programmers during the unit and integration teséing will require a detailed knowledge of
program structure. Rarely they will be used dursygtem testing. Moreover, they turn out
more useful in decision based algorithms than detéred programs.

Most of the structural tests, as said before, b#giexecute paths through the program’s
control structure. So in order to classify thensiused the corresponding structural criteria
and, the name path testing, is reserved to desighatexhaustive path testing. In this report,
besides exhaustive path testing, path testingdlesla simplified test called basic path testing.

5.2.2.1.Path Testing

A path through a program is a sequence of instructionseatences that starts at an entry,
junction, or decision and ends at another, or ptesshe same, junction, decision, or exit. A

path may go through several junctions, processeslecisions, one or more times. Paths
consist of segments. In practise, the word patisedd in the more restricted sense of a path
that starts at the routine’s entrance and ends akit.
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5.2.2.1.1.Exhaustive path testing
Objectives

It is considered an analogous strategy to exhaustiguts testing within the functional or
black box testing, and consequently it tries teedeall the errors existing in a program. The
criterion used to achieve the objective of a comeptesting is the execution of all possible
paths that can be traced through the program’saldidw.

Description of the test

Exhaustive path testing is the strongest critemaoragy structural tests. However, it is
impossible to put in practice because of the hugeber of possible paths that exist in normal
routines.

It is a test applied basically by the programmetirduthe unit testing.

In path testing it is assumed that the specificatiare correct and reachable, that do not exist
more processing errors than those which affecotarol flow and that data have been defined
and are accessed correctly.

The following test case design and execution teghis valid for all structural tests that use
the control flow graph as a program model, with élkeeption of the corresponding coverage
criterion.

Although there are a lot of practical limitatioffsye want to apply this method, the technique
will be:

« The tester builds a control flow graph based omtloelule design specifications, the
flow graph, or the source code, and traces alptissible paths on it.

« Some general rules for path selection useful wieatiévs the coverage criteria:
+ Pick the simplest, functionally sensible entry/gath

« Pick additional paths as small variations from pyas paths (favour short paths
over long paths, simple paths over complicatedathd paths that make sense
over paths that don't).

« Pick additional paths that have no obvious fun@iomeaning only if it is
necessary to provide coverage. But ask yoursdf yuhy such paths exist at all.
Why was not coverage achieved with functionallyssgle paths?

Once the testing paths have been traced, input atedaprevious states/conditions of the
system have to be defined, in order to exercisé eath. Moreover, it must be defined the
expected outputs to be compared with test results.

Specified tests are executed. During test caseuémaccould be that the results were
coincident with the expected without having coveafidoranches of the foreseen path. This
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phenomenon is known asoincidental correctnessand it is solved with thepath
instrumentation technique. This technique consist of adding probe®ncrete points of the
structure to know the real path exercised durimgtést and to confirm the result. A problem
of this technique is that adding probes causes tti@tprogram losses its real behaviour.
Instrumentation can be another source of errors.

It is necessary to indicate that the coverage @egohieved at control flow graph level, or
source code level, is not the same to that at bbjemachine language level.

For example, it has demonstrated that the critesfocovering all the instructions applied at
source code level on a modern routine written imgh level language and which employs an
intense logic, could achieve a result of 75% atecatbject level. For this reason it is
recommended to analyse the coverage at objectlevele

Advantages

It is the strongest structural criterion, though tbop existence and other structural elements
cause that this method can not be applied.

Disadvantages

Some common weaknesses of the strategies thaheisntrol flow graph as a model of the
program are:

- Specification errors could be undetected,;
- Path testing does not distinguish those paths isiplesto achieve in practice;

« Planning to cover does not mean it will be coveireath testing may not cover if
there is faults;

+ Path testing may not reveal totally wrong or migdumctions;

« Interface errors, particularly at the interfacehnather routines, may not be caught by
unit-level path testing;

- Database and data-flow errors may not be caught;

« Initialisation errors may not be caught by pathites

Most of the errors explored by structural testaf tise the control flow as program model, are
avoided when a structured programming languagsas.uConsequently, the effectiveness of
those tests for programs written in such languageseduced. However, those tests are
indispensable for code written in Assembler, Ba€iabol and Fortran due to the high error
proportion that present in the control flow.
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5.2.2.1.2.Basic Path Testing
Objective

This test tries to detect, the same as exhaustéitlte tpsting, the possible errors related to the
program’s control flow, applying a less exigentania that consists of executing at least once
each independent paths.

Description of the test

In this case the tester, once control flow graploligained, must trace a set of lineally
independent paths so that all the structure is reavat least once. The total number of
independent paths can be obtained calculating theof@atic Complexity. This metric
actually provides a quantitative measure of thegmm’s logic complexity. A complexity
greater than 40 in a module without CASE sentemuates to redesign it. The theory of flow
graphs, as well as the calculation of Cyclomatien@lexity are beyond this report. For any
reference see [Pressman 97] and [Beizer 90].

Both design of the flow graph and calculation ot tRyclomatic Complexity can be
accomplished in a manual or automatic way. Therst @ommercial tools that assist in the
design of the path set and the coverage analydisdacoverage monitors.

Advantages

It is a test that includes statement and decidgiests. It shows a higher effectiveness in case of
no structured languages.

Disadvantages
It is effectiveness reduces quickly when the sizeogdle increases (the high number of paths

to test increases test duration, complicates tase< definition and does not distinguish
impossible paths). Some independent paths couldentgsted separately.

5.2.2.2.Statement testing
Objective

Similar to Path Test, this strategy intends to cetmomalies in the logic of the program,
mainly relative to the control flow, applying thenple criterion of executing at least once
each line of code of the program under some test.

The analysis of the test coverage will inform ustlod degree of execution of program’s
instructions. The coverage of this test is desgphads C1. In the case of safety related
programs it should be required coverage of 100%ndwnit testing. The statement coverage
at system level hardly it is over 85%.
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Description of the test

It is a test applied basically by the programmenirdpunit testing. The tester based on the
modular design specifications, or even the souooke disting will define a set of test cases
that exercise the different functional featuresiwathieving the wished code coverage. The
lower is the coverage analysis the more exhausitlee test. It is the minimum criterion that
programmer should apply during the unit testing.

There exist commercial tools that allow analyse dt&gement coverage at object code level
automatically, called coverage monitors. These toosiare often implemented inside
performance profilers included in debuggers or etaus.

This test can be carried out also in manual modmgufor instance the trace function of
debuggers. Nevertheless, due to the large amoumtfaination given by each trace, it is
difficult to analyse and record the executed andemecuted parts of code.

Advantages

It detects parts of unreachable code and partdesteéd or executed yet (basically due to
control, sequencing and processing faults).

Another favourable point it is that faults are onmly distributed through code (supposing
that exists a constant relationship between branahd number of statements). Consequently
the percentage of instructions covered reflectspéreentage of errors found (if we execute
70% of instructions and we found 3 errors, we ceedigt that remains approximately 1.3
errors undetected).

Disadvantages

It is considered a necessary but not sufficieiégan. The main disadvantage of this criterion
is that it is not sensitive to some structures.tifiawe can achieve a total coverage without
covering some parts of the program (e.g., in tlee @d IF THEN structures it is not necessary
to execute the false condition). It is not sensitilso to logic operator (AND, OR).

Usually test cases are more related to decisians tih instructions, and sometimes this leads
to extreme measure results (e.g., two paths frose@sion with a proportion of 1/99
instructions).

Statement coverage is more affected by calculygpsamessing than by decisions.

It is the weakest criterion of the structural teshily.
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5.2.2.3.Branch/Decision testing

Objective

It is intended to detect anomalies in the progrdogsc (control flow), but this time focussing
the attention in decision elements. The criterimmsists of executing at least once the
alternative branches of each decision element.cbierage of this test is designated as C2.
Decision coverage usually satisfies statement egee(not in the contrary).

Description of the test

The same as statement coverage, decision covesagensidered as a basic criteria to be
applied by the programmer during Unit Testing.

The tester will identify on the control flow grapin even the source code listing all existing
logic of decisions. After that, he will select a eétest cases that exercise both true and false
outcomes of each boolean expression (all branahdke case of multi-branch decisions),
regardless of logical operators (and, or). Addaibn this test will consider exceptions and
interruptions handling.

Some examples of instructions, which representsa®t element are:

a) In assembler:
« Conditional instructions that employ boolean vaeabJZ, JNZ, JB, etc.

« Conditional instructions that employ variable ofédtype: CINE, DINZ, etc.

b) In C language:
« Decision statements: IF-THEN-ELSE, SWITCH (multabch).

« Loop structures: FOR, WHILE, DO-WHILE.

There exist commercial coverage monitors that alloeasuring the decision or branch
coverage automatically.

Advantages

It is a very simple method and it has not the prold of statement coverage. When a
structured language is used the achievement o€thésion (C2) implies the fulfilment of C1.

Disadvantages

It is still rather weak criterion. One of its prebis, it is that if applied at source code level it
ignores branches, due to logical operators, insaidean expressions.

5.2.2.4.Condition testing
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Objective

It is intended to detect anomalies in the progrdogsc (control flow), focussing the attention
in the logic conditions inside decision elementse Triterion consists of writing enough test
cases such that each individual condition in asiecitakes on all possible outcomes at least
once.

Description of the test

This test explores the true and false outcomesaoh éoolean sub-expression (condition),
inside each decision element which are separatedofigal operators (and, or). Sub-
expressions are tested independently each other.

The tester firstly, will identify all the decisioglements in the control flow graph like in the
decision coverage, and then looking into each amgisvill define the individual conditions
inside. Finally, he will design the test cases thate the execution of both possible outcomes
for each identified condition.

There exist commercials coverage monitors thatwaloeasuring the conditions coverage
automatically.

Advantages

It has usually a better sensitivity for controiMiidhan decision coverage.

Disadvantages

Although the condition coverage criterion appeatsfirst glance, to satisfy the decision
coverage criterion, it does not always do so. Tweat is recommended, it is a mixed test
condition/decision such that each condition in aiglen takes on all possible outcomes at

least once, each decision takes on all possiblomés at least once, and each point of entry
is invoked at least once.

5.2.2.5.Multiple condition testing
Objective
As in the previous strategy, multiple conditiontiteg is intended to detect anomalies in the

program’s logic (control flow), focussing its attem in the logic conditions inside the
decision elements, but in this case, even explaihgossible conditions combinations.
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Description of the test

This criterion ensures the test of all "possiblefhbinations of conditions in a decision point.
We say possible because it can happen that someirations could not be created (e.g., in
the case of (A>2)&(A<10), the combination falsestals impossible).

The way to proceed is like in the previous testhwie exception that here the tester must
consider all possible combinations of conditiond define consequently a set of test cases
that force their execution.

The required test cases for a complete testingbeanbtained from the truth table of the
logical operator.

The set of test cases that satisfies this criteas® satisfies decisions, conditions and
decisions/conditions coverage criteria.

Typical faults detected by this testing are: eriarkgical operator, (wrong logical operators,
omitted or more than expected), errors in logidalde, errors in logical bracket, errors in
relational operator, errors in arithmetic expresseic.

There exist commercial coverage monitors that all@asuring multiple condition coverage
automatically.

Advantages

It is considered the most complete criterion fa tleatment of routines that contain decisions
with multiple conditions. This criterion includegalsion, condition and decision/condition
criteria.

Disadvantages

The calculation of the minimum number of testsdovering all possible cases may be quite
complex especially in case of complex boolean esgioms. Furthermore, each logical
operator added doubles the number of test cases.

The number of test cases required can vary sulEtgariietween condition expressions with

similar complexity.

5.2.2.6.Linear code-sequence and jump testing (LCSAJ)
Objective

It is a variant of path testing that offers a difiet coverage criterion from those described
before. Its objective will be then to detect ern@isited to the control flow of the program.
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Description of the test

LCSAJ testing only considers sub-paths that cardsdély represented in the program source
code, without being necessary the control flow grap

An LCSAJ is a sequence of sentences from the saade that start in an entry point or after
a jump and are executed sequentially until othepjwr an exit point.

It is defined with three values that conventionaig identified by the code listing numbers:
starting line number, number of the last line, anchber of line taking the control.

This “linear” sequence can contain decisions, ag ks, the control-flow continues from one
line to the next at run-time. The sub-paths aré bancatenating several LCSAJ.

The tester, from the source code listing, can waitkst of branches noting the necessary
conditions to satisfy them. From this list, he wihd the starting points of each possible

LCSAJ. After that, he will seek the jumps that lré@e sequences, and finally, he will define
all the LCSAJ.

Advantages

The advantages of this testing are that it is nuplete than the decision testing and
furthermore, it avoids the exponential complexity path testing (number of paths is a
function of the number of decision elements).

Disadvantages

The main disadvantages of this method are thalipes not avoid impossible paths, and the
LCSAJs are not easily identifiable from documewntatiMoreover, they are identified after the

code has been written and still are complicatedidduce, and finally small changes in a
module or routine may imply a great impact in tli&3AJs and test cases.

5.2.2.7.Loop Test

Objective

It is a test that only checks the validity of loognstructions. Its objective is to detect any fault
related to loops, and especially, those in therobigic because they are the most likely to
happen.

Description of the test

As the preceding methods, loop testing is a methatdmust be systematically applied by the
programmer during unit testing if he wants to exasome errors specific of loop structures.

Errors, that may not be detected by the previouhoaks.

It is said that there are four types of loops: dempnested, concatenated and not structured.
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A simple loop can be covered, in the sense of rsi@até and decision coverage, with two
cases: entering the loop "looping" and bypassirg ltop "not looping”. However, the
experience shows that many of loop-related fauksnat discovered by C1 + C2. We have
already said that faults lurk in corners and coggre at boundaries. Thus, in the case of
loops, faults are usually at or around the minimamd maximum number of times the loops
can be iterated.

The technique proposed as effective to test a sihgplp (minimum value of iteration is zero
and without excluded values between zero and maxivalue) consists of two steps. Firstly,
identifying in the source code the existent loogsd secondly, designing the test cases
applying next steps:

« Try bypassing the loop (zero iteration).

« Check whether the loop-control variable could bgatiee.

» One pass through the loop

« Two passes through the loop (Theorem by Huang).

« Execute m iterations, (m < n), being m a typicamber of iterations and n the
maximum number.

« Execute n-1, n and n+1 iterations.

NOTE: In assembler language, in addition, it sHqudy special attention to multiples
of 2.

When the minimum value is not zero and/or have le@tuded intermediate values for the
loop-control variable, the procedure must be completed with cases that explore the new
extreme values. For instance, in case of a mininwattoe different from zero add the
following cases: min-1, min, min+1, and in casextluded values define two sets of tests as
explained above for each possible set of valuetheifvariable. Finally, in all cases include
some test with an excluded value.

Unreasonably long test execution time could in@idaults in the SW or the specification.
In the case of nested loops, it is recommendedpyasome strategies to reduce the large
number of test cases produced if the previous poeeis applied directly (iteration values

are multiplicatives).

Concatenated loops are considered as simple lobps are independents and as nested when
the control variables are related each other.

In case of not structured loops (horrible) commanassembler, it is recommended to
redesign.

Advantages

It is considered a complete and plausible critefimnthe treatment of routines that have
loops.
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Disadvantages

The main problem of this method is the need oftaildel knowledge of all program’s loops.
It is also notable the increase of total testinugti

5.2.2.8.Data flow testing
Objective

This test tries to explore the anomalous thingateel to the program data, applying the
strategy of selecting paths on a model of the tlate There is a family of test criteria for
path selection, which offer different degrees ofezage over a model.

This testing technique is earning relevancy, dudéoccurrent trend of the programs to migrate
from code to data.

Description of the test

The model often used with atructural data flow strategiesis the notation of control flow
graph as in path testing, but this time each Ism&rnnotated with the operations accomplished
on the data object of interest.

The data flow anomalies may be denoted by a twoacher sequence of actions based on a
nomenclature defined on the uses that can be dihewlata object (create, define, initialise,
kill, use in a calculation, use in a condition). &hs an anomaly may depend on the
application. Some combinations are clearly errotiser are suspicious combinations and the
remainders are normal situations (e.g., a sequafrii# - use, is an error).

In addition to the above two-letter situations &are six single-letter situations. It can be
used a leading dash to mean that nothing of irttexsurs prior to the action noted along the
entry-exit path of interest and a trailing dashmean that nothing happens after the point of
interest to the exit. The single-letter situatiatts not lead to clear data-flow anomalies but
only the possibility thereof. Also, whether or reosingle-letter situation is anomalous is an
integration testing issue rather than a comporesting issue because the integration of two
or more components is involved.

In contrast to path testing strategies, data flrategies take into account what happen to data
objects on the links in addition to the raw conntgt of the graph.

The tester first creates the model form the soaocke in which annotates all data operations.
Then, he selects test path segments that satigfie staracteristic (e.g., all sub-paths that
have ad operation).

The strategies for selecting path segments diffiethe extent to which predicate uses and/or
computational uses of variables are included intést set. The strategies also differ as to
whether or not all paths of a given type are remlior only one path of that type (e.g., all

predicate uses versus at least one predicate use).
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The main strategies of data flow testing are:

« All du (ADUP).

« Alluses AU).

« All p uses/some c useARU + C), all c uses/some p usesQU + P).

- Alld (AD).

« All p uses APU), all c usesACU).
It has been accomplished many comparative studiesi@ data flow strategies and in relation
with control path flow strategies on their relatisgength. Figure 6 shows an order of the
strategies from the strongest to the more weakmessa, result of the studies. The right-hand

side of the graph, along the path from “all patb™all statements” seems to be the more
interesting hierarchy for practical applications.

all paths

\

all du paths

v

all xses

T~

alle / some p allp / some ¢
all ¢ uses all p uses
all defs branch

v

statement

Figure 11 - Relative strength of data-flow strategies

In data flow testing is assumed that control fl@acorrect and faults are in the use of data
objects. Despite of this, it is expected that saroetrol flow problems will produce also
symptoms that are detected by data flow analysis.

Currently, an important part of data flow anomabhes detected automatically by compilers.

The simplest or easiest data flow anomalies arallystound during unit testing. However,
the most frequent and unfortunately subtler or maifécult to detect anomalies tend to
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involve several components and they require integgrdesting. In the future it is expected an
intense development of commercial data flow testirugs.

Advantages

It has been found that data flow testing is a edffgetive testing strategy. Furthermore, the
test cases designed and executed have direcordhip with the way the program handles
data. Another advantage is that the number of tasiss it is not so large as it seems, because
usually one test case covers others.

Disadvantages

Finding data flow covering test sets is not morelass difficult than finding branch covering
tests, merely more tedious. There is more bookkegdpecause it is necessary to keep track of
which variables are covered and where.

5.2.2.9.Summary of the main features of White Box tests

Table 6 summarises the main featuregVhite Box tests presented in this clause.

5.2.3. Black Box Tests

Black Box tests focused on verifying whether thauakbehaviour of the program or system
matches the described in their specifications. Tdreynot an alternative to WB tests, but they
will be a complement with the aim of finding ouffdrent types of errors.

BB tests try to find the following categories ofifis:
« Incorrect or missing functions.

- Interface errors.
« Errors in data structures or in external databasess.
. Performance errors.

- Initialisation and termination errors.

BB tests design generates some modelling problemshwdo not exist in structural testing.

WB analysis is always performed in an homogeneoarsd, that is, a control or data flow

graph deduced from the source code, whereas ireBihg there is not a standard model for
describing the expected behaviour.
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Table 6: Summary of the main features of White Box Tests

TEST

Inputs

Fault assumption

Coverage criteria

Appicability

Cost-effectiveness

Path testing

Module design documentation
(control-flow graph, flow chart, etc)
or directly source code listing.

Most faults can result in control-flow
errors and therefore misbehaviour
could be caught by control-flow
testing. Specifications are correct al
achievable, and data are properly
defined and accessed.

(mainly control and sequence faults

Exhaustive path testingxercise all
possible paths through program
control flow.

n@asic path testingexercise a set (it i
not unique) of independent paths.
assures C1 + C2 coverage criteria.

The number of possible paths in a
module becomes soon impractical.
Not distinguish unachievable paths|
Sometimes it is complicated the

t definition of test cases for the selecl
paths. Instrumentation methods to
verify paths can generate time
distortion.

Exhaustive path testing is
unachievable.

Basic path testing is effective and
easy to implement.

eifficiency reduces quickly when the
size of code increases (time cost).
Particularly recommended for
unstructured languages.

Statement Module design documentation. Untested pieces of code leaves a | Execute all statements in the progrgrgasy to implement. The weakest criterion.
. Source code listing and object codd residue of faults in proportion to the|rat least once under some test. Insensitive to some control structurds
testing listing. size and probability of the faults. And and logic operators.
low-probability paths can be not C1 should be achieve at object cod¢
exercised during testing level.
(mainly control flow faults and
unreachable code).
Decision or Module design documentation Faults directly affect control-flow Execute enough tests to assure that Easy to implement. When applied to a structured
. (control-flow graph, flow chart, etc) | decision elements. every decision has a true and false language it includes C1 criterion, byt
branch testing | or directly source code listing. outcome at least once (or each branch still rather weak. Enough for routinel
direction is traversed at least once) containing only one condition per
under some test. decision.
It ignores the conditions in a decisidn.

Condition Module design documentation Faults directly affect control-flow Execute enough tests to assure that Requires more design effort than | Sometimes stronger than decision
. (control-flow graph, flow chart, etc) | predicates (individual conditions in | each condition in a decision takes drdecision coverage. coverage.
teStlng or directly source code listing. decision elements). all possible outcomes at least once, Not always satisfy decision criteria.
Multiple Module design documentation Faults directly affect control-flow Execute enough tests to assure that @lalculation of the minimum number] More thorough test criterion than
. (control-flow graph, flow chart, etc) | predicates (combination of conditionpossible combinations of condition | of test cases needed to cover all condition coverage. More complex

condition or directly source code listing. in decision elements). outcomes in each decision are possible combinations of condition | and time consuming.

testing invoked at least once. outcomes in each decision can be | Includes decision, condition and
complicated, specially in the case of decision/condition coverage criteria|
complex boolean expressions.

LCSAJ Source code listing Faults affect control transfed Exercise all linear sequences of Selection of LCSAJ is rather Stronger than decision coverage, b

segments processing.

statements and jumps in a routine.

complicated. Small changes in the
code can produce a great impact of
LCSAJs and test cases.

Does not distinguish unfeasible
LCSAJs.

less than multiple condition criteria.
This criterion avoid the exponential
difficulty of the criterion above.

—

Loop testing

Module design documentation
(control-flow graph, flow chart, etc)
or directly source code listing.

Faults affect the loops in the progra
(initial or terminal value or condition
increment value, iteration variable
processing, etc).

YExecute enough tests to assure tha
loops in the program are exercised
thoroughly.

absting defined procedure for loops
Testing a single loop requires to run
or 8 tests. Test can take a relative |
time.

Complement other coverage criterig
{C1 and C2) when the routine has
hgpps.

Data-flow Module design documentation in cas€ontrol flow is correct but the Execute enough tests to assure thaf Not more difficult, but usually more | AU criteria has probably the best
. of module testing and system desighprogram could contain data faults | data characteristics (state and usadegdious. payoff for the money.
teStlng documentation for SW integration | (e.g., initial and default values, for all data objects are exercised. Recommended to low-level testing f
test. overloading, wrong type, closing There exist several coverage criteria: programs with a considerable data
Control flow graph annotated with | before opening a file, etc). from the weakeAll Definitionsto the design, and essential for almost any
data objects created from the sourcp strongerAll Def. and Uses program in integration testing.
code listing, call trees, etc.
NOTES: - In the input column it has not been inellithformation about test specification (test pliagndocuments) and other relevant information asittspection &reviews results.

- All these test criteria assume that program sfiesfions are correct and achievable.
- The stronger strategies, typically the highertcos

- Sometimes the test tools (Coverage monitors)adspecify the coverage measured. Then, the tedllenot know whether it is monitoring statemenvemge, branch, both, etc, for source code, foeohjor
for memory words, unless it asks. Modern tools lwwerage monitors built-in, and independent stafae coverage monitors has become the exception.
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The main representation techniques used for modedi program or system at a functional
level are:

» Graphs (control-flow, data flow, finite state mauhj etc.).
+ Decisions table.

« Equivalence classes.

BB tests are usually predominant in higher ordstirig, like function testing, system testing
and acceptance testing.

5.2.3.1.Behavioural or high level control-flow path test
Objective

This technique tries to detect those program fdahks produce an anomalous behaviour in the
program control flow visible for the user. The eribn used is the execution of all the paths
functionally sensible of the flow graph built frotine specifications, considering opaque the
program or system.

Description of the test

This test begins to be effective during SW comptméntegration testing and SW and HW
integration testing, but really where it turns wses in system testing. When SW components
have a considerable size, this technique is eveisate during unit testing.

The tester or the programmer will create a systentrol flow model from the specifications
(high-level specifications of the system, or speatfons of the program design). To build the
model is used the same graphical notation as thieatdlow in structural testing, though with
a different semantic (nodes = objects, and linkslations).

Based on the model, tester traced enough pathsstoeal00 percent link cover. After that it
sensitises the selected paths and executes thesponding tests to check whether the states
and events specified exist or not in the implemtéra and outputs generated are the
expected.

The graph can also be represented in form of taislésts of objects and relations.

This technique assumes that most faults can resuttontrol flow errors and therefore
misbehaviour could be caught by control flow tegtitlowever, the primary assumption
about the faults targeted by this technique is ttney directly affect control-flow decisions or
predicates or that the control flow itself is wroyoss control flow faults are not common in
programs written with structured programming largps

Although this technique may detect some computatifeults that do not affect the control
flow, obviously is not the best to use.

The test design and execution consists of theuiatig steps [Beizer 95]:



1. Rewrite the specification as a sequence of shartesees, identifying conditions and
breaking up compound conditions to equivalent sege® of simple conditions.

2. Number sentences (they will be the nodes).

3. Build the model.

4. Select test paths.

5. Select input values that would cause the softwardot the equivalent of traversing the
selected paths if there were no errors.

6. Run the tests.

7. Confirm the outcomes and paths.

Advantages

Behavioural control flow testing applies to almadk software and is effective for most
software. It is a fundamental technique. Its apiity is mostly to relative small programs
or segments of larger programs. To test an eraigelprogram would be too difficult because
the models would be very big and, as a consequeate selection and sensitization would be
much too complicated to justify the effort.

Disadvantages

Usually, specifications errors and omissions aredigcovered. This technique is unlikely to
find spurious or gratuitous features that wereudet in the software but were not in the
requirements. If this technique was already appdiedng unit test, it will not discover many

new errors. It is unlikely to find missing pathsdaieatures if the program and the model on
which the tests are based are done by the sam@npers

In case of using an oracle, the technique doesesoit effective (supposing both oracle and
tests has been developed by the same person)tethisique will not discover process faults
(calculation faults) that they do not affect thetzol flow.

5.2.3.2.Logic-based testing (decision tables)
Objective

This technique explores specification and implemgo errors of logic-intensive programs

using decision tables as program or system logieadel. This type of representation allows

to define all possible input conditions and to keksh the relationships that lead to the outputs
or actions.

The use of an algebraic base makes this technmuletect completeness, consistency and
redundancy errors in the specifications.



Description of the test

In this report, logic based testing technique &spnted as a functional test method because it
is applied to the specifications, and thereforeomemended for validation testing. This
techniqgue may also be applied in the same way o gtogram structure (i.e., to the
implementation control graph) but in this case @vd be considered as a structural test and
recommended for other stages of the test process.

This strategy consists of generating a set of coatlan of input conditions (rules) that will
cover a large part of possible input circumstarazEording to the program specification. To
do that, the tester builds a logical model from s$pecifications, so that this model offers a
concise description of the system in the form gidaequations. Then, applying the Boolean
algebra rules, he tries to simplify all input carahs that lead to each action or output until
achieving the minimum expression.

The coverage criteria can range from only usingctireditions of the minimum expressions of
an action, to the generation of all conditionshaf €xpanded expression.

These logical modelling techniques are applied@afg in programs or portions of programs
(segments) with combinational logic.

The test design and execution consists of theuiatig steps [Beizer 95]:

1. Identify conditions and actions in the system dpmations, and establish their
relationships.

2. Fill up the decision table (model).

3. Expand the table for its analysis (completenesgeryeinput conditions combination is
described by at least a rule; and consistency ryemput conditions combination leads
always to the same set of actions).

4. According with the coverage criteria used, selbetinput conditions combinations that
cause the wished action

5. Generate the input values for those condition.

6. Execute the tests.

7. Confirming the outputs or actions and the paththgough.

Advantages

In case of logic-intensive systems with specifmasi written in natural language, this
technique allows to analyse the specificationsniroganised way, previously to the test. By
means of the Boolean algebra rules it is possiblgetect parts of unreachable code, infinite
loops, etc.

Disadvantages
It is required a knowledge of Boolean algebra. Thaversion of specifications into the

decision table is not trivial (identification ofpat conditions, decomposition of compound
conditions, combined actions, etc.). It is useuldombinatorial systems only.



5.2.3.3.Behavioural or high level data-flow test

Objectives

In the above presentation of the data flow tediniepues (chapter 5.2.2 White Box Tests), we
said that these techniques are more powerful tbatra flow techniques. More powerful in
the sense they detect more errors and let us &tecedl tests that we would be able to create
using control flow testing techniques.

In this case data flow testing techniques use tht dlow graph, obtained from the
specifications, as a model of the system or progims technique tries to detect anomalies
in the definition and processing of data, the sametructural testing. For this reason, it is
avoided introducing unnecessary control aspectisarmodel (that is, aspects not specified in
the requirements and that are produced by the enhaharacteristics of the programming
languages and system hardware), assuming thatotfiieot flow does not contain simple
errors.

Description of the test

This test is based on the creation of a data flaply with an appropriate detail all the time in
order to describe data processes and then to dekdctpaths” (data flow slices) from the
model according to a specific coverage criteria.

In principle it is a recommended technique for Higlel testing on system with a certain data
contents and not many control requirements.

The data flow graph will represent the informatitbow and it will not provide explicit
indication of the processing sequence (conditibmgps, etc), unless it is necessary for data
processing.

Some common kind of sequencing information that beypresent in a data flow graph are:
« Convenient, but not essential.

+ Essential.
« Synchronisation (concurrent processes).

+ lteration (loops).

Usually, the loops deduced from the specificatians tested applying the same heuristic
techniques as in structural test on the behaviowwatrol flow model. Nevertheless, if the
loops are not complicate (nested, etc), it is fodsdb consider their key data elements in the
data-flow graph and thus, to include this test inithe data-flow test.

Some strategies used for the selection of testscasdered from the highest to the lowest
coverage are [Beizer 95]:

« All - Uses + Loops.

« All - Uses. It covers all links in the data flowagh.



- All Nodes.

- Partial Node Cover, called also All Definitions.
+ Input/Output Cover + All Predicates.

+ Input/Output Cover

The design and execution of the test cases isaintalthe behavioural control flow test, with
some minor differences which result from the défgrnature of the models.

The test cases are designed as following:

1. Identify input variables, especially constants.

2. Reuwrite the specification as one sentence perifumntd be calculated.

3. Elaborate different function lists, starting withose that depend only on input variables,
and going on with the next level of functions, umetkpressing the output variables as
function relationships.

4. Examine intermediate functions to check if the s&ming is essential or merely
convenient. Try to simplify the model (adding imediate nodes, etc.).

5. Finish the model naming the links with functionsiables (nodes) and verify it.

6. Select test paths (data flow slices) accordingéagdent criteria.

7. Select inputs values for the selected cases (sngslices), and predict the expected
outputs.

8. Run the tests and confirm the outputs (valuestatnmediate nodes).

Advantages

Firstly, it is appropriate to underline the thearatt power of this technique, which includes all
the cases explored by the control flow. But, asagby the development of its capabilities
supposes more work in the design of test casesth®mother hand, to profit from that

capability it will have to take into account somentrol aspects which complicate the data
flow model.

It is likely to find characteristics or extra furmts that have been included in the program
without being in the specifications.

Disadvantages

This test does not usually discover errors or oimnmss in specifications. It might lose
effectiveness when SW and test design are donddysdme person, but less so than for
behavioural control flow testing. Tests are notdyethan oracles (supposing both, oracle and
tests design has been developed by the same peltsait) not provide the tester much if he
does not find ways to verify those intermediateesd



5.2.3.4.Equivalence partitioning
Objective

The objective of this technique is to discover &mpe of error in the individual treatment of
inputs that could have in the program or system, degigning test cases from the
specifications using the partition of the input domin classes of equivalence.

Description of the test
It is a technique widely used during the systertirigs

This method is focused on the input domain defineithe specifications. It tries to cover this
domain applying the criterion of partitioning it anfinite number of equivalence classes from
which it is enough to choose one representativeevper class, reasonably assuming (but, of
course, not absolutely sure) that a test with vhise element is equivalent to a test with any
other value of its class.

The design of test cases is developed in two s{&gessman 97]:

1. Identify the equivalence classes. The equivaletasses are identified by taking each
input condition (usually a sentence or phrase edpecification), and partitioning it in
two or more groups using a largely heuristic preceMoticed that two types of
equivalence classes are identifiedalid equivalence classes (they represent thetsnpu
specified for the program) and invalid (rest of §ibke inputs).

2. Define test cases. It will be assigned a uniquebarrto each equivalence class identified
and defined test cases until covering all the ejaince classes. The valid classes will be
covered with the minimum number of test cases wimilalid classes will be covered
individually (to prevent that certain erroneousthghecks mask or supersede other
erroneous input checks).

Usually, it is applied to an input variable or mple combination of two variables.
Advantages

It is considered an effective technique becausdinést application and limited number of test
cases. It is vastly superior to a random selecifdest cases

Disadvantages

It overlooks certain types of high-yield test caséw instance, input boundary values,
combinations of input values, etc.



5.2.3.5.Boundary-value analysis
Objective

It is a technique that complement equivalence fpamtng. In this case, it is intended to
discover program or system errors associated witlt tonditions that define the input and
output domains in the specifications: situationgatly on, above, and beneath the edges of
input equivalence classes or output equivalensseta

Description of the test

It is a technique mostly used during the systentinigs However, it can be based on
implementation information and be applied as acstinal technique in earlier steps than
system testing.

This method is based on the experience has shdvetddst cases that explore boundary
conditions have a higher payoff than test cases dioanot. It differs from equivalent
partitioning in that instead of selecting any elemén an equivalence class as being
representative it analyses each edge of each dguoeaclass and summits them to test with
one or more cases. Furthermore, this techniqgueoeglalso the equivalence classes of the
output domain, through the corresponding input esl@boundary conditions of the input
domains do not represent always the same set @fregtances as the boundaries of output
ranges).

In case of multidimensional domains, it is recomdesh to check also combinations of
boundary values.

It is assumed that the processing is accomplisbegatly and errors have been produced in
the domain definition or implementation.

Although it apparently turns out a simple technique practice its correct application
(identification of all the boundaries) supposesasiderable intellectual effort.

Within this method it is also convenient to testemal data structures boundaries (for
example buffers, tables, arrays, etc.).

Advantages

It is considered a very effective technique.
A random testing will have a very low probabilityverify the domain limits.

Disadvantages

Its correct application requires a certain menffaire
It must be complemented with other test techniqoasverify the processing.



5.2.3.6.Error Guessing

Objectives

The aim of this method is the design of special teses that explore possible errors not
covered by the rest of testing methods.

Description of the test

It is a technique that apparently does not applyraathodology for the design of test cases.
The tester uses his intuition and experience tdigreertain types of probable errors in a
given program, and develops test cases to expgiera.t

It does not exit a defined procedure for the desigiest cases since it is largely intuitive and
ad hoc process. Some basic ideas are: to defirgbpmerrors and error-prone situations list,
to identify possible assumptions that the programmgght have made when reading the
specifications, etc.

When a tester chooses a test technique he is asgwantertain class of errors since each
technique is specialised in certain classes of®rirror guessing is not actually a technique,
it is more a compendium of all testing techniqudse basic objective is to demonstrate that
there are not common (usual) errors in the progfBondo that, it is based on the program
error statistics, taking into account that these ddould not be used directly as a guide to
build the test cases, but as orientation.

In this way, using the error guessing does notynappriori to assume a type of error, unlike
to the rest of test methods.

Advantages

This test, when it is carried out by an experienester, is probably the most effective simple
method of test design. It is based on the expegidneing very quick detecting errors.

Disadvantages
The main problem is the total lack of methodolotsed by inexperienced testers is a

complete waste of time.

5.2.3.7.Syntax Testing
Objective

As stated by its name, the objective of this tediivalidate the input-data syntax. In other
words, to explore what happen when data is intredugsing the syntax defined in the
specifications. This test ought to evaluate thegranm ability to accept valid data and reject
invalid data.



Syntax testing is a powerful technique for testipglications using command languages, for
example: programs that receive commands (commamdrdrsoftware); menu-driven
software; software packages for PC that mserosto automate repetitive operations (macro
languages); format messages language in commuoncsgstems; etc.

Description of the test

This technique is related to the hostile charaofethe external world which inexorably
summits sooner or later to the programme to anamsadiata that may produce an immediate
failure or a chink in the system’s armour allowiather bad data to go in the system and
corrupt it.

This problematic can also exist in the internaliemmment of big systems, usually subdivided
into loosely coupled subsystems and consequently miany interfaces. These interfaces
present new opportunities for data corruption aray mequire explicit internal validation.
Furthermore, HW can fail in bizarre ways that wiluse to pump streams of bad data into
memory, across channels, and so on. And then #neralways alpha particles.

Syntax testing is applied usually by independesteteduring system testing.
The method consist of the following steps [Beizg}. 9

1. Identify the language o format. Sometimes it igicliflt to identify a language because it
is hidden, that is, it is used one not recognisegiiamming language. Some examples
are: user or operator commands in applications ugedhctively, task control languages
in the case of batch processes, convention usatidarommunication between processes
at system level, etc.

2. Define a formal model of the language syntax, usoamgnstance a Backus-Naur form. In
most cases the syntax will be no documented armutdéd begin testing there will be to
know what is tested. Some useful sources thathe#im to define the syntax are: co-
operation between designer and tester, user mamadpsscreens, data dictionary, etc.

3. Test and debug the syntax to ensure that it is t&imp@and consistent and it satisfies the
expected semantics.

4. Test all normal conditions (Clean Testing), thatti® set of input strings that cover all
options, included critical loop values. The modtidilt part of test of normal cases is to
predict the outputs and verify the correctnessheffrocess. That is, it is turned into an
ordinary functional test (semantics test). Coverthg syntax graph (go through all
links/branches) it is assured the test of all oioThis is the minimum obligatory
requisite; similar to branch testing in the conftoW graph.

5. Add cases that can not be produced with the grajy-cases- (Dirty Testing). It is
recommended to generate them methodically with @dtiwn process, starting by
changing an element of the graph each time.

The proposed strategy for designing test casdeisreation of an error at each time, being
the rest of the syntax correct. When single ersting has been completed, combination of
errors will be tested.. Some reasonably judgemaitithave to be done in order to restrict the
number of test cases. However, this is almost isiptes without a knowledge of the
implementation details.



The errors assumed in this test are syntax ermosnot errors in the field values that will be
tested with equivalent partition and boundary vaasting. Typical syntax errors are: errors in
the syntax specification (incomplete, inconsisteatjors in the syntax of the data validation
routine (it is rejected a valid data, it is accepenot valid data), etc.

Advantages
It is easy to apply and automate.
Disadvantages

There are two main disadvantages. The belief tialom test cases are enough and turns out
more profitable than automatic generated cases. tAedgreat faith in the effectiveness of
what is called monkey testing.

5.2.3.8.0ther Tests

o State Transition Test

There exist programs whose behaviour fits welhédistates machine, and consequently they
can be modelled or described using state graphsabies.

State transition testing is appropriate for thaetpf programs and uses state graphs to design
test cases. The strategy for the state testingngiple is analogous to path testing in the flow
graph, that is, to cover all possible paths ofdtate graph. But, the same as for path testing,
this strategy is impracticable also in this case.

Then it is turned to the coverage notion and taiked about states-transitions coverage as the
minimum mandatory requirement. From this criterionght be established other more
demanding, generally based on the execution ofdilosgquences (number of transitions). It
may be interesting to include cases to test tlatttspecified transitions can not be induced.

These models are mainly applied by independenentesipecially during system testifay
functional tests design,.

This test could be useful in any process in whiciipot depends on one or more event
sequences (for example, detection of specific irg@giuences, sequential formats validation,
etc), most of the protocols, menu-driven softwamenever a characteristic is directly
implemented as a state transition table, etc.

A disadvantage of state graphs is that they docoosider the time, they only represent
sequences. Nevertheless, some models of finite stathines can be adapted to consider the
notion of time (i.e. temporized Petri nets).

Some tests sometimes considered as Black Box Asexclusive of systems test are:

o Volume testing



This type of system testing is subjecting the progto heavy volumes of data. For instance,
an operating systems job queue would be fillech&rtmaximum capacity. The purpose of
these tests are to show that program can not hahdlevolume of data specified in its
objectives/specifications. It is expensive, bueast a few volume tests must be carried out.

o Stress testing

This type of test involves subjecting the progranhéavy loads or stresses (peak volume of
data over a short span of time). It is applicabl@rograms that operate under varying loads,
or interactive or real time, and process-contralgpams. For instance, a process-control
program might be stress-tested by causing all ®fntionitored processes to generate signals
simultaneously.

o Performance testing

Many programs have specific performance or efficyeobjectives, stating such properties as
response time and throughput rates under certamkleanl and configuration conditions.

These tests must be devised to show that the progi@es not satisfy its performance
objectives.

o Usability testing

Another category of system test cases is an attémgind human-factor, or usability,
problems. Some kind of considerations that mightdsted are: degree of adaptation of the
user interface to the intelligence, educationakbeaund and environmental pressures of the
end user; outputs of the program meaningful, narsiae; straightforward error diagnostics
(error messages); return of acknowledgement tinghés; etc.

Some aspects of usability might be considered usgaiax testing (e.g., syntax consistency
and uniformity, conventions, semantics, format).etc

o Configuration testing

Some programs support a variety of HW configurai@ang., types and number of I/O devices
and communications lines, different memory siz8sich programs should be tested with each
type of hardware device and all possible configoret If the program itself can be
configured, each program configuration should alsdested.



o Recovery testing

Those programs which have recovery requiremeragngthow the system is to recover from
programming errors, HW failures, and data errorspukl be tested to show that these
recovery functions do not work correctly.

Some characteristics considered in these systeis des studied again in clause 5.2.4 “real
time system test”.

5.2.3.9.Summary of the main features of Black Box tests

Table 7 summarises the main featuweBlack Box tests presented in this clause.

5.2.4. Real Time System Test

Real time systems (RTS) are systems that interdbttthe real world in a base of time. The
RTSs generate an action in response to an exteveak in a predefined time. Therefore, in
addition to the functional requirements, these kihdystems will have time constraints.

Industrial automation and specifically, machineoptrol is one of the typical RTS application

area. So, the systems object of the project STSARGIe systems of this type which will

realise safety related control and monitoring.

The software and hardware configurations of thgstems will vary depending among others
on:

 functional requirements (one or more tasks, prograbhility, etc),
+ safety requirements (control category),

« performance requirements (response time, multi@skhierarchical interruption
services, etc), etc.

This way, it is possible to find RTSs ranging fransimple embedded systems (in which the
function is codified as an endless loop, i.e. omesome few task(s) that are executed
continuously), more complex embedded systems timatide multitask and interruptions

(might have limited programming capabilities), tb@3 or PCs totally programmable by the
user.

Some RTS characteristic attributes are:
« Interrupts handling and context change.

« Concurrency, multitasking and multiprocessing.
« Communication and synchronisation between tasks.
+ Response time (time constraints).

- Data transference rate and time.



Table 7. Summary of the main features of Black Box Tests.

TEST Inputs Fault assumption Coverage criteria Appicability Cost-effectiveness
Behavi | Functional requirements and Most faults can result in control-flow Executing enough test paths on the| Applicable to relatively small programs| The better the unit testing, the less
enhavioural or I ) ; . ; . A L
. specification documents from whicH errors and therefore misbehaviours| model to assure 100 % link cover. | or segments of larger programs. likely it will find new faults with this

hlgh level it is created the behavioural control{ could be caught by control-flow (to verify that system logic meets | To verify behavioural control-flow pathg method in high level testing.
trol-fl flow model (graphical or list testing. requirements). sometimes it is needed programmers’ ¢&ffective for most software.
control-Tfiow ; > _— ) ! !
. notation). Requirements and/or specifications operation to install assertions for
testing can be incorrect and their analysis intermediate calculations.
could be included in this test.
Logic-based Functional requirements and Logic-intensive SW designed Exercising enough test cases to engutenversion of specification into decisigrivery effective when specifications 4
. specification documents, which can| instinctively is almost never right, [ all combinations of conditions table is not easy. given as a decision table or they ca|
teStlng be represented by decision tables. | hard to test and maintain (predicates) that lead to the actions| Require a strong boolean logic be easily converted into it.

(decision table)

(specifications contains combinatio
of input conditions).

Requirements and/or specifications
can be incorrect (incomplete,
inconsistent, etc).

nCoverage criteria range from just te
the conditions present in the
minimum expressions of an action t
test all the conditions after expand t
table.

stlevelopment to simplify the expression
of the actions.

o

he

e

=

sAdequate only for combinational
systems or segments, and loop-freq.
Beneficial side effect in pointing ouf
errors in the specifications.

Behavioural or

Requirements and specification
documents.

Control flow is correct but the
program still could contain data

Execute enough tests to assure tha
characteristics (state and usage) fo

Test design is harder than behavioural
control-flow and is done manually.

More powerful than behavioural
control testing whenever control

o

—

=

hlgh level Data-flow graph. faults. all input/intermediate/output variable$Sometimes it is needed programmers’ cdependencies of data are considers
data-flow are exercised. operation to install assertions to verify
R There exist several coverage criteriqiintermediate nodes.
testing from the weakemput/Output cover
to the strongeAll Uses + Loops
Equivalence Requirements and specification An input domain can be partitioned| Cover as many uncover classes as | Seems to be simple, but the specificatip&fficient due to its direct application
.. documents. into a finite number of equivalent | possible with one test case for valid| of domains, their closures, extreme and reduced number of tests. Vastl
partitioning classes or segments such that can pelasses; and to test one class each| points, etc. sometimes is rather superior to a random selection of tep
reasonably assume that a test using time for invalids. complicate. cases.
any value of a segment is equivalen|t Need to be complemented with othd
to other test using another value of methods (e.g., boundary value, etc)
the same segment (that is, if the firgt
test detects an error, the will be
expected to find it as well).
Bou ndary- Requirements and specification Experience has shown that inputs grieixecute enough test cases to assuleSeems to be simple, but the specificatipiery effective method.

value analysis

documents.

outputs domains boundaries are faylthat all domains boundary/extreme

prone.

values and their combinations in ca|
of multidimensional domains are
tested.

of domains, their closures, extreme
5points, etc. sometimes is rather
complicate.

Testing all combinations of extreme
points is ineffective [generate many|
tests (4 with n=n° dimensions), mog
of which meaningless and/or
misleading].

Strategies as 1x1 and other strongs
increase the effectiveness of the ted

— s

Error guessing

Requirements and specification
documents.

Particular error-prone input or outpd
situations (overbooked when the
program was designed), faulty
assumptions that the programmer
might have made when reading the
specifications, etc.

tDoes not follow any method or
criteria. Based on intuition and
experience, for each particular
program certain probable type of
errors supposed and tested.

Easy to implement.

Effective and more simple, ifieldy
an experienced tester (a few tests
concentrated on error causes).

Syntax testing

Requirements and specification
documents, help screens, data
dictionary and user manuals.
Backus-Naur Form graph (BNF).

Inputs commands (and data) are nq
processed properly, and as a
consequence their interpretation cal

lead to crashes and data corruption|

tCan be divided into two parts: clear
testing intended to cover the synta:
hgraph, and dirty testing intended to
exercise syntactic errors in all
commands in an attempt to break t
software and to force every diagnos|
message to be executed.

Easy design automation of test cases ¢
execution (by means of a capture/replg
system or a driver).

The number of multiple errors in a
eommand should be limited to a
timasonable, because this number
increases exponentially with the

ritffective for applications with
ycommand languages (e.g., comma
driven SW, menu-driven,
communications, etc.), whenever it
automated.

(2]

multiplicity factor.




« Special requisites to handle errors and failurepecation.
« Resources assignation and priority handling.
« Asynchronous processing.

« Unavoidable coupling between SW-SO-HW-other exfesteanents.

In consequence, RTS software will be closely cadipléh the real world.
Time dependencies of tasks and asynchronous exedts new element to testing, tiree.

Now, tester not only has to consider the desigrestf cases from the WB and BB techniques
seen before, but also he will have to add new dastest the specific characteristics of these
systems listed above.

A general test strategy could be [Press®ian

Tasks Testing The first step is testing each task independed#gigning WB and BB tests
to discover logical and functional errors. Thesetdedo not explore temporisation or
behaviour errors.

Behaviour Testing Using system models simulate the system behawaadr examine the
behaviour as a consequence of external eventhidrstep behaviour faults are detected (the
system model do not have the behaviour specifi@dse of events).

Inter-Tasks Testing Asynchronous tasks that communicate with othekdare tested, with
different data rates and different process worlkdoathey are tested also the tasks that
intercommunicate through queues or data bufferghi step time related errors and data
storage errors are tested to detect size erragheimemory areas involved.

System Testing After integrating the SW and HW use to be appietbmplete series of tests
to discover faults in the interface SW-HW, etc.

Interruptions handling are another essential teBtese test will verified the programmed
priorities on the system, the different interrupbgessing (interrupt service), management
time, processing of several interruptions closénre, global data area used by interruptions,
etc.

There is another characteristic type of test, daléee coverage test. This type of test checks
whether multiple threads execute the same coddeatsame time. It helps in detecting
synchronisation faults in the access to resouités.very used when testing programs with
multiple threads (“multi-threads”), as operativetgyns or multiprocessor systems.

Exceptions handling in RTS have a special consiigralue to the high reliability and time
requirements these systems usually have. Excepéimngroduced by errors that provoke a
malfunctioning in the program operation or a sysfaiture. These errors can be originated by
faults in the software or in the hardware of thetey or even in external components.

Testing methods for RTS are not so developed asnitbods for other type of programs
(consumer, general business, etc).

5.2.5. Conclusions



In clause 4 “Black box versus White box testing”has reflected on two of the existing
approaches to demonstrate the correction of a pnogstructured-based testing and test based
on the function. And it has concluded that no oamadnstrate to be absolute (do not assure
test completeness), furthermore, given that theycamplementary, any test strategy should
use both.

Discarded the complete testing, the position mustdbvelop a reasonable strategy that
provide enough testing to ensure that the protmholi failure due to residual faults is low
enough to accept. “Enough” implies judgement. Arthtus sufficient for an application is
insufficient to other, due to the consequencesatatiure can have.

In our case, the standard EN 954-1 defines reqeinsnfor the SRPCSs in functional and
category terms. It is just the translation of thosquirements in others more in agreement
with the parameters normally used to measure SWitguend testing (fault types and
distribution, testing types and levels, coveragadbieve, metrics, reliability models, etc.) on
of this project’'s challenges. In WP 3.2, it is imded to evaluate the contribution that
accomplishes the use of a functional or a strucapproach in testing.

It does not exist conflict between behaviouralyaiural and hybrid (combination of the two
previous) strategies. And a priori it can not bel ghat one of these testing strategies is
superior to the other for testing a program. Thibecause the relative usefulness of a strategy
depends on several factors, such as: safety reqeims of the program (functions and
category), program size, procedural/fault preventiseasures applied in the design process,
program’s features (structure, logic and data)uneatof possible faults (according to
programming language, stage in the testing proetsg, state of our knowledge, application
cost, etc..

This dependency shows that the future definitioa tést strategy will be rather complex, and
it should be flexible enough to take in account addpt to several factors.

Nevertheless, and despite of the phase we areiprtiect, the study accomplished allows us
to advance a series of rules or guidelines whiclp hes selecting the most interesting

techniques. These guidelines may also be usefalsaarting point for a subsequent design of
an effective testing strategy (selection algorithmjore suitable test technique, testing
approach to use, coverage definitions for the wiffetesting levels, etc. in order to meet the
requirements of each category.

Some researches have given theoretical results hen rélative structural techniques
effectiveness considering only inclusion relatiortdowever, in practice, the relative
effectiveness will depend on the number of tesesacessary to satisfy the different criteria
(testing cost) and the probability that there eaisype of fault detected by a test criteria and
not by others.

Supposing a coverage of 100% for all test critéréa, each test is complete, that is all criteria
specific structural elements are exercised), poissible to define a relationship among the test
criteria of the type "test A includes test B". Thmglusion relation means that a set of test
cases that satisfies A criterion also satisfiesitron. The inclusion relation it is not enough
to establish an effectiveness relationship, andighavhy it provides only a partial indication
of the relative effectiveness of test techniques.



The inclusion relation is not valid to order altusttural coverage criteria. And it does not
serve to establish a relationship between strucameh functional criteria.
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Figure 12 - Partial ordering of Structural Test Coverage criteria

100% statement and decision coverage in unit tpsine accepted today as the minimum
mandatory testing requirement. Statement coveragesiablished as a minimum testing
requirement in the IEEE unit testing standard (A8VH).

However, that goal results unreachable or prokiiin terms of test productivity when we try
to test larger size items. This is mainly becaasesaid before: it is difficult to test low level
details when handling large size objects, and Hheglel testing tries to detect other type of
faults.

Some authors say that there exists 15% of covdomgein each testing level, for most of
structural coverage criteria.

In general, at system level, it can be achieve aimmam C1 coverage of 85/90%, having
applied all possible test methods.

As we can see, there are many reasons that advassign higher structural coverage values
at lower testing levels (e.g., unit testing), aaduce the requirements as we go up at testing
levels.

Respect to functional strategy, it will be predoamhduring validation stage. It can be applied
in unit and integration testing (where the termction has to be situated in the context of
routine’s specification). But where actually it s almost exclusive it is in subsequent
phases in which it is necessary to handle largeatdjand abstract from the details, in order to
verify high level functions.



During validation, independent and objective testee recommended.

Sometimes hybrid strategies are used. These seatagply functional criteria for the design
of test cases and use structural indicators to mnedake degree of execution of the program.
This way, it is achieved a behavioural verificatioh the program complemented with
information on the degree of execution of the cadstructural terms.

This is the strategy usually applied by SW testimgs. Testing process consist of applying
first a series of functional tests to detect theawgurs that do not match the specifications,
and then changing the strategy, execute new tessda exercise those paths and code parts
that have not been still executed, until achieving proposed coverage rates. The tools
inform tester which parts of the code (accordinghvthe coverage criteria) have not been
exercised yet, and sometimes, even offer the nagessnditions for exercising them.

Functional tests, unlike structural tests, haveuaristic basis (they use criteria based on faults
made traditionally), though some authors give tlaemore analytical or formal treatment.

The functional strategy could be completed with s@tructural tests carried out on specific
parts of the program revealed as critical by arm@ilysis.

Functional tests, derived from structural techngye.g., Behavioural control-flow test),
applied during system testing result low effectivepreviously during unit testing the
fundamental structural techniques have been used.

Some functional tests have a beneficial side effdcexamining the requirements (for
operational satisfactory, completeness and seléistancy) and verifying that specifications
correctly reflect the requirements.

For safety related electronic control systems tajgaied in the machinery field, it seems that
deterministic functional tests provide enough testi

Note: A deterministic test uses a reasonable nundbetests cases selected according
specific criterions. Statistical testing uses mdanumber of test cases (which is a
function of the probability of fault detection aride level of confidence applied)
selected basing on a probability distribution.

Functional tests, similar to structural tests, banexecuted with a weak or strong coverage
criteria. Obviously, the power of a criterion ist mathout cost.

About SW testing tools (Computer Aided Software tifrgs - CAST), the market survey
carried out has verified that there exist a greamloer of tools. Nevertheless, emulators come
out as the best solutions for testing dynamic bielas of systems.

Finally, we must recognised that the effectiveneksa give strategy degrades with time
because of the types of fault change. Yesterddgigaat, revealing, effective test suite wears
out because programmers and designers, given felediva their faults, do modify their
programming habits and style in an attempt to redbe incidence of faults they know about.



6. Results of the sounding on testing methods

At the beginning of this WP 3.2, we thought to gaout a sounding between project partners
mainly, in order to find out:

- if BB and WB testing strategies were known,

- how they were applied (using automatic tools fa tesign, execution and analysis
of test cases, or manually), and

- what was the opinion about them of the partnersitad had some experience.

This information would be intended to guide WP ®@k and define a baseline from which
investigate.

The attempt has not been very successful sinceipatton has been little (just five answers
from eleven sent out), and therefore the resultstrha treated carefully. Despite everything,
collected information has been useful.

Table 8 shows the results of collected answersconaensed form.

Analysing the results it is noticed that:

- BB and WB approaches and different test criterianmsé¢o be more used by test
houses than manufacturers.

- Given the increasing complexity of designs, the¢ besise testing strategy is turning
unavoidably more functional or BB, and it is compénted with a few structural
tests designed from an analytical study. On thetrapy designers’ strategy is
basically structural, focused on testing exhauktittee different components of the
system.

- All the answers share the same opinion on the si#ges applying fault injection
tests.

- With regard to the testing tools, it seems thatrttwest useful are the emulators and
other equipment as logic analysers, etc. In sonses;aSW testing tools (static
analysers) and private injectors are also used.



Table 8: Sounding results

[ MF TH1 [TH2 [TH3 TH4
SOFTWARE TESTING
BB or WB Don't use these terms. Both. Yes, they are one of the elem¢mMdainly WB. Just a few BB at system level.
V development model. BB at SW and system level. among others in validation. Rarely WB tests.
strategy WB at specific SW and HW
Techniques to Statement  coverage, functipiCritical paths testing (revealed by tha tester does not have to tedinalysis (FMEA) at system level |s
. coverage. analysis) Coverage are noéxhaustively a program, that is ththe common practice, and WB tepts
dESIgn test cases Boundary-value analysis calculated. task of the programmer. Teslesn SW or HW are done only if |t
equivalence classes. Boundary-value analysis, syntashould have the knowledge [tdetects some problematic failures.
testing, error guessing evaluate programmer tests and h&mple functional tests at systgm
only to apply (redo) some tests. level are always done.

Automation Manual design of test cases grndanual design of cases and use| Btatic analyser support the manp&tatic analyser support the manpdanually.

execution by means of specifisome emulator utilities (coveragéest cases design. Logic analysetsst cases design.
emulators of theic family. analysis, trace, and macrand emulators for execution.
Assembly level. programming) for execution. Assembly and high level language.|

Assembly and high level language.

Experience - Combination of BB tests on systgriests are apply at unit and systeithe tools help in the analysis and ifH4 deals more with the overdll
level and WB tests in SW and HWevel. necessary designing test cases. | validation (applications of a systefn)
has been found efficient. No universal test generators are than system validation (as |a

known for real-time applications. prototype).
Test cases normally are defined

during specification and analysis [of

design.

SYSTEM BEHAVIOUR AT FAULT (fault injection)

BB or WB BB for the product and WB to somdo study the system behaviour |aklways. WB approach, and npt

components (e.g., ASIC) fault and effectiveness of faylt systematically.

strategy detection mechanisms(as a
complement to the theoretical
FMEA).

Pin level fault injection (as BB) ardPin level fault injection (as BB) andPin level fault injection angPin level fault injection (as WB),-

Techniques to
design test cases

internal program corruption (as WH

)program corruption by means of
external tool (as WB)

heimulation based fault injection
pin and function level (all as BB an

hsimulation based fault injection (
BB & WB) and program corruptio|

WB). by means of an external tool (as BB).
Automation Manually. Manual manipulation of HWBoth manual and automated faphll the techniques need a pripr
components, and patching the cadejection in the HW and at systepanalysis. Sometimes simulation |is
memory or modifying the sourgdevel in the peripheral components] made in an automatic mode.
code with a emulator. Usually manufacturers prepare test
cases specified by the TH.
Experience - Useful for embedded real-timéhe private automatic injection toplesting strategies, tools, etc shopld

systems. The analysis of the SW
to be supported by tests.

#suseful when the analysis is critic
These tests should be based it
previous analysis (engineeri
judgement).

hbe based in a prior analysis. T

he

neain purpose is fault forecasti
gtesting the efficiency of fau
detection mechanisms, etc it
estimated the future incidence 4
consequences of faults).

Adaptation of the tool to the EU

usually is a problem.

g
t

is
nd

T

NOTES:

MF — manufacturer

TH — test house
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7. Conclusions of the first part

In this first phase it was intended to make a stalbgut fundamental characteristics of functional
and structural strategies, test criteria and teghes more commonly used in the fields of SW
testing and fault injection, and lastly, classityese methods according with functional and
structural approaches.

It was also expected that, from the test methodsdiaations and knowledge acquired on both
strategies, would be followed the arguments tocselee method(s) on which to centre the second
phase of studying in depth and experimentation.

It is not our intention to reproduce here the cosidns of each classification, but we do consider
interesting to point out the most relevant ideas.

The first idea to underline is that a classificataf BB and WB tests can be as wide as one wishes,
since that the concept of BB and WB are applictabkny testing method.

In this report, it has gone farther than just tieédfof SW testing, traditional field of structurahd
functional tests, and it has considered also fajdttion techniques under that perspective.

Functional strategy although theoretically results enough to achiegeraplete testing, in practise

it is infeasible given the large number of testesameeded (valid, invalid, combinations and
sequences of data). And this is without taking axtoount the additional number of cases due to the
special requirements of safety systems on the l@lnaw case of fault.

On the other handtructural strategy is inherently finite, but if it is used to reaclhigh degree of
coverage, it shows quickly the same problem of ma&wf test cases as functional strategy.

Therefore, and given their complementary charadteris adopted an intermediate solution
combining BB and WB tests, to derive a reasonadde strategy. Reasonable, in the sense of the
relation between the number of test cases and sgugianties are acceptable. The proportions in
which structural and functional approaches mustdmbined depend essentially on the stage of test
process (component and subsystem or integrationHeg & SW integration test, system test).

In validation stage (system test) should predoreiriahctional approach without concerning too
much on the implementation. This is a consequericealidation nature (i.e., verification of
fulfilling initial specification or requirements kigh level or external requirements). This idea is
reaffirmed by the increasing complexity of systemiich makes infeasible a structural approach
that covers the whole system at this stage of és&ggd process (at least manually).

We have said a predominantly functional strategyabse in practise it is demonstrated that it is
necessary to turn to a structural approach. Thaduesto the huge number of test cases it would have
to apply, to satisfy functional tests criteria awhieve a reasonable testing, is strongly restribte
economic (cost of the tests) and time conditioraidries time). The most logical seems then, to
limit functional tests and add a complementary afestructural tests. The latest will restrict to
explore certain key features or performances redeby the structural analysis (of HW and SW)
carried out before testing. This way, it will getkeep the total number of test cases (functional +
structural tests) within a reasonable order antlobitlain adequate guaranties.
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The increasing complexity of new systems (integrdtaction, processing speed, components and
assembling technology miniaturisation, etc, inoe¢as complicating largely the execution of tests
late in design (e.g., in validation). Structuradtgewill not get to go in depth and will be applied
more and more to external layers, what supposesa$s of functionalization or change to more
functional testing. These obstacle, are forcingply design techniques that make easier further
testing of circuits and programs (so called, tabtaltechnique), and direct testing from a physica
to a simulation domain.

Fault injection techniques classification shows clearly a fact that everybody knows: threost
non-existence of commercial injection tools, siniola programs excepted. Some test houses have
developed their own automatic injection tools tlaplement usually pin level fault forcing
technique or fault injection through the prograrhe3e tools allow black box tests to be applied at
different levels (component, subsystem or boarcheotor, program memory, etc), and also white
box tests in specific points of the circuit or pram, using the tool either in a manual or
semiautomatic mode.

From these tools the more accepted and extendetth@se which use fault injection at pin level,
since it is considered that generated type ofd$asithulate faithfully the real faults. This it istrthe
case of almost all of the rest injection technigtiest are used by test houses, which even have
faced with acknowledgement troubles.

The rest of techniqgues mentioned in the report leeen developed mostly by universities and used
into research programs. Most of cases, testingpewemnt cost makes them not to be a reasonable
option for manufacturers and even for test houses.

Despite of the existence of some tools, manualipalygjection at pin level, according with the
sounding results, still remains the most used teclenbetween manufacturers and test houses in
this industry field, for the time being.

Obviously, it turns out difficult to plan a defimmh of a common strategy for testing the system
behaviour in of fault. However, it would be, intstieg to give some guidance on testing (type of
techniques and approaches to be used, coverageeraquts to achieve, places or points in the
structure where to inject, operation phases toidensetc).

A comparative study of three physical injectionht@iques (heavy ion radiation, pin level fault
injection and electromagnetic radiation), carriedl io the frame of a ESPRIT project on Computer
Systems Dependability, comes to the conclusionttiethree techniques are rather complementary.

It seems that pin level fault injection exercisesren effectively the HW of error detection
mechanisms located out of the CPU, while heavy iand electromagnetic radiation are more
appropriate to exercise the error mechanisms imgiéead in the system SW and at application
level.

Related toSW test methods classificationjt can see that there exists a large collection of
structural and functional testing criteria. In tb&se ofstructural tests it has presented a partial
ordering of coverage criteria in relation with theffectiveness, and has also added some guidelines
or recommendations on how they use (coverage toewsh stage in the design process,
recommended applications, etc).

For functional tests it is not possible to advance a classificationtlom relative effectiveness of
criterions. However, among the considered method&dgrovisionally form two groups: one basic
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containing the criterions that turn out effectivethe majority of programmes (e.g., behavioural
control flow, equivalence partitioning, boundarylues, error guessing), and other group more
adapted to programmes with specific characteristeeg., logic based testing). The same as
structural tests, it is possible to talk aboutdbeerage of program functional models, and theegfor

about weak and strong tests.

Obviously, in the second part of WP 3.2 we can kesp on covering such a broad scope, and
therefore, it will be necessary to restrict theeeesh field to one of the classifications and withi
to one or a few of interesting test methods.

On the work to carry out in the second part, wakhhat the most suitable is to centre our research
in the field of fault injection. This opinion is duto the fact that, SW testing can be enough
developed taking into account the research of WdAdLour contribution in this first part. And on
the other hand, because we consider interestinthéproject to take advantage of the possibilities
that our subcontractor (UPV) offer to us, giverbégkground in the field of fault injection.

From the classification of injection techniques, @@ deduce that the most interesting techniques
with regard to its practical utility and availabyli for the present time, are:

» Fault injection based on simulation technique;
+ Physical fault injection at pin level, and;

+ SW implemented fault injection.

This selection is also in line with sounding resuizhich point to that group of techniques as the
most used.

So in the second part, we think of experimentinthwai set of tools developed by the UPV, which
implement the selected group of techniques. Incis® of injection based on simulation technique
there is an additional problem concerned with teednof a system description using VHDL

language.

Unless some of the manufacturer involved in thgegtrovides us with a representative sample of
safety system, we have thought to practice on tofye of distributed node fault tolerant system
called DICOS “Distributed control system”, whichasgailable at the UPV. In this case, it would not
be possible to experiment with the injection basiedulation technique because there is no a VHDL
model of the system.

2nd Part

8. Introduction

This second part of the project is intended to dmmparative study of the techniques selected in
the first part, to evaluate their contributions amebknesses face their application in the validatio
process of safety related systems.
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The study has to analyse in detail the differepieass of the fault injection testing (objectives of
testing, parameters taking part, test result in&gpion, etc.) and recommend how to handle them
according with the safety requirements.

In the paragraph 5.1 “Fault Injection” was introddcthat Fault Injection contributes in the
validation process in two ways: helping to discosad correct design and implementation faults
(fault removal) and helping to estimate the futoedaviour of the system in presence of faults (faul
forecasting).

The aim of Fault Injection when used for fault remlois to verify by means of an analysis
essentially qualitative the adequacy of the faalirance mechanisms and verification procedures to
the considered fault hypothesis. However, whentHajdction is used to predict the future system’s
behaviour in presence of faults it deals with eatihg the efficacy of the fault tolerance
mechanisms (coverage factor, temporal charactsisif these mechanisms, etc.) and of the
verification procedures.

This report is going to concentrate on the useafltFinjection for validating the fault tolerance
mechanisms.

Usually the level of abstraction used to represerdescribe a system during fault injection tests

goes together with the design evolution itselfstls, the more abstract models are used in the
earlier stages and at the end faults are injectethe real system or prototype. In spite of this

progression in the modelling of the system, from ittore abstract to the more detailed, in the final
validation is possible to reverse the tend and ldpvaodels with certain level of abstraction.

The possibility of using the selected techniquesubh the design process is depicted in the figure
13.

| ;
Abstract model (m’alysis, simulation, ...)
|

I [ ’
| I
thsicd model (testing)

\ | i >

| | | 5

1 I [ rd
Concept and | Design and | Prototype model | System validation
definition | development | construction |

\ | Integration (HW + |

\  SW I

| | |

Figure 13 - Validation methods during the design process

According with the figure, analytical and simulatimethods do not precise a physical model of the
system and therefore they are applicable all alinvegdesign process. Opposite to this, testing
methods start to be used when there are devel@&igs the system.
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It has to be noticed that Fault injection basedswnulation (VHDL) technique finally has been
omitted form the study given the lack of samplesxperiment.

9. Fault injection attributes

The fault injection set of attributes to be prognaed in any test, can be denominated FARM, that
is, the Faults to be injected (F), the set of syskectivations (A), Readouts obtained (R), and the
Measures derived from these readouts (M).

The specific values o parameters given to thegseéuatits in a test depends on several factors
(injection technique, level of injection, specifibaracteristics of the system under test, ...), but
among them partularly on the validation objectiveporpose.

Fault injection attributes and validation object\are related as fallow:

Faults set (F)If validation is performed for fault removal, fé&lf (1 F to be injected are a reduced
number of the total, selected in such a way thiiwalto check the system fault tolerance
mechanisms. The injection is deterministic. Becamsestudy the system behaviour in presence of
faults, the experiments must be reproducible. Bessifhults should be injected in a synchronised
way with the system evolution, otherwise, the cosicns obtained about the functioning of the
safety mechanisms will not be valid. Summarisitng main problems are, in this case, both the
election of a reduced set of faults representativihe mechanism or mechanisms to evaluate, as
well as the perfect synchronisation with the sysbéiits injection.

In the case of fault forecasting, we are interegteidjecting the biggest number of possible faults
and verifying the system functioning with this eéfaults. So, in this case, the most importamghi

is the election of the set of faults to be injec(§¢dthat must be a representative random sample
from the set F. Another characteristic that shdugdtaken into account is the capacity to realise
numerous experiments in an automatic way, obtairesglts that allow later to calculate the system
dependability.

Activations set (A)f fault removal is made, set A must be approprtat¢he safety mechanism or
mechanisms that we want to verify. In this cateess workloads that exercise the system
mechanisms could be advisable in order to chedk filmectioning according to their specifications.
On the other hand, the injection activation inpusst be oriented to make easy the injection in
specific hardware or software parts of the systemegsinputs).

If fault forecasting is made, the A set is equahi® real workload, or the closest possible. i ihot
possible to inject faults inside the applicationgass in which the system is involved, i.e. reakti
systems in process control, as well as anotheicapioins that do not allow the injection outside th
laboratory, the system inputs must be simulateda simulator of the real environment for the
developed system must be made.

Readings set (R)Vith fault removal, readings include the systertpats that reveal the success or
not in the verification of the considered faultai@nce mechanisms. On the other hand, they must
include the system states reached and their ouitpuise of error and/or failure in order to make a
posterior diagnosis that allows the improvementthedf considered safety mechanism so it can
tolerate the injected fault or faults. For thisse@, a fault injector that has this purpose, mugty

both a logical state and timing analysis that altovstudy the error propagation trajectory, as well
as their consequences, from the fault activatidii tne failure detection.
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With fault forecasting, the set of readings willthe number of detected and/or tolerated faultd, an
on the other hand, the error detection and/or re@itjpn latency time.

Measures set (M)The Measures set obtained from the readings willito case of fault removal,
oriented to extract conclusions about the mechasvaluated. In case of fault forecasting, the set
M would be constituted by several statistical measthat allow evaluating the dependability of the
system.

10. Criteria for analysis of results and test completeness

10.1. Analysis of results

10.1.1.Coverage factor
The probabilistic value

As we said before, the actions carried out by &esyswhen a fault occurs involve error detection,
failed component identification, isolation of tliemponent and the system reconfiguration. From
each of those actions we can extract a differem¢rage. Then, the value of the coverage depend on
the predicate (or action) to be evaluated.

Let t be the maximum time in which the predicats tabe asserted as true:
C(t) = prob. { the instant of assertion of a predécp< t}

It is worth noting that C(t) is usually defectivace all the faults cannot be properly covered.

Lim - C(t) <1

Some limits of Fault Tolerance should be taking iatcount when rating the coverage factor:

1. If it is not possible to find out faults that affabe fault tolerance mechanism with respect to
the fault assumptions stated during desigmleck of error and fault handling coverage

2. If fault assumptions differ from the faults reatigcurring in the operational phaseaisack of
fault assumption coveragerhich can be in turn due to either:

+ Failed components not behaving as assumedistiaaack of failure mode coverage

« Correlated failures, that aslack of failure independence coverage

The effect of a fault depends on both the injedtedt and the system activity. In order to validate
the fault tolerance mechanisms, it must be consdldroth the F set and the A set. Thus, in
[Cukier99] the coverage factor of a fault toleramsechanism is formally defined in terms of the
complete input space defined as the Cartesian ptoGu= F x A.

Some authors consider this descriptive associ&isrA as a multidimensional variable of the event

space G. It must be taken into account thatA and a1 A are also multidimensional variables in
function of their descriptive parameters.
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If the predicate is that the system covers cowyeatl error, let H be a variable characterising the
handling of a particular fault is a discrete randesmiable that can take the values 0 or 1 for each
element of the fault/activity space G.

C=Pr{H=1|d1G}

Let h(g) denote the value of H for a given point a(d) be the relative probability of occurrence of
0, the coverage factor is defined as:

C=> h(g) plg) JgIG
Estimation of the coverage function
Analysing a determined predicate; ¢€t) denote the random variable defined by:
&i(t) = 1 if the predicate is observed in [0,t]; Coither case.

Let N(t) be:
N(®) = &i(t)

i=1
Being n the number of effective injected faults.

Then, the basic estimation of coverage resultdjas [

rey = N

The most accurate way to determine the coveragédwimuto submit the system to gllJ G and to
observe all outcomes. However, such exhaustiventess only possible under very restrictive
hypotheses. For this reason, coverage evaluationgeactice carried out by submitting the system
to a subset of {f x a} occurrenc& [ G obtained by random sampling in the sp&and then
using statistics to estimate the coverage.

Considering a pair {f x a} let ber({f x a};) its occurrence probability p(g) on the system;ble
T({f x a};) its selection probability inside our sample; et n de number of experiments to be
considered in our sample; let be h({f x)athe discrete value [0,1] of this pair dependimgtie
accomplishment of the predicate.

Then, we can consider the unbiased point estinmgiven by [Powell 93] [2]:

C =1 >N ah) Al x ah)/r( x ah)

With representative sampling, we hav#{f x a};) = 1 ({f x a};), then [3]:

e 13
= > h{f x a})

i=1
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10.1.2.Latency times

Many systems that analyse the system behavioureisepce of errors uses the coverage factor in
order to specify the system probability for detegtan error. Thus, the designer shall carry out
procedures to recover the system. Actions takernhbysystem involve from error detection to
system recovery. Each one of those actions habe toeated as fast as possible, before other error
could appear into the system. Thus, most designeligde latency detection mechanisms in order to
evaluate the time needed by the system to perfaracaon.

As we saw before, each action could be considesed aredicate. The latency for a specific
predicate, usually is calculated by the mean (besiitnation) of those latencies derived from each
individual pair {f x a}.

One of the most representative distributions, fier latencies included into a sample, is the Normal
Distribution.

Then, it should be considered the sample asymmbggause, in case of being a positive or
negative asymmetry sample, it could be more apptprthe use of the median as the basic
estimator instead of the mean, due to possiblesgdling away from the mean.

There exist more specific latency estimators inliteeature.

10.2. Test completeness

10.2.1.Confidence interval

As in most of statistic measures, the confidenterwal of the sample must be calculated in order to
define the completeness of the experiment anddtracy of the obtained value.
It is recommend to obtain a confidence percentd@®% or higher.

10.2.2.Stratification

To complex systems, it could be difficult to obtaibalanced sample. Then, the stratification can be
a method to reduce the number of inputs while efflie possibility to be focused into specific
means within validation.

Stratification means that a sampling sp&ade considered as partitioned iftbclasseor strata

M
G=J Gi4jiz,GinGj=0

i=1

In a stratified fault-injection campaign, a fixedmber of experiments are carried out in each class.
Then, the coverage factor with M classes will be:

C= i 2. 0906 h(@) P(@)

i=1

And the coverage estimator with representative f§ampsee [3]):
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ni

h({f x a};)

j=1

. M
cC=>

i=1

=P

11. Description of selected fault injection techniques and tools

In this section we describe in detail the technggaed tools selected in the first part of the mije
which now are going to be used to perform a prattiase study.

The two injection tools (AFIT and SOFI) used in @geriments has been developed by the Fault
Tolerant Systems’ Group (GSTF) in the DepartmenCofmputer Engineering of the Technical
University of Valencia.

AFIT is a new high-speed hardware implemented fenjgtctor at pin level, a prototype of which
with many of its internal building blocks has abigabeen built. Considering the difficulties
involved when injecting faults in modern processavhich are very fast, a high-speed physical
injector has been developed (currently up to 40 Mz injection will be applied on already built
systems, pin level injection with the forcing temue has been chosen. SOFI is a software
implemented fault injector able to inject faultsoinhe code and data segments.

During prototype phase, appropriate techniquesefqgrerimental evaluation of fault tolerance are
Hardware implemented fault injection (HWIFI), whicha physical fault injection at pin level, and
Software implemented Fault Injection (SWIFI), tha¢ans, the deliberate insertion of faults into an
operational system to determine its response. &syistem levela logic fault is manifested as an
error in the program being executed by the system.

Two types of error may be distinguished. A worderccurs when a computer word (data word or
instruction) is altered by a fault. A descriptiohtloe alteration is called the damage pattern ef th

fault. A logic error occurs when an individual logiariable, which is not part of a structured word,

is altered by a fault. Examples of such variablestlae various control signals in a computer or the
corruption of the CPU'’s internal registers. Thusgic error alters the algorithm being executed in
some undesirable manner.

A logic fault may be seeat hardware levelor at software level At hardware level means the
physical implementation of a fault, but at softwdesel the fault is related to the functional
inconsistencies that it produces.

The most common hardware an software fault models@mmarized in table 9.

Table 9: Types of fault model

Hardware fault model Software fault model
Open line Storage data corruption
Bridging (memory, register or disk)
Spurious current Communication data corruption
Power surge (bus, communication network)
Bit flip Manifestation of software defegts
Stuck at (machine level or higher levels)
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Either SWIFI and HWIFI are able to generate deteeditypes of word and logic errors. Those
errors derive from faults injected with a hardwhelt model. When this fault is co-ordinated with
an activation input forming a pair {f x a}, then wétain a software fault model.

11.1. Physical fault injection at pin level

11.1.1.Attributes

Either with active probes and socket insertion bgltw the Physical fault injection at pin level.
Those techniques are characterised by the FARIbatibs:

Faults set (F)Fault injection is reached by introducing fault$oi the system hardware during an
injection campaign. These faults must be repreteatdaults to those occurred during the
operational phase of the system.

The set has to be defined either by the injectioal ¢n terms of fault removal or fault forecasting,
and the system characteristics in terms of repribditg and observability.

The parameters that characterised each fault aratiom, Type and Temporal characteristics.

Location Refers to the system pines where an alteratianltff of the logical value or
physical real value will be produced. These inttipines can belong to any system
component, although according to the target ofdepaign, they will be restricted to a
determined subset in case of fault removal or thidlyrandomly extended in case of fault
forecasting.

Type It refers to the fault model. Most common untilnhave been: stuck-at zero, stuck-at
one, logical or physical bridging, bit flip and opéne at hardware level. Using physical
fault injection at pin level with active probesetmost used is the stuck-at zero and one.

At software level, PFIAPL at pin level is directiynplied with Communication data
corruption, but indirectly Storage data corruptieralso evaluated by means of corrupting
instructions sending through the busses or the aamuation network. These instructions
came into or go out of specific storage targetsifiony, registers or disk).

Temporal characteristicsRefers to the temporal model. We can distinguigiee types:
permanent, transient and intermittent faults.

The first one affects indefinitely from the faulttivation time. The transient one affects
from the fault activation time throughout a predet@ed duration. With this injection
technique, transient faults are totally independehtthe system states from the fault
activation time. They affect in the same locatiargontinuous time not having into account
the following system states.

The intermittent faults are defined as a trandiaunlt series that appear regularly in the same
location from the fault activation time until thedeof the experiment.

Activation set (A):Defining as activation input (@ A) the state that the system has reached when
injection is activated for each experiment.

An experiment consists of a Cartesian pair of F pegulting a reading (0 R).
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The trigger that actives the injection may be terapor spatial. A temporal trigger actives an
injection based on temporal parameters of the warklrunning. A spatial trigger actives the
injection depending on a state or condition ofgixstem.

The advantage of using a temporal trigger is thatnbore frequent is a workload state in execution
time, more probable is an injection in this stafbat is, the most frequent states are the more
injected.

The advantage of using a spatial trigger is thesipdgy of injecting previously considered states,
independently of their occurrence frequency dudregcution time, being possible to easily evaluate
critical states not very frequents.

Readings set (R)When a fault is injected in the system, it mustduaranteed if the fault is
effective or not. Depending on the fault modeljrgaction can be non-effective. This is the case of
the stuck-at zero and one, logical and physicalgimg faults, i.e. if we try to inject a stuck ara
fault in a pin which logic value is just zero.

The cases of non-effective injection should be gas®ed and removed from experiments.

If the injection tool lacks of appropriate mechamssfor the identification of the fault effectiveses
it is possible to appeal to@olden-run that is, a previous execution without faults tisatiseful to
compare with the executions with faults.

Then, the readings derived from the experiment hauwefer as well to the fault effectiveness (in
order to reject readings derived from a non-effectnjection), as the system behaviour in presence
of this fault.

From the first ones, unsuccessful injections ajected, while from the second ones, readings for
fault forecasting and system mechanisms verificati@ obtained.

Measures set (M)Most of fault tolerant systems designers use thewk parameter called
coverageto specify the probability of systems to detectearor. This will allow executing the
appropriate procedures to recover. The actiongke by a system go from error detection until
system reconfiguration, passing through the aftectenponent identification and its isolation.

Different coverages are extracted from differertoms. Also, each one of the mentioned actions
must be treated as fast as possible before anairer can overload the error treatment
mechanisms. For this reason, a lot of models iraratp latency times distributions, that is,
necessary times for detecting, identifying, isolgtend reconfiguring the system. Besides, small
variations in coverage and latency can greatlycaflependability. Thus, these parameters should be
estimated based on data from the real system rétherapproximated.

11.1.2.AFIT (Advanced Fault Injection Tool)

11.1.2.1.Architecture of the tool

In figure 14 can be seen the injector with its mMeduThese modules are:
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Figure 14 - AFIT injection tool modules.

PC interface. The injector is connected to a PGuidin an ISA bus interface.

Timing: This module generates the clock frequenaised by the injector. These
frequencies are programmable up to a maximum, wiyrel0 MHz. Furthermore, it
provides the Activation of the Injection signalsl)Ahat activate the High Speed Forcing
Injectors. The shapes of the Al signal depend ennthmber of faults to be injected, on
each fault whether it is transient, intermittenmtpermanent.

Synchronisation and Triggering: This module detessithe beginning of the injection

experiment. It is formed of two parts, the Triggeriword and the Programmable Delay
Generator. After a Triggering Word has been prognach and the injection has been
enabled, this module samples some of the FTS sigadbress, data or control signals) in
order to determine its internal state. When thédesmatches the programmed triggering
word, the Injection Triggering Signal is generaseul activates the Timing module, which

controls the fault injection.

FTS Activation: The main function of this moduletesprepare the FTS for each injection
experiment. Reset signals have been added to jgeanin order to restart the system at
the beginning of each injection.

High Speed Forcing Injectors: They physically injére faults into the FTS. When the
injector receives the Al signals, the injector aatiion logic deviates the signal to one of
the transistors implied into forcing depending loa injection type: stuck at one or zero.

Event Reading: This module determines the respohsee FTS after the fault has been

injected. It has been implemented using a logidyaea and captures the results derived
from each injection.

The fault injection attributes implemented in orAyIT are:

Faults set (F):Location is referred to the system pins. We cae Ranultiplicity inside one

integrated component adding two more anywhere. fJpe of fault is stuck at one or zero at
hardware level, and as temporal characteristiccaveinject permanent, intermittent or transient
faults (from 25ns to 3s) and the fault activationet depends on the selected trigger.
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Activation set (A):Usually, we are using a logic analyser to sampke dystem signals. Then,
activation can be carried out by temporal (programgna random delay from execution start) or
spatial trigger (programming a triggering word).

The workload depends on the system under test adegide the activation inputs with a spatial
trigger, according to the purpose of fault remofddterministic or statistical testing). With fault
forecasting, we use temporal trigger.

Readings set (R)Readings derived from one injection are both thiere detected by the system
(hardware and software tolerance mechanisms) aglchadetection and/or recovery times.

Measures set (M)Extracted measures from an injection campaigntifyetne failure modes, the
activation percentage of each tolerance mechanismrgoverage and the latency times.

11.1.2.2.Test sequence

A fault injection experiment is divided in the foWing steps:

Configuration: In this first stage the injector ahe system under study have to be configured. The
appropriate connections between the injector aadsyistem have to be made so that faults can be
injected at the desired places (specifying the tionaof the F attribute). From the inputs and the
synchronisation signals in the system (A attribute® trigger word (the desired time at which to
inject), the initialisation inputs and the sign#st have to be analysed (R attribute) have to be
determined.

Injection: Before each experiment, it will be nexaay to take the system to a known initial state.
Once the injector is configured with the FAR atitds, this stage begins with the injection
enabling, what activates the synchronisation amgbdring module. When the triggering word

becomes true the timing module is activated. Thislute generates the activation signals for the
active probes. From this moment, the Event Reablégins, monitoring the signals specified at the
R attribute, until the fault detection or recoveyactivated in the system. When not detected br no
tolerated faults are injected in the system orfthét is not effective, the expected activation in
those signals can never happen, so there is audinmeechanism to stop the injector monitoring the
system.

Results logging: When the injection stage finishs, information files with obtained states and
generated times for each experiment have to béewriThese files contain the events happened and

the times for each of them from the time the ing@tis activated to the recovery time of the system
(or the timeout in case it does not recover).

11.2. Software implemented fault injection

11.2.1.Software implemented fault injection: attributes
Software implemented fault injection injects faul{smeans of changing the contents of memory or

registers. It is limited to those locations reachgdoftware. This technique is used to both ersulat
the occurrence of hardware faults and emulate ¢hercence of software faults.
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According to the FARM attributes, we can descrhis injection technique as follow:

Faults set (F):The parameters that characterised each fault aoation, Type and Temporal
characteristics.

Location A great number of the functional units that cosgwohe system can be accessed
via software (memory, processor, buses, clocks). devertheless, there are points that are
not reachable (parity codes in the memory and husesk mechanisms, etc.)

With this technique, we can too refer to experimanttiplicity as the number of faults that
we inject in the system at a time. By software tfanjection, injecting more than one fault
and having them controlled is very easy. Never8gl& is usual to inject only a fault to
study their consequences.

Type The fault model at hardware level is the bit flgpmetimes stuck at is also used). At
software level, it is directly implied with Storagkata corruption and Manifestation of
Software defects.

Temporal characteristicsThe injected faults can be permanent, transiedtictermittent. In
most cases, real faults are transient, so the gaaihis to produce this type of faults.

The injection duration has relation too with théested abstraction level: from machine
cycles, to the low level, instructions, and mickm®ls, until bigger units.

Activations set (A)There exist two cases: Firsthff-line injection, where faults are injected before
the system loads the application. Usually, to seathis type of injection, the executable code is
modified, substituting one or more instructionsdtiner corrupted ones.

Secondly, runtime injection. The runtime injectitypes are a) time-out: using an internal timer
where to program a random time delay from the appbin’s running start. When the time expires,
the injection is activated by means of the interhgndler of the timer; b) exception/trap: whenever
certain event or conditions occur, the injectiorll e activated. When the trap executes, an
interrupt is generated that transfer control torderrupt handler; c) code insertion: instructi@me
added to the target program that allows fault impecto occur before particular application’s
instructions.

Readings set (R)Refers to the set of readings derived from eagiement. With this injection
technique it is also possible a previoG@®lden-run as a comparative model with posterior
experiments.

In experiments using this technique, it is possitlleobtain latency times concerning to fault
detection by the system. These latencies, usuahsored using resources of the own system, must
be debugged because of the overload introducetiebgadme software injector, specially in case of
performing a runtime injection where an interngeator is required.

Measures set (M)it must be applied the same parameters that iolaude 11.1.1. Physical fault
injection at pin level.
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11.2.2.SOFI (Software Fault Injector)

11.2.2.1.Architecture of the tool

The tool is composed by three blocks: the injecagent, the activation agent and the supervisor
(see figure 15).

The activation agent is in charge of determininghbdhe fault activation time and the fault
characteristics. The injection agent is aimed fecinthe faults and finally, the supervisor has to
perform the functions of monitoring the system teens in presence of faults and latency times to
each injection.

System under test

Application

Control of the Activation agent /

}Nhile 1) system state
J* Code */ /
l Interruption

Bit flip Readings V/

Latency timer =
ON Supervisor
Injected fault
information

4

Mecanismos de
deteccion de

Injection agent ——

Figure 15 - SOFI Architecture
The fault injection attributes implemented in or®9FI are:

Faults set (F)SOFI include logic emulation of physical faultechuse of both internal and external
influences, i.e., corrupting the executable progm@nthanging the contents of the registers by a
special fault injecting routine.

Referring location, it must be determined eitheritijection is in the code or in the data segmient.
the first case, injection simulates the corruptadna memory cell in the code space of the next
executable instruction, the fault effectivenesguaranteed. In case of the data segment, it is the
injection agent who decides what bit flip would &pplied inside the data limits used by the
application. Inside these limits the user stack almo be injected. With the used microcontroller,
apart from the system stack the application haswvits stack, to store local variables too largeitto f

in registers and the ones needed to implementsieely. Fault effectiveness in this segment is not
guaranteed, i.e. if the injected variable is ovétem before being read from the beginning of the
injection.

As we said, the type of faults is the bit flip digethe increasing in injection effectiveness. While
temporal characteristics, the faults may be tramsieith variable duration or permanents.

Activations set (A):SOFI implements a runtime injection. The activatioputs are selected at
random using a temporal trigger.
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Due to the activation agent that maintains samérabaver the principal microcontroller states, it
is possible to perform a filtering over the actigatinputs.

Readings set (R)Reading obtained from the prototype (DICOS) amsé¢hsent by the internal
hardware detection mechanisms, and from the watcledmmunication control. Adding to those
reading concerned with the evolution of the systafbsr an injection, the system is prepared to
obtain latency detection times.

Measures set (M)Extracted measures from an injection campaigntifyetne failure modes, the
activation percentage of each tolerant mechanisencoverage and the latency times.

11.2.2.2.Test sequence

As every SWIFI tool, SOFI has to be integrated thi® system under test. It is an internal tool.

In this case the system under test is a prototfjpelstributed Control System (DICOS) developed
by the GSTF of the Technical University of Valencia

A node of DICOS has been chosen to be tested eitkieiSOFI as with AFIT.

The DICOS node may have got different architectueasong them we have duplex and dual
architectures. In the analysed experiments a reodemposed of two microcontrollers. One of them
(Siemens C167CR) is dedicated to the execution h&f tontrol algorithms. The second
microcontroller (Intel 251) is meant to be in chaaf communications with the rest of the system,
and to work as the main controller's watchdog pssoe. Communication between both controllers
is established through a double port memory (DPB&th received and transmitted messages as
well as the signature from the application to th&toldog controller for the flow checking are
written through this memory.

As it can be appreciated in figure 16, a persoaaifuter is in charged of monitoring the generated
systems results from each injection (the superyisor

Other DICOS Nodes

Node under test

Injection

C167CR io51 supervisor
Si gnature |
Conmuni cations |
A o/ Flo * ‘
Appl i cation DPM error W Wat chdog
Tx/ Rx Messages processor
Fl ow
error
Injection S Activation Results
agent agent I Fault
] parameters

Figure 16 - Implementation of SOFI into DICOS
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The activation agent is integrated inside the wa@dghprocessor. The watchdog processor keeps
information about the system state, it knows whendontrol application is in a safe state, when it
is a working state and when it is a recovery statethis information is very useful for deciding
when to activate the injection. Even with a temptigger can be used to decide whether or not to
activate the injection.

The activation trigger interrupts the applicatiantoller. This interrupt starts the injection aggen
The agent’s function is to generate the memorylipitand to activate the mechanisms that obtain
the detection latency time. It has also to deatitt@nsient faults when the time expires.

An important matter of such injection agent is ®ib charge of preparing the system after each
experiment. This way, before an experiment bedhmes system has to start from a known state. For
that, the activation agent sends a restart comrtaiige injection agent. From that command, the
injection agent has to reload the application untdet. This process is the following: When the
executable version of the program is generatdd,developed in such a way that the original copy
of the application is kept at the lower memory addes, which is only readable. When the system
starts, the injection agent starts working, andodgerunning the application copies it addresses to
the memory where it will inject, in this case RAMWhen the experiment starts and the agent injects,
these addresses are modified. When the activatjentaends the restart, a software reset is forced
to reload the application from the original copy,tbat the following injection starts from a known
state.

If either internal or external mechanisms are at#ig, or if a non safe failure is detected, the
information related to the system response in m@sef a fault is sent through the watchdog
processor to the monitor, which stores each imaatesults. These results include detection latency

We should have said that the injection agent h& e tmounted with the application under test. This
agent needs memory for about 3KB.

As a last information about the injector, it is ionfant to remark that it is able to inject morertha
1000 failures per hour, what is a good throughpumtgared with other injectors.

12. Case study

12.1. Description of the prototype (DICOS)

The study performed with DICOS by both software hatdware implemented fault injectors has as
objective the evaluation of the system behavioyragsence of faults. Then, fault forecasting is the
goal of the injection campaign.

A Node of DICOS has the architecture shown in &g .
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Figure 17 - DICOS architecture

As we said in the previous section, the DICOS nodg have got different architectures, among
them we have duplex and dual architectures. Irattadysed experiments a node is composed of two
microcontrollers. One of them (Siemens C167CR) adichted to the execution of the control
algorithms. The second microcontroller (Intel 2&lineant to be in charge of communications with
the rest of the system, and to work as the mairralter's watchdog processor. Communication
between both controllers is established througlowebl port memory (DPM). Both received and
transmitted messages as well as the signaturetfrerapplication to the watchdog controller for the
flow checking are written through this memory.

The fault tolerance mechanisms of one Node are:

+ Internal hardware mechanisms of the C167CR. Thesehamisms detect undefined
operation codes, illegal word operand access allggptruction accesses, stack underflows,
stack overflows, etc.

« Control flow mechanisms. They are implemented withie watchdog processor.

a) Signal control. To each specific application rumninto the main processor, it
has been determined a serial of signatures to ftet@ehe watchdog processor.
If one of those signatures is received with a wreiggature number, the signal
control mechanisms will detect an error into theeno

b) Temporal control. In the same way, if a maximum-@s&ablished time expires
before a signature is received into the watchdaggssor, a temporal control
mechanism will detect a error into the node.

Due to DICOS has been developed as a Distributstésy a fail-silence mode (the system deals
with a failure by silencing their outputs avoiditggshow to other nodes a behaviour known as the
“babbling idiot” syndrome) is the most appropriatexhaviour for each node.

Referring to the workload used in our experimemts, use a test workload that performs a LU
algorithm. It has a strong computational grade.

The control signature passing messages have beeduned into the application.

In fault forecasting we differ between ordinal exatlon and statistical evaluation.
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12.2. Ordinal evaluation

It is aimed at identifying, classing and orderihg tletected errors by the system.

From each experiment, dealing with a pair {f x dgpending on the system behaviour, we will

obtain a reading classed into:

e Internal error: detected by the internal hardwarecimanisms inside of the principal
microcontroller.

« Control flow errors: detected by means of the waddghprocessor in two ways: by a signature
control and by a temporal control.

* Non-detected errors: those errors non detectedithgreinternal or communication control
mechanisms, and those that deviate the systemftrditing its correct function.

* Non-affected errors: those errors that due to nitensic hardware and software redundancy of
the system does not affect its functionality.

These readings are obtained in the same way &iitleSOFI that with AFIT.
Descriptive attributes of our experiments:

Location Injections have been carried out over the codensat with software implemented fault
injection and over the data bus with hardware imgleted fault injection.

When detecting the trigger, SOFI injects a faulerothe next instruction to be fetched after the
routine service of the injection agent. While AFiiJects in the data bus during a reading access to
code memory.

Both injections cause the same effect: decodejanted instruction by the microcontroller.

Type At hardware level, bit flip model is usually usetith Software implemented fault injection.
Stuck at model is typically used with Hardware iempented fault injection.

At software level, we have performed Storage datauption. The corrupted data referred with
memory.

Temporal characteristic3Ve have injected transient faults during only oluek cycle. Then, there
are simple and simplex faults. The fault activatiome depends on the random time programmed to
each injection in order to active the temporalgeig

Activations It has been used a temporal trigger with both ISl AFIT, that means, it has been
selected a random time from the application startishing this time, the fault is injected. Thus,
activation inputs are randomly selected.

Activations corresponding to both tools have thdloWwing injection frequency inside each
application routines (see figures 18 and 19):
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Figure 18 - AFIT injection frequencies
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Figure 19 - SOFI injection frequencies

Readings The monitor saves one reading from each injectidre reading correspond with the
detected error by the system among all possilslitlassed before.

Measures: After the injection campaign, readings have been translated into a special spreadsheet. We have
extracted de percentage of activation of the different kind of errors (see table 10):
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Table 10: Percentage of activation of the different type of errors

% Software Implemented Hardware Implemented

Non-affected errors| 65.8331666 64.3297697

Signature control 0.960192 2.5493421

Temporal control 3.9207842 4,1324013

Internal detection 8.1416283ilegal 39,31% | 8, 7787829 |illegal 50,82%
instruction instruction
access access
undefined 48,40% undefined 34,89%
operation code operation codsg
illegal word| 9,83% illegal word| 13,58%
operand acces operand acceds
Protected 2,46% Protected 0,47%
Instruction Instruction
Stack 0,00% Stack 0,23%
underflow underflow
Stack overflow | 0,00% Stack overflow 0,00%
Non-defined 0,00% Non-defined | 0,00%
access access

Non-detected errors| 20.9641928 20.2097039

A sample of about 5000 effective-injections hasnbgenerated. SOFI samples 5000 injections
(effectiveness of 100%). AFIT has performed 5000kd® experiments. Each experiment has been
reproduced twice with the same pair {f x a} excegtthe fault model: first it is used the stuck at

one model, secondly, it is used the stuck at zerydah

On this way, with double experiments AFIT has deaiveness of 99.8%.

From the obtained measures we can see on one daod)parative between both tools. AFIT and
SOFI are able to emulate a similar set of pair {&} over DICOS when our objective is data
corruption on memory.

A similar set of pairs should derive in a similat 8f measures. As we can see on the results, the
tolerance mechanisms are exercised similarly. Tiwhgn two or more tools can emulate a similar
set of pairs, the designer can perform the injactampaign with the tool, which will allow more
simplicity from any point of view.

But, an injection campaign must be defined dependin the system’s validation requirements.
Designer should decide the most appropriate seaio$ {f x a} and use that tool which will be able
to generate them.

On the other hand, the percentage of non coveredses not as low as could be desirable for a
high dependability system.

12.3. Probabilistic evaluation

It is aimed at evaluating in terms of probabilitiee coverage.
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Using the coverage factor equation depicted befeechave translated it in terms of the number of
covered errors by our system.

The occurrence probabilities are implicit in theuks due to the use of a temporal trigger (thetmos
frequent activation inputs, the more injected).

Then, with representative sampling, we havé{f x a};) (the occurrence probability) =t ({f x
a}i) (the selection probability). We have use the cage estimator:

e =3 3o ap)

n = Total of effective-injections,
h({f x a}) = 1 if the predicat&€overed erroris assertive for one pair {f x a}; 0 in other case

Coverage estimated value = Number of Covered efibogal of effective-injections.

% Software Implementeg Hardware Implemented
Coverage 78.8557712- 1.1279882| 79.7902964.1.1440602

As we can see, the confidence interval has beerada&t from the sample with a confidence
percentage of 95%.

The percentage of errors to be covered will dementhe safety category allocated o the system.
Finally, we have extracted the median latency fache sample (AFIT and SOFI injection

campaigns). The sample corresponds with an asynomedrmal distribution, and the estimated
values are shown in figure 20.
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Figure 20 - Detection latencies with SOFI and AFIT
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From the results obtained, we can deduce the rigcegstudding the overload introduced by a
runtime software implemented fault injection tool.

13. Conclusions of the second part

This part of the project has been reduced to tiperxentation with a single prototype, developed
at the university of Valencia, because of the coajpen initiated with one of the partner
manufacturer finally did not succed.

For this reason, the results achieved do not allmmo come to definite conclusions on the
efectiveness and yield of the selected fault impectechniques and, in general on the degree of
recommendation of fault injection testing as adation method for safety related systems.

In spite of the limitations expressed, the studiasle on the two fault injection techniques (Physica
fault injection at pin level and Software implemashtfault injection) and the testing campaign
carried out using two injectors tools which implerhéhose injection techniques (AFIT and SOFI)
let us to do some statements.

To begin with, every fault injection technique (fois able to emulate a specific subset of faults f
and therefore it has a restricted usefulness caomgethe coverage of all potential faults, i.e se¢
F.

Physical fault injection technique at pin leveledo its capacity to inject faults at the component
pins is more suitable for emulating faults on tbatool and comunication lines, either internal, i.e
at system’s buses, or external, i.e. at peripheBdsause of this technique is implemented by an
external tool, it does not overload the applicatioder test and although its depth is confinedhéo t
component pins it allows injecting faults withoualtmg or interrupting the application. This
supposes an important advantage. Furthermoretettiimique has a good controllability and allows
to reproduce experiments and extract from theroigganeasures about latency times.

Software implemented fault injection involves ditgdreatment with application structural data.
Then, it is more suitable to emulate faults in a&ger units (registers, memory or disks) and in the
internal functional units of the CPU, meaning ahleiginjection depth (more reachability) and,
consequently, it is more recommended in systemis gh integration density. However, being a
technique implemented inside the workload it ineshan overload over the application under test,
but it is easier to be developed in systems witghhtlock frequency. It allows a good
controllability, a reproducibility of experimentaé offers a good portability as well.

Thus, both of them may be considered complememeafyniques. It will be a designer decision to
value their advantages and disadvantages wherhtheyto be used with a specific system, because
those advantages and disadvantages are totallyhdempeon the functional characteristics of this
system.

The experimentation confirms the validity of fauljection as an interesting testing method for
electronic complex systems’ validation without lgepossible to confirm or refute the statement of
IEC 61508-2 which classifies fault injection asemammended ( R ) method requiring different
efectiveness levels depending on the safety remeinés.
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Referring to the injection campaign planning, tremspecification is to define wether the injection
concerns one or several mechanisms, or it is facaeghe whole system evaluation. Thus, in order
to aim this objective, the faults set (f) to beetipd is the first requirement of the test and sleis
must be complete enough to ensure the designeact@mplishment of this objective. When f is
defined using both fault injection techniques, tlaeg able to measure coverage (and latencies) of
the highest coverage fault detection mechanisnigingefor the assesment of system category.

As we said before the selection of the tool wilpeied on the faults set to be covered. The own
characteristics of each particular tool made it enor less suitable for a designed campaign.
Although, as we have seen in our study, there exigtast a sub-set of faults (data corruption on
memory program) covered by both of them. Thendigggner is free to take the decision of using
the tool which fits closer to the system necessitie
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14. Conclusions

No single testing approach is enough. Black boxahide box approaches are two different ways
of exploring a system, which complement each other.

BB test strategies are based on requirements. rTisstaly interested in finding circumstances in
which the system does not behave according tgésifications, for this reason they are also called
behavioural or functional test strategies. In castir WB test strategies are derived from the
structure of the tested object, and are also caliegttural test strategies. Hybrid strategies damb
behavioural and structural strategies.

From the definition one can easily deduce thatra gtructural strategy in no way guarantees that a
system matches its specification due to possiblscomceptions and omissions errors produced
during the design and development. Whereas a piravioural strategy can in principle achieve a

complete testing, but not in practice given thgéamumber of test cases needed.

Validation deals with determining the conformity die prototype or final system with its
specifications (testing big components and system)ijt is clear following the definition given
above that behavioural strategy will be dominarawigver, there might be reasons that justify the
application of structural tests to specific pafts, instance, a little intervention by the validati
team during the design verifications.

All test techniques or criteria have built-in asgfions about the nature of faults. However, when
designers respond to testing by reducing suchsfaultl using new design languages and tools, it
follows that the new products improve, and thereai¥eness of previous tests get reduced. So
testing techniques will need to be updated to ctitemew faults.

The study does not come to order the existing ¢agtria in relation with the different safety
performance levels, since the degree of recommiemdat a testing criteria depend mainly on the
nature of the product under test. However, aleaat based on exploring anomalies in the control
flow and timing seem essential given the strongtrobrilow and time dependency of machinery
control systems.

In fault injection testing is also possible to gpfinctional and structural approaches during the
definition of the set of faults to be injected ah@ set of activation data to be apply during the
injection, in order to test the measures to corfadlires. Moreover, the study has considered the
relation between the objectives of fault inject{@eult removal or fault forecasting) and the use of
functional or structural approaches.

Among the existing injection techniques the studg hevealed that fault injection at pin level and
fault injection implemented by SW are the most neséing techniques taking into account an
effectiveness/availability relation.

Each injection technique is able to emulate a gspecific faults, and therefore it has a restdcte
usefulness concerning the coverage of all potefatiats.
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The results of experiments reported in the liteatand our own experiences show that fault
injection at pin level is a good option to emulpermanent faults in control and communication

lines, both internal (system buses) and exterraliggpery). This technique does not overload the
system because is applied with an external to@diar), and performs an injection process without
halting or interrupting the system (dynamic injend. In addition this technique has a good

controllability and allows reproducing experimemts well as obtaining measures about latency
times.

On the other hand, SW implemented fault injectiomolves a direct processing with application

structural data. It is more suitable to emulatdt$éan the CPU storage and functional units, though
it is assumed that some injected fault models ble even to emulate faults beyond the CPU, that
is, in the peripheral circuitry. The ability to &gt faults inside the CPU means that SW
implemented fault injection has a higher injectidepth (more reachability) than previous

technique, so it will be specially recommendedystems with high integration density.

However, being a technique implemented inside tloeklwad it involves an overload over the

application program but is easier to implement ighhclock frequency systems. It allows a good
controllability and reproducibility of experimentnd offers a good portability as well.
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