
 – 1 –

 -

S T S A R C E S
Standards for Safety Related Complex Electronic

Systems

A n n e x 1 0

Safety Validation of Complex Components
Validation Tests

F i n a l R e p o r t o f W P 3 . 3

Klaus Bosch & Frank Mayer

TÜV PRODUCT SERVICE GMBH

v

E u r o p e a n P r o j e c t S T S A R C E S

Contract SMT 4CT97-2191

 – 2 –

 -

Abstract

This paper sums up the results of the research on Work Package 3.3 “Safety

Validation of Complex Components – Validation Tests”. The objective of this work

package was to collect state of the art validation test methods and to assess the

effectiveness of these test methods in the special context of complex components.

Suitable sets of test methods will be recommended for the different types of complex

components and these sets will be assigned to the safety categories of EN 954-1.

This paper is structured in two main parts, as follows: First, the results of the work on

WP 3.3, as the main part of this contribution. These results and conclusions are

presented as compressed and as short as possible, to allow a more easy integration

of the main points into the final report for the overall STSARCES project. Second, a

number of appendices, that give the required background and in-depth information

on the topics that are addressed in the first part. Although called “appendix”, this

second part contains vulnerable working results of WP 3.3 and is intended to help for

a thorough understanding of the first part of this final report.

 – 3 –

 -

1 Table Of Contents

1 Abstract ... 2

2 Table Of Contents ... 3

3 Preface .. 8

4 Overview .. 9

4.1 What are the objectives of WP 3.3 ? ... 9

4.2 How to proceed ? .. 9

5 State of the Art Validation Test Methods ... 11

5.1 Safety Validation Concepts ... 11

5.2 Validation Test Methods .. 11

5.3 Conclusion... 13

6 Component Design and Production ... 15

6.1 State of the Art Design Process .. 15

6.1.1 Technology.. 15

6.1.2 Complexity .. 15

6.1.3 Design Flow .. 16

6.1.4 Conclusion .. 16

6.2 Linkage between the Design and Validation Process 16

6.2.1 Phase Model ... 16

6.2.2 Validation Tests & Phase Model ... 18

6.2.3 Completeness ... 19

7 Validation Tests for Complex Components .. 28

7.1 Testability and Complexity... 28

7.2 Validation Tests carried out during Design .. 29

7.2.1 Components with Low Test Complexity .. 29

 – 4 –

 -

7.2.2 Components with Medium Test Complexity .. 30

7.2.3 Components with High Test Complexity ... 31

7.3 Implementation / Verification Loops .. 32

8 Conclusion ... 37

Appendix A: Safety Validation Methods .. 38

A.1 Functional testing .. 38

A.1.1 How to proceed ? .. 38

A.1.2 Comments based on practical use .. 38

A.1.3 Applicability for complex components ... 39

A.1.4 Conclusion .. 39

A.2 Functional testing under environmental conditions ... 40

A.2.1 How to proceed ? .. 40

A.2.2 Comments based on practical use .. 40

A.2.3 Applicability for complex components ... 40

A.2.4 Conclusion .. 40

A.3 Interference surge immunity testing .. 41

A.3.1 How to proceed ? .. 41

A.3.2 Comments based on practical use .. 41

A.3.3 Applicability for complex components ... 41

A.3.4 Conclusion .. 41

A.4 Fault injection testing .. 41

A.4.1 How to proceed ? .. 42

A.4.2 Comments based on practical use .. 42

A.4.3 Applicability for complex components ... 43

A.4.4 Conclusion .. 43

A.5 Worst case testing .. 43

 – 5 –

 -

A.5.1 How to proceed ? .. 43

A.5.2 Comments based on practical use .. 43

A.5.3 Applicability for complex components ... 44

A.5.4 Conclusion .. 44

A.6 Expanded functional testing .. 44

A.6.1 How to proceed ? .. 44

A.6.2 Comments based on practical use .. 45

A.6.3 Applicability for complex components ... 45

A.6.4 Conclusion .. 45

Appendix B: Technology Overview ... 46

B.1 Standard IC ... 46

B.2 Full Custom ASIC ... 47

B.3 Core Based ASIC .. 47

B.4 Cell Based ASIC ... 47

B.5 Gate Array ... 48

B.6 FPGA .. 48

B.7 PLD ... 48

B.8 CPLD .. 48

B.9 MCM ... 48

B.10 COB .. 49

Appendix C: Complexity Metrics ... 50

C.1 Structural Complexity .. 50

C.2 Functional Complexity .. 51

C.3 Technology ... 52

C.4 Field Experience ... 52

Appendix D: ASIC Design Flow .. 53

 – 6 –

 -

D.1 Design Entry ... 55

D.1.1 Hardware Description Languages .. 55

D.1.2 High Level Design Entry ... 56

D.1.3 Use of “Soft Cores” or “Macro Blocks” .. 57

D.1.4 Schematic Entry ... 57

D.2 Implementation ... 58

D.2.1 Synthesis .. 58

D.2.2 Conversion from Schematic to Gate Level Netlist (“Netlister”) 59

D.2.3 Test Insertion .. 60

D.2.4 Generated Cores, Hard Cores .. 61

D.2.5 Place and Route / Layout ... 62

D.3 Production... 63

D.3.1 Mask Generation .. 63

D.3.2 Production Test .. 64

Appendix E: PLD / FPGA Design Flow ... 65

E.1 Design Entry ... 65

E.1.1 Boolean Entry ... 65

E.1.2 Low Level Hardware Description Languages.. 66

E.1.3 Schematic Entry .. 66

E.1.4 Hardware Description Languages ... 66

E.1.5 High Level Design Entry ... 67

E.1.6 Use of Macro Blocks ... 67

E.2 Implementation ... 67

E.2.1 Conversion from Schematic to Netlist / Design Database 67

E.2.2 Conversion from High Level Entry to Netlist / Design Database 67

E.2.3 Synthesis .. 67

 – 7 –

 -

E.2.4 Device Fitter.. 67

E.2.5 Place & Route ... 68

E.3 Production ... 69

Appendix F: Glossary / Acronyms .. 71

 – 8 –

 -

2 Preface

The STSARCES – Standards for Safety Related Complex Electronic Systems –

project is funded by the European Commission SMT programme. Main objective of

the STSARCES project is to render the machinery necessary for European industry

as safe as possible from the design stage onwards. The STSARCES project is

divided into several research work packages. This paper sums up the results of the

research on Work Package 3.3 “Safety Validation of Complex Components –

Validation Tests”.

This report was prepared by Dipl.-Ing. Klaus Bosch, TÜV Product Service GmbH,

and Dipl.-Inf. Frank Mayer, Fraunhofer Institut für Integrierte Schaltungen.

 – 9 –

 -

3 Overview

This overview gives a short glance at the objectives of the WP 3.3 and how to

proceed.

3.1 What are the objectives of WP 3.3 ?

Nowadays, complex components, like microprocessors, memories (RAM, EPROM,

Flash), programmable logic (PLD, FPGA), ASICs and other high integrated circuits

may be used as building blocks for safety related electronics. Due to large scale

integration, it is possible today to integrate a whole system – that required a board or

a assembly of boards some years ago – onto a single chip.

In the context of the DIN V 0801, EN 954 and IEC 61508, different validation tests

are well known and already described in those released or draft standards. But, this

type of validation tests might fail short when confronted with complexities of several

thousands – or up to millions – of interacting logic primitives and memory cells.

Thus, the objectives of WP 3.3 is to fill this gap between existing validation tests and

the requirements for a trustworthy safety validation of a single complex component or

a system build of several complex components. In the reminder of this text, the terms

“complex component” and “complex system” are used interchangeable; as it is shown

in more detail in chapter C.3 both may be only different representations of the same

functionality. A complex “system” that required a number of boards some time ago

may be implemented in a single “component” today.

3.2 How to proceed ?

To get a standardised package of validation tests for complex components, it is

necessary to go ahead step by step.

The first step is to consider all state of the art validation tests which are used up to

now for complex or semi-complex components. These methods were evaluated and

assessed.

The second step is to consider the changes in production and design of very

complex components. Very complex components are designed with mighty software

tools and special software languages (e. g. VHDL). Therefore, verification and

 – 10 –

 -

validation steps based on the different design flows were described and possible

hazards were identified.

The third step is to find out suitable sets of validation tests for complex components.

It was required to define a new approach for verification and validation of complex

components.

 – 11 –

 -

4 State of the Art Validation Test Methods

4.1 Safety Validation Concepts

Safety validation nowadays is described in a couple of international standards. The

most important of these standards are IEC 61508, part. 1 to 7, DIN V VDE 0801 and

appendix A1, EN 50128 and EN 50129 (the last two especially for railway

applications of programmable electronic systems)

All these standards are defining methods of safety validation and methods of

planning the safety validation. Especially in the IEC 61508 one of the main topics is

the planning of the safety validation by using e. g. V&V-plan (verification & validation

plans).

4.2 Validation Test Methods

The following text summarises and comments the state of the art validations test

methods. In the following table „Safety validation tests for electronic systems“ the

tests are assigned to the safety categories (CAT 1 - 4) introduced in EN 954-1.

The following notation is used in Table 1 for each method. A qualitative rating (“high”

– “medium” – “low”) for the required test coverage is given; this may be translated

into more measurable figures (quantitative rating) by using the definitions in the IEC

61508.

qualitative rating for
this method

(first line)

HR method is highly recommended for this safety category

R method is recommended for this safety category

– method is not required, but may be used

required test coverage
of this method

(second line)

high1 a high degree test coverage is required

medium a medium degree of test coverage is required

low a acceptable degree of test coverage is required

1 “high” replaces the misleading “mandatory” used in tables in existing standards, e. g. in the 61508.

 – 12 –

 -

Technique/measure Cat 1,2 Cat 3 Cat 4

Functional testing
HR

high

HR

high

HR

high

Functional testing under environmental conditions
HR

high

HR

high

HR

high

Interference immunity testing
HR

high

HR

high

HR

high

Fault injection testing
HR

high

HR

high

HR

high

Expanded functional testing
–

low

HR

low

HR

high

Surge immunity testing
–

low

–

low

–

medium

Black box testing
R

low

R

low

R

medium

Statistical testing
–

low

–

low

R

medium

“Worst case” testing
–

low

–

low

R

medium

Table 1: Safety validation tests for electronic sys tems

As listed above, a couple of validation test methods are already described in

released and draft standards. Additional details for each method, based on the

descriptions of the IEC 61508, and comments on the usability in the context of

“complex components” may be found in Appendix A: “Safety Validation Methods”.

The detailed analysis of these existing methods reveals a number of potential

limitations when confronted with the validation of a complex component:

─ complexity: the component might be far to complex for an adequate validation; it

is not possible to reach the coverage figures from Table 1 for the given category.

─ controllability: interconnections and logic inside the component is not directly

controllable.

─ observability: the reaction to input stimuli might not be observable; attaching

probes is either not possible (internal signals) or affects the test results.

 – 13 –

 -

Moreover, an additional drawback of the listed validation tests is the fact that they are

applicable only very late in the development process, because a “real” hardware is

required to run most of the tests. The system that is used during the validation test

has to be as close as possible to the one that will be used in the field, otherwise the

result of the validation test is not expressive at all.

Using validation testing late in the development process incorporates the risk that

every hazard found during the test is likely to result in a time consuming re-design

and product improvement process. Because potential problems might be found very

late in the product development process, the overall development effort and time to

market may be very hard to estimate in advance.

4.3 Conclusion

For complex components, validation testing has to go “beyond the surface” of the

component and is advised much earlier in the development process. For example,

functional testing has to start at module level – using modules with very limited

complexity – and has to accompany the hierarchical (bottom up) integration of the

modules to more complex building blocks, step by step, until the complete

functionality of a “complex component” is reached and all application and safety

requirements are met.

To classify this proposed validation test scheme, it is useful to give a short reminder

on the general definitions (ISO 8402) for validation and verification first:

Validation := „Confirmation by examination and provision of objective evidence that

the particular requirements for a specific intended use are fulfilled.“

Validation is the activity of demonstrating that the safety-related system under consideration, before or

after installation, meets in all respects the safety requirements specification for that safety-related

system. Therefore, for example, software validation means confirming by examination and provision of

objective evidence that the software satisfies the software safety requirements specification.

Verification := „Confirmation by examination and provision of objective evidence that

the specific requirements have been fulfilled.“

Verification activities include:

– reviews on outputs (documents from all phases of the safety lifecycle) to ensure compliance with

the objectives and requirements of the phase, taking into account the specific inputs to that phase;

 – 14 –

 -

– design reviews;

– tests performed on the designed products to ensure that they perform according to their

specification;

– integration tests performed where different parts of a system are put together in a step by step

manner and by the performance of environmental tests to ensure that all the parts work together in

the specified manner.

In the context of these definitions, our proposed validation test scheme results in the

sum of independent verification steps during the implementations process. The

complete, uninterrupted sequence of verification steps provides the objective

evidence („validation“) that the final result (e. g. the programmed FPGA) fulfils the

initial requirements for the intended use and the required safety category.

 – 15 –

 -

5 Component Design and Production

5.1 State of the Art Design Process

Prior to define adequate validation tests – or, as concluded in the previous chapter: a

continues, uninterrupted chain of verification steps parallel to the design process –

we have to focus on state of the art PLD, FPGA and ASIC design process.

5.1.1 Technology

The term “complex component” may be applied to a wide variety of devices. The

range spans different process technologies, different design and implementation

methodologies as well as different levels of complexity. To clarify the term “complex

component” in the context of safety validation, some typical examples for different

technologies are given in Appendix B: “Technology Overview”.

5.1.2 Complexity

In Appendix C: “Complexity Metrics”, an attempt is made to objectively “measure” the

complexity of a component, based on different complexity metrics. This helps to

judge the effectiveness of the different validation methods for different level of

complexity of the device under test.

The metrics listed and described in Appendix C: “Complexity Metrics” are well known

and some of them are referenced in other contributions to the STSARCES project.

E.g. a component is considered to be complex if it has “more than 1000 gates and /

or more than 24 pins”. The problem with all those metrics is the fact that no direct link

from the measurable “complexity” to the required level of validation has been found

up to now. This implies that it is not possible to categorise the required type or

effectiveness of verification or validation tests based on any of the listed complexity

metrics. Additional work and a different approach – presented as part of the chapter

“Validation Tests for Complex Components” – was necessary to get this linkage

between “complexity” and validation effort.

 – 16 –

 -

5.1.3 Design Flow

Appendix E: “PLD / FPGA Design Flow” and Appendix D: “ASIC Design Flow” shows

the different methodologies, design steps and tools typically used for the develop-

ment of complex components.

5.1.4 Conclusion

For safety-related integrated circuits, the different device types require different

validation concepts. For example, the layout and placement of the cells of a gate

array or a FPGA is fixed; components based on these predefined structures are

manufactured in larger numbers, thus the structure itself might be considered as

„proven in use“ after some time. For the various types of ASICs and standard ICs, the

structure is defined during the layout process. Thus, especially for deep sub-micron

processes, interference between neighbouring cells or interconnections are possible,

with actual influence on the chips functionality. It is obvious that this situation has to

be considered during validation testing and fault injection.

5.2 Linkage between the Design and Validation Proce ss

5.2.1 Phase Model

It is useful to identify the major steps that lead to a production-ready component. This

“phase model” is intended to be more general as the two design flows given above.

Based on the phase model from the IEC 61508, the following phases are identified:

(1) Specification: Textual or formal description of the device’s functionality

(2) Design Description: Formal description (e. g. Boolean Equations, Schematic,

(V)HDL) that may be automatically translated into a fusemap / bitstream (PLD,

FPGA) or gate level netlist (Gate Array, ASIC).

(3) Implementation: Transformation of the design description into a netlist / fusemap

/ bitstream that may be used to produce or program the component. This phase is

subdivided into two phases: “Implementation I” maps the design description into

the primitives of the target device (logic blocks, gates), “Implementation II”

produces the final information required for the component production or

programming (fusemap or bitstream file, layout database).

 – 17 –

 -

(4) Production: Production (programming) of the component, based on the output of

the implementation phase.

(5) Post Production: The component is available for standard system integration

and validation tests.

Phase Output
(PLD / FPGA)

Output
(Gate Array,
ASIC)

level of detail usability for
formal or simu-
lation based
verification

Specification Specification Documents (pure textual or
semi-formal, e. g. using block and state
diagrams, pseudo-code)

“high level”
description with
low level of detail

partial (only for
those parts
described semi-
formal)

Design
Description

Formal description of the functionality of
the device, usable for automatic
translation.

(virtual)
components,
blocks,
processes

RTL (“register
transfer level”)

all2 functional
aspects
(RTL level)

no explicit
information about
timing behaviour

Implemen-
tation I

primitives netlist,
(propriety)
database

gate level netlist FPGA primitives,
ASIC gates;
interconnections

estimated timing
behaviour

Gate Level

all functional
aspects
(Gate Level)

estimated timing
behaviour

Implemen-
tation II

fusemap /
bitstream

layout database
(e. g. GDS-II)

physical
placement and
interconnection

all functional
aspects
(Gate Level)

actual timing
behaviour

Production programmed
device
programmed
configuration
PROM

packaged and
tested device

component device
characteristics
(overall
functionality,
timing)

Post
Production

Board / System “black box” black box testing
only3

Table 2: Phase Model

2 This is true if the functionality is independent of the timing behaviour, e. g. for a pure synchronous

design that will be clocked with a frequency less than 1 / (maximum path delay).

3 Although “on chip” measurements and tests are theoretical possible (e. g. E-Beam test); not feasible

in most cases, because this would require high specialised equipment.

 – 18 –

 -

5.2.2 Validation Tests & Phase Model

With the information from Table 2 it is now possible to map the known validation tests

(Table 1) to the phases of our model. This is detailed in Table 3.

Phase Validation Tests

F
un

ct
io

na
l

T
es

tin
g

F
un

ct
. T

es
tin

g
un

de
r

en
vi

ro
n.

co

nd
iti

on
s

In
te

rf
er

en
ce

Im

m
un

ity
 T

es
tin

g

F
au

lt
In

je
ct

io
n

T
es

tin
g

E
xp

an
de

d
F

un
ct

io
na

l
T

es
tin

g

S
ur

ge
 Im

m
un

ity

T
es

tin
g

B
la

ck
 B

ox

T
es

tin
g

S
ta

tis
tic

al
 T

es
tin

g

W
or

st
 C

as
e

T
es

tin
g

Specification Note
(1)

Design Description Note
(2)

Note
(6)

Note
(2)

Note
(2)

Implementation I Note
(2)

Note
(4)

Note
(6)

Note
(2)

Note
(2)

Note
(4)

Implementation II Note
(2)

Note
(4)

Note
(5)

Note
(6)

Note
(4)

Production

Note
(7)

Post Production Note
(3)

Note
(3)

Note
(5)

Note
(3)

Note
(3)

Note
(5)

Note
(8)

Note
(3)

Note
(3)

Table 3: Validation Testing linked to Phase Model

The following notation is used in Table 3 for each method:

rating for applicability
of this method in this
phase

 test is not useable or expressive in this phase

 test might be used in this phase (with limitation, see Notes)

 test is well suited for this phase

Notes:

(1) Functional Testing in Specification Phase: Only if semi-formal methods are used during

specification. Results are valid only if the implementation is derived directly from the

specification and this may be verified.

(2) Functional, Expanded Functional and Statistical Testing in Design Description and Implemen-

tation Phase: Depending on design description methodology. For pure synchronous designs,

functional testing in the design description phase might be adequate. Timing-related

functionality aspects need to be addressed in the Implementation Phase.

(3) Validation Tests in the Post Production Phase (of the component itself): In the Post Production

Phase, two different aspects need to be distinguished: validation tests that concentrate on the

 – 19 –

 -

component itself and validation / integration tests for the board or system this component is

used in. Table 3 refers to the component itself, thus the applicability of the validation tests is

limited in most cases (for details, see chapter “State of the Art Validation Test Methods”).

Nevertheless, through integration and validation testing at board / system level is advised, as

already described in existing standards.

(4) Testing under Environmental or Worst Case Conditions: This refers to the typical

environmental condition that are considered for integrated circuits: Temperature, Supply

Voltage and Process Deviation. Timing information – for path delays, setup- and hold times –

that may be used for formal or simulation based validation testing is available for “best”,

“typical” and “worst” case environmental conditions (see Table 4 for details).

timing
condition

temperature supply voltage process
deviation

Remark

“best” lowest
specified

highest
specified

best (fastest)
process

best case for path delay, but worst
case for required setup and hold times

“typical” typical
(e. g. 25°C)

nominal typical typical case
(not meaningful in most cases)

“worst” highest
specified
(on chip)

lowest
specified

worst (slowest)
process

worst case for path delay
(determines max. clock frequency for
synchronous design)

Table 4: Definition of “best”, “typical” and “worst ” operating conditions

(5) Interference Immunity, Surge Immunity Testing: The behaviour of a component during surge

immunity testing is dependent on various parameters; not all of them may be quantified during

the implementation phase, nor is it possible to rely on existing models for a precise estimation.

Thus, lump estimation and testing is possible without the final component.

(6) Fault Injection Testing: This may be done with different levels of detail, e. g. looking a

functional aspects during the design description phase and at stuck-at and coupling faults in

the implementation phase.

(7) Production Test (Gate Array, ASIC only): It is important to clearly distinguish fault injection

testing during the design process and the production test for Gate Arrays and ASIC. Both

methods use the same fault models (e. g. “single-stuck-at”), but for different types of analysis;

thus it is not possible to mix the results of the two methods (e. g. to apply the fault coverage

figure for the production test to fault injection testing in the design process).

(8) Black Box Testing: Treating the complex component itself as “black box”.

5.2.3 Completeness

Moving validation tests to an earlier phase in the design and implementation process

has the potential weakness that the result of a test carried out in an early design

phase might be invalidated during the subsequent implementation steps. Thus it is

 – 20 –

 -

required to check the output of every implementation step against its input (=

“verification”). This is shown in Figure 1 and results in additional verification tasks

required in the validation process.

Requirements

Specification

VHDL Source

Pre-Layout Netlist
est. Timing

Post-Layout Netlist
act. Timing

write
Specification

Implementation
in VHDL

Synthesis

Layout

Test Cases Spec

Test Benches

funct. Simulation

Gatelevel Simulation
(funct. + est. timing)

Gatelevel Simulation
(act. timing)

Pattern for
Regression Test

Review

Implementation Flow Verification Flow

Figure 1: Implementation and Verification

The following table (Table 5) links the various work packages of the PLD/FPGA

(Appendix E: ”PLD / FPGA Design Flow”) and ASIC (Appendix D: “ASIC Design

Flow”) design flow to the phase model. Potential hazards – faults that may invalidate

the result of a validation done earlier – are listed and possible countermeasures

(verification concepts) are derived. A more detailed description of the work packages

and more information on the potential hazards may be found in the two appendices.

Note: The first entry in the “Hazards” column for each Work Package is usually blank; the belonging

entry in the “Verification done” column lists the standard verification tasks for this package.

 – 21 –

 -

Phase Work Package in
Design Flow

Hazards Verification done

S
pe

ci
fic

at
io

n

Textual Description by internal and independent
review

no automated check possible by review

Specification, using
semi-formal methods

(state diagrams, flow
charts, spreadsheets,
block diagram

 by internal and independent
review

by using the method itself,
supported by automated tools

by formal analysis and
simulation of the specification

same tool used for description
and verification

by review

later in design flow

no automated check done by review

later in design flow

partial verification, insufficient
quality of the test cases

by review

later in design flow

no direct link to
implementation (e. g. code
generation)

by review

later in design flow

Modelling

(behavioural model,
written in behavioural
VHDL or C code)

 by internal and independent
review

by formal analysis or
simulation of the model

by using the model in the
system context

partial verification, insufficient
quality of the test cases

by review

later in design flow

no direct link to the
implementation (limited
accuracy of the model

by review

later in design flow

 – 22 –

 -

D
es

ig
n

D
es

cr
ip

tio
n

Boolean Entry by walk-trough (review)

by functional simulation (if
supported)

error prone, low level of
abstraction

by functional simulation

limited capabilities of the
simulation tools

by plausibility checking of the
simulation results

common-cause faults
(common data base for im-
plementation and simulation)

additional validation later in
design flow

Use of Low Level
Hardware Description
Languages

 by functional simulation
(build-in or third party)

limited capabilities of the
simulation tools

by plausibility checking of the
simulation results

common-cause faults
(common data base for im-
plementation and simulation)

additional validation later in
design flow

Use of Hardware Des-
cription Languages,
e. g. (V)HDL

 by functional simulation

poor design methodology
(limited testability, timing
critical (asynchronous)
constructs)

by code review

some problems are also
revealed automatically, later in
the design process.

wide variety of different
language constructs (with
impact on synthesis results)

code review

High Level Design
Entry

(same scope as
“semi-formal” methods
in specification phase)

automated code
generation

 by functional simulation in the
high level environment

weak semantics of the input
language

by review of the generated
code

by extended functional
simulation of the generated
code

by automatic compare of the
simulation results against the
behaviour of the high level
description

faults during code generation

quality and reproducibility of
the generated code

by extended functional
simulation of the generated
code

by automatic compare of the
simulation results against the
behaviour of the high level
description

validation only within high
level entry tool (e. g. build-in
simulator)

by functional simulation of the
generated code, using an
independent tool

 – 23 –

 -

D
es

ig
n

D
es

cr
ip

tio
n

Use of “Soft Cores” or
“Macro Blocks”

 by functional simulation of the
interaction with the surroun-
ding blocks

concentration on the
interaction with the
surrounding blocks

by functional simulation of the
core or macro itself

vendor dependent quality
(correctness) of the core

by review

by functional simulation

encrypted or pre-compiled
(“black box”)

by expanded functional
simulation

Schematic Entry by review

low level of abstraction
(description at gate level)

by functional simulation

use of macro blocks by functional simulation

all types of design
entry

functional deviation from
specification

by functional simulation
(manual compare against
specification)

by (automated) cross check
against specification

 partial verification, insufficient
quality of the test cases

review of the test cases

semi-formal methods to
ensure coverage of the test
cases

 – 24 –

 -

Im
pl

em
en

ta
tio

n
I

Conversion from
Schematic to Netlist /
Design Database

 none; “correct by construction”

(semantic) faults during
conversion

by simulation (manual check
against specification)

by simulation (automated
check against the simulation
of the schematic)

later in design flow

no timing constraints by additional tools

later in design flow

Conversion from High
Level Entry to Netlist /
Design Database

 none; “correct by construction”

(semantic) faults during
conversion

by simulation (manual check
against specification)

by simulation (automated
check against the simulation
in the high level environment)

later in design flow

no timing constraints by additional tools

later in design flow

Synthesis none; “correct by construction”

faults during synthesis
process (resulting in functional
discrepancies)

by automated cross check of
the gate level simulation
against the functional
simulation (RTL)

differences between the
behaviour prior and post
synthesis (related to poor
design style or methodology)

by code review

by automated cross check of
the gate level simulation
against the functional
simulation (RTL)

high complexity of the
software and algorithms used
for synthesis

by build-in checks

by extended simulation of the
results

inappropriate timing by gate level simulation with
timing information

by (static) timing analysis with
independent tool

Test Insertion none; “correct by construction”

fault, leading to modified
functionality

by automated cross check of
the simulation post vs. prior
test insertion

by formal equivalence check

modified timing by gate level simulation with
timing information

by (static) timing analysis

wrong coverage figures by fault simulation with
independent tool

 – 25 –

 -

Im

pl
em

en
ta

tio
n

I

Use of “Generated
Cores” or “Hard
Cores”

 none; “correct by construction”

violation of design rules later in design flow, by DRC

mismatch between simulation
model and behaviour of
generated core

by using qualified generators
or qualified core cells

later, during production test or
in circuit test

 conversion between
technologies

by DRC

by netlist and timing
extraction, plus extended gate
level simulation

all implementation
methodologies

faults in library (common
cause fault for synthesis and
simulation)

by using qualified or “proven
in use” libraries

 faults in electrical or design
rule set of the semiconductor
vendor

by using qualified or “proven
in use” information

 manual interference,
manipulation of intermediate
or final netlist or design
database

by automated cross check of
the simulation post vs. prior
manipulation

by formal equivalence check
(if possible)

 partial verification, insufficient
quality of the test cases used
for manual or automated cross
checks

by review of the test cases

by semi-formal methods to
ensure coverage of the test
cases

 – 26 –

 -

Im
pl

em
en

ta
tio

n
II

Device Fitter none; “correct by construction”

in-circuit verification only by extended (documented)
in-circuit tests

by additional simulation

build-in simulator tools by in-circuit tests

by cross check with
independent simulator

timing violation by review (PLD only,
guaranteed for strict
synchronous designs)

by timing analysis (automated
or manual)

faults in library (common
cause fault for fitter and
simulation)

by using “proven in use”
devices and environment

by in-circuit tests

Place & Route (FPGA) none; “correct by construction”

functional mismatch due to
faults in P&R tool

by gate level simulation (post
P&R netlist vs. prior P&R)

timing violation by gate level simulation (post
P&R netlist and timing)

by static timing analysis

bitstream generation (FPGA
only)

by in-circuit test

Place & Route
(Gate Array)

 none; “correct by construction”

functional mismatch due to
faults in P&R tool

by gate level simulation (post
P&R netlist vs. prior P&R)

by LVS (if supported)

later in design flow (production
test)

timing violation by gate level simulation (post
P&R netlist and timing)

by static timing analysis

design rule violations by DRC

Layout (ASIC) none; “correct by construction”

functional mismatch due to
faults in layout process

by gate level simulation (post
layout vs. pre layout)

by LVS

timing violation by gate level simulation (post
P&R netlist and timing)

by static timing analysis

design rule violations by DRC

 – 27 –

 -

P
ro

du
ct

io
n

programming of non-
volatile devices

 none; “correct by construction”

invalid programming by readback of the
programmed information

by parameter testing during
the program cycle (e. g.
resistance measurement)

functional deviation
(unrevealed device faults)

by running production test
pattern

by in-circuit test (all devices!)

volatile devices none; “correct by construction”

corrupted bitstream (during
download)

by checksum (if supported)

functional deviation (after
download)

by additional in-circuit
measures

mask generation
(ASIC, Gate Array)

 none; “correct by construction”

faults during mask generation by manual inspection

by compare (two mask sets
required)

later in design flow (production
test)

production test (ASIC,
Gate Array)

 by production test (running
test pattern)

 process variations by inspection of critical paths

by measurement of
characteristically parameters

P
os

t
P

ro
du

ct
io

n by running set of standard
validation tests, in addition to
the pre-validation tests done
during design and
implementation phases.

Table 5: Fault Revealing in Design Flow

 – 28 –

 -

6 Validation Tests for Complex Components

To categorise the validation test sets for complex components, two parameters have

to be considered:

– Safety Category, based on EN 954-1

– Complexity of the component

From these two parameters, the Safety Category is already clearly defined in EN

954-1. To categorise the complexity of a component, the following – indirect, based

on “testability” – classification is used:

– A component is of low test complexity if it is adequate to run the standard

validation tests on the final component (post production phase), and to reach the

validation test coverage defined in Table 1.

– A component if of medium test complexity if running the standard validation tests

on the final component achieves a maximum test coverage for at least one test

that is one level less than required (e. g. “medium” coverage of functional testing

instead of the required “high” coverage).

– A component is of high test complexity if running the standard validation tests on

the final component achieves a maximum coverage for at least one test that is two

or more level less than required (e. g. “low” coverage of functional testing instead

of the required “high” coverage).

6.1 Testability and Complexity

To a certain extend, it is possible to use the “testability” rating from above as a mean

to categorise the functional and structural complexity of a device or system. For

example, a “simple” component, e.g. a member of the 74XX or 40XX TTL or CMOS

series has a very limited functionality which makes it possible to do some functional

tests and to achieve 100% test coverage. A more sophisticated component, like an

embedded 8 bit micro controller may not be fully functional testable, due to practical

limitations (time and effort required to create adequate functional tests); the test

coverage might not be sufficient to fulfil the requirements from Table 1. In this

situation, additional measures are required to fill the gap between achieved and

 – 29 –

 -

required test coverage. These additional measures may be of non technical nature,

for example claiming “proven in use” for this device or may required additional

verification / validation steps carried out during the design process. The later

approach is detailed in the following chapter.

In most cases, the relation between “testability” and “complexity is bi-directional. This

means that components with “low test complexity” has a “low functional complexity”

and vice versa. Components with limited “testability” usually components with

medium complexity and components with high complexity result usually in insufficient

“testability”.

This bi-directional relation between “testability” and “complexity” does not necessarily

exist in every case, so we use this classification scheme only to quantify validation

tests, not to introduce a new complexity metrics. Introducing a new complexity seems

promising right now, but this would require additional work, and is beyond the scope

of WP3.3 or the STSARCES project.

6.2 Validation Tests carried out during Design

6.2.1 Components with Low Test Complexity

For components with low test complexity (good “testability”), it is adequate to run the

standard validation test set after component production. This is a direct implication of

how the term “low test complexity” is defined at the beginning of this chapter. The

result is shown in Table 6 (which, in this case, is equivalent to Table 1). No validation

tests during the design process are required.

 – 30 –

 -

Technique / measure Cat 1,2 Cat 3 Cat 4

During
Design
Flow

Post
Produc-

tion

During
Design
Flow

Post
Produc-

tion

During
Design
Flow

Post
Produc-

tion

Functional testing –
–

HR
high

–
–

HR
high

–
–

HR
high

Functional testing under
environmental conditions

–
–

HR
high

–
–

HR
high

–
–

HR
high

Interference immunity testing –
–

HR
high

–
–

HR
high

–
–

HR
high

Fault injection testing –
–

HR
high

–
–

HR
high

–
–

HR
high

Expanded functional testing –
–

–
low

–
–

HR
low

–
–

HR
high

Surge immunity testing –
–

–
low

–
–

–
low

–
–

–
medium

Black box testing –
–

R
low

–
–

R
low

–
–

R
medium

Statistical testing –
–

–
low

–
–

–
low

–
–

R
medium

“Worst case” testing –
–

–
low

–
–

–
low

–
–

R
medium

Table 6: Validation Tests for Components with Low T est Complexity

6.2.2 Components with Medium Test Complexity

For components with medium test complexity, some validation tests need to be run

during the design and implementation phases. The required test set and the required

coverage is given in Table 7; Chapter 5.2.2 “Validation Tests & Phase Model” shows

at which point in the design process it is advised to run the individual tests (for

details, see Table 3).

Additional verification loops are required. See chapter 6.3.

 – 31 –

 -

Technique / measure Cat 1,2 Cat 3 Cat 4

During
Design
Flow

Post
Produc-

tion

During
Design
Flow

Post
Produc-

tion

During
Design
Flow

Post
Produc-

tion

Functional testing HR
high

HR
high

HR
high

high medium high medium high medium

Functional testing under
environmental conditions

HR
high

HR
high

HR
high

high medium high medium high medium

Interference immunity testing HR
high

HR
high

HR
high

– high – high – high

Fault injection testing HR
high

HR
high

HR
high

high medium high medium high medium

Expanded functional testing –
low

HR
low

HR
high

low low low low high medium

Surge immunity testing –
low

–
low

–
medium

– low – low medium low

Black box testing R
low

R
low

R
medium

– low – low medium low

Statistical testing –
low

–
low

R
medium

low low low low medium low

“Worst case” testing –
low

–
low

R
medium

low low low low medium low

Table 7: Validation Tests for Components with Mediu m Test Complexity

6.2.3 Components with High Test Complexity

For components with high test complexity, a reasonable number validation tests need

to be run during the design and implementation phases. For safety reasons, it is not

useful to give general recommendations about the required test set and the required

coverage for components with high test complexity without detailed knowledge about

the component and its intended use.

 – 32 –

 -

6.3 Implementation / Verification Loops

Moving the validation testing to an earlier point in the design flow, the subsequent

steps need to be more thorough verified, to ensure that the results of the validation

are still valid for the final component. All listed verification steps need to be carried

out that are required for an uninterrupted chain of cross-checks, starting at the

validation test in the design process and ending at the final component. The

coverage for each step needs to be at least as high as the coverage for the validation

test itself (Table 7). If more than one verification method is listed, at least one (or any

meaningful combination) has to be used.

Table 8 sums up the verification tasks from Table 5.

 – 33 –

 -

Phase Implementation Step Verification Step

S
pe

ci
fi-

ca
tio

n

– – – – – –

D
es

ig
n

D
es

cr
ip

tio
n

Code generation from High Level Design
Description

functional simulation of the resulting code

equivalence check, using automatic
compare of the simulation results in the
High level environment vs. the simulation
results of the generated code

Use of “Soft Cores” or “Macro Blocks” functional simulation of the core or macro +
code review

extended functional simulation of the core
or macro (if no source code is available)

 – 34 –

 -

Im
pl

em
en

ta
tio

n
I

Conversion from Schematic to
netlist / design database

simulation of the resulting netlist (manual
check against specification)

simulation of the resulting netlist
(equivalence check against behaviour of
schematic)

Conversion from High Level Entry to
netlist / design database

simulation of the resulting netlist (manual
check against specification)

simulation of the resulting netlist
(equivalence check against behaviour of
high level description)

Synthesis simulation of the resulting gate level netlist
(manual check against specification) [only if
low coverage is required]

simulation of the resulting gate level netlist
(equivalence check against behaviour of
(V)HDL source code)

simulation of the gate level netlist with
timing information, to verify timing
constraints

static timing analysis

Test Insertion simulation of the resulting gate level netlist
(equivalence check against the netlist prior
to test insertion)

formal equivalence check

simulation of the gate level netlist with
timing information, to verify timing
constraints

static timing analysis

Use of “Generated Cores” or “Hard Cores” DRC (design rule check)

netlist extraction, extended simulation of
the resulting netlist

netlist and timing extraction, extended
simulation of the netlist with timing
information, to verify timing constraints

netlist and timing extraction, static timing
analysis

 – 35 –

 -

Im
pl

em
en

ta
tio

n
II

Device Fitter extended in-circuit test

export into a netlist, simulation

Place & Route (FPGA) export of P&R database into a netlist,
extended simulation of the netlist

export of P&R database into a netlist,
simulation (equivalence check against
the pre P&R netlist)

export of P&R database into a netlist,
formal equivalence check

export of P&R database into a netlist and
into a timing file, gate level simulation
with timing, to verify timing constraints)

export of P&R database into a netlist and
into a timing file, static timing analysis

Place & Route (FPGA) export of P&R database into a netlist,
extended simulation of the netlist

export of P&R database into a netlist,
simulation (equivalence check against
the pre P&R netlist)

export of P&R database into a netlist,
formal equivalence check

export of P&R database into a netlist and
into a timing file, gate level simulation
with timing, to verify timing constraints)

export of P&R database into a netlist and
into a timing file, static timing analysis

DRC (design rule check)

LVS (layout vs. schematic check)

Layout (ASIC) netlist extraction from layout, extended
simulation of the netlist

netlist extraction from layout, simulation
(equivalence check against the pre P&R
netlist)

netlist extraction from layout, formal
equivalence check

netlist and timing extraction from layout,
gate level simulation with timing, to verify
timing constraints)

netlist and timing extraction from layout,
static timing analysis

DRC (design rule check)

LVS (layout vs. schematic check)

 – 36 –

 -

P
ro

du
ct

io
n

non-volatile devices (PLD, CPLD, FPGA) readback of programmed device,
parameter testing

running “production test” pattern on final
device

volatile devices readback of configuration PROM

mask generation (ASIC) mask inspection

mask compare

defects running “production test” pattern on final
devices

process variations timing measurement (on ASIC tester) of
critical / characteristic paths

measurement of typical process
parameters

Table 8: Verification Tasks

 – 37 –

 -

7 Conclusion

As part of the work on Work Package 3.3 “Safety Validation of Complex Components

– Validation Tests”, several state of the art validation test methods that are in use for

complex or semi-complex components where evaluated and assessed. Typical work

flows for the design of PLDs, FPGAs and (cell based) ASICs were used as reference

to identify possible safety hazards in the design and development process of such

complex (hardware) components.

As a result of the work on Work Package 3.3, guidelines for suitable validation tests –

that consist of a number of validation tasks that need to be carried out during the

design and development process – were proposed. This enables the designer of this

type of components to provide the objective evidence that the functional and the

safety objectives for the complex component under consideration are met.

 – 38 –

 -

Appendix A: Safety Validation Methods

This chapter gives some additional information on the different “Safety Validation

Methods” mentioned in the main part of this report. The main base of these

descriptions is the IEC 61508.

A.1 Functional testing

Functional testing is used to reveal failures during the specification and design

phases and to avoid failures during implementation and the integration of software

and hardware.

A.1.1 How to proceed ?

During the functional tests, reviews are carried out to see whether the specified

characteristics of the system have been achieved. The system is given input data

which adequately characterises the normally expected operation. The outputs are

observed and their response is compared with that given by the specification.

Deviations from the specification and indications of an incomplete specification are

documented.

Functional testing of electronic components – designed for a multi-channel

architecture – is carried out by testing the manufactured components against pre-

validated partner components. In addition to this, it is recommended to test the

manufactured components in combination with other partner components of the

same batch, in order to reveal common mode faults which would otherwise have

remained masked.

A.1.2 Comments based on practical use

The method of functional testing is one of the most popular methods during the past

years to deal with safety relevant programmable electronic systems. But with

increasing complexity of the components used for electronic systems the

effectiveness of the coverage of detection of faults and defects of these complex

circuits is decreasing. It is not possible to test all logic combinations of a complex

circuit. Also a subset of tests delivers an insufficient result.

 – 39 –

 -

A.1.3 Applicability for complex components

Beside the problem of pure complexity that makes is practical impossible to do a

adequate functional testing, the use of high complex components raises additional

problems:

controllability: During functional testing, each complex component has to be treated

as a special type of “black box”. Although all details about this “black box” may be

specified and known to the tester, it is not possible to go “inside” the component to do

a functional testing of the individual building blocks. Thus it might not be possible to

check most of the functional details that are not directly controllable from the

components boundary. More disadvantageous, not even all safety functions may be

tested, especially those part that deal with potential faults (e. g. using self-testing

logic or redundancy) might not be tested because they may not be activated during

normal operation.

observability: Internal states of a integrated component may not be fully visible for

the outside world. Thus the behaviour of the single component or a complex system

may be non-deterministic from the testers point of view. This type of “random”

behaviour may be triggered by a special sequence of events that might not be

reproducible nor be classified with respect to the safety function.

repercussion: The test setup required for functional testing itself may have a serious

impact on the system under test. For example, it might not be possible to run the

system at full speed (because an emulator is use instead of the on-board CPU) or it

is necessary to attach probes – that represent an additional capacitive and inductive

load – to trace on-board signals.

A.1.4 Conclusion

From the practical experience, functional testing is an very effective method for

validation testing, but only if the system under test has a limited complexity.

Functional testing is applicable for complex systems and components, but high

complex monolithic systems need to be partitioned into smaller, more manageable

units to benefit from a functional test. Moreover, “virtual” functional testing, e. g. using

simulation during the design process, may provide a very precise information about

the behaviour of the system under special modes of operation – even under those

 – 40 –

 -

conditions that might not be checked during a “real” functional test, due to the

mentioned lack of controllability.

A.2 Functional testing under environmental conditio ns

This method provides that the safety-related system is designed to operate under the

specified environmental conditions and that it is protected against typical environ-

mental influences.

A.2.1 How to proceed ?

The system is put under various environmental conditions (for example according to

the standards in the IEC 60068 series or the IEC 61000 series), during which the

normal operation and the safety functions are assessed.

A.2.2 Comments based on practical use

The method of functional testing under environmental conditions is a very good

method to check a subset of functions during or after exposure to environmental

stress (climatic, mechanic as well as electromagnetic stress etc.). But it is not

possible to test all logic combinations of a complex circuit. This method can be

understood as an addition to functional testing as already commented.

A.2.3 Applicability for complex components

It is a well known fact that environmental stress (e. g. high temperature) has a

statistical impact on the expected lifetime of different types of components. Based on

long term experience and process characterisation, many of the operating conditions

(e. g. supply voltage, ambient temperature) required for reliable and long-term stable

operation are known in advance.

A.2.4 Conclusion

In addition to the functional testing under environmental conditions, the functionality

and behaviour of a complex component under environmental conditions may be

estimated in advance, based on known characteristics of the devices physics and the

manufacturing process.

 – 41 –

 -

A.3 Interference surge immunity testing

To check the capability of the safety-related system to handle peak loads, the method

of interference surge immunity testing is to be done.

A.3.1 How to proceed ?

The system is loaded with a typical application program and all the peripheral lines

(all digital, analogue and serial interfaces as well as the bus connections and power

supply) are subjected to standard noise signals. In order to obtain a quantitative

statement, it is sensible to approach the surge limit carefully. The chosen class of

noise is not complied with if the function fails.

A.3.2 Comments based on practical use

This method is one of the basic methods to ascertain, that the programmable

electronic system is able to work under special environmental conditions (especially

electromagnetic conditions) without loss of the safety function.

A.3.3 Applicability for complex components

The main focus of interference surge immunity testing is on external interfaces and

on interconnections. Thus, surge immunity is primary a problem to be addressed on

board level – where additional protection circuitry might be required – primarily

independent of the complexity of the components used to implement the core

functionality.

A.3.4 Conclusion

Surge immunity testing is applicable independent of the type of components used on

a board. But, high complex components might demand a higher level of external

protection circuitry, due to lower immunity to noise and voltage surge.

A.4 Fault injection testing

Fault injection testing is used to introduce or simulate faults in the system hardware

and document the responses.

 – 42 –

 -

A.4.1 How to proceed ?

This is a qualitative method of assessing dependability. Preferably, detailed

functional block, circuit and wiring diagrams are used in order to describe the location

and type of fault and how it is introduced. For example: power can be cut from

various modules; power, bus or address lines can be open/short circuited;

components or their ports can be opened or shorted; relays can fail to close or open,

or do it at the wrong time, etc. Resulting system failures are classified, as in tables I

and II of IEC 60812, for example. In principle, single steady state faults are

introduced. However, in case that a fault is not revealed by the built-in diagnostic

tests or otherwise does not become evident, it can be left in the system and the effect

of a second fault must be considered. The number of faults can easily increase to

hundreds. The work is done by a multidisciplinary team and the vendor of the system

should be present and consulted. The mean time between failure for faults that have

grave consequences should be calculated or estimated. If the calculated time is low,

modifications should be made.

A.4.2 Comments based on practical use

Fault injection testing is mandatory, because a clear reaction of the system or the

component on a fault or a faulty state only can be available by fault injection. The

theoretical base of fault injection testing normally is a failure mode and effects

analysis (FMEA) either on system level or on levels of analysis lower than the system

level. The lowest level is the component level. The FMEA is one of the best

theoretical instruments to analyse system or component states and the reaction of

the system or subsystem or component to faults. It is an essential need, that tests

that are based on the method of fault injection testing are defined as a result of a

theoretical / analytical method like the FMEA, FTA or ETA, Cause Consequence

Diagrams, Worst Case Analysis, et cetera. Only with this procedure, the

effectiveness of testing is guaranteed. With this analytical methods the possible faults

of the systems or components were analysed and the effects of faults on different

system levels are to be considered systematically.

 – 43 –

 -

A.4.3 Applicability for complex components

As described above, the lowest level of an FMEA is the component level. But, in the

context of complex components, each such component (e. g. a microprocessor with

on-board RAM and program ROM and a full custom ASIC) may represent a full

self-contained, independent sub-system. Treating such a component as a single,

indivisible entity in an FMEA might render the complete FMEA useless. Moreover,

during fault injection testing, it might be impossible to reach all relevant internal states

and nodes from the inputs of the complex component under test.

A.4.4 Conclusion

As for functional testing, it is also required for FMEA and fault injection testing to

move “beyond to surface” of a complex component. Due to limited controllability – it

might not be possible to inject faults into a component, even with high sophisticated

test equipment – fault injection testing has to move to an earlier stage in the design

process. The most promising approach is to use fault injection testing together with

functional simulation.

A.5 Worst case testing

To test the cases specified during worst case analysis.

A.5.1 How to proceed ?

The operational capacity of the system and the component dimensioning is tested

under worst case conditions. The environmental conditions are changed to their

highest permissible marginal values. The most essential responses of the system are

inspected and compared with the specification.

A.5.2 Comments based on practical use

Worst case testing is not always possible, because it is very difficult to define the

limits, where the equipment under test is not destroyed or damaged with long time

defects. Normally worst case testing is done with a couple of prototypes after running

tests under normal specified conditions for the system or the component. After this

normal condition testing the prototypes will be tested slowly to their limits to define

 – 44 –

 -

the real limits of use. After worst case testing the equipment under test is analysed

closely. The equipment under test normally is damaged when the worst case test

was done successfully.

A.5.3 Applicability for complex components

If the defects due to worst case testing are assumed to be equally distributed, worst

case testing of a complex component will result in random failure modes. To get an

expressive result – a classification or numerical distribution – for the portion of safety

related faults, a quite large number of systems will be required for worst case testing.

This is not acceptable, not only from the commercial point of view.

As already stated in the chapter “Functional testing under environmental conditions”,

a priory knowledge from experience and process characterisation, may help to find

out the absolute maximum conditions for worst case testing. Static analysis might

help to characterise the actual behaviour under worst case stress and clearly show

the weakest points of the component, without the necessity to run a destructive test.

A.5.4 Conclusion

A priory knowledge about the behaviour of a component under stress is useful, both

for the improvement of the component itself as well as for a prediction of the outcome

of a worst case test. Used at an early point in the design process, it might help to

reveal potential problems that would otherwise first show up during worst case

testing. Moreover, a prediction about the expected behaviour might help to focus on

the “right” part of the system during worst case test.

A.6 Expanded functional testing

Used to reveal failures during the specification, design and development phases.

Also used to check the behaviour of the safety-related system in the event of rare or

unspecified inputs.

A.6.1 How to proceed ?

Expanded functional testing reviews the functional behaviour of the safety-related

system in response to input conditions which are expected to occur only rarely (for

 – 45 –

 -

example major failure), or which are outside the specification of the safety-related

system (for example incorrect operation). For rare conditions, the observed behaviour

of the safety-related system is compared with the specification. Where the response

of the safety-related system is not specified, one should check that the plant safety is

preserved by the observed response.

A.6.2 Comments based on practical use

This method is done for testing the limits of normal use and to define the system

reactions in case of unknown stress and unknown fault combinations. For safety

related complex components expanded functional testing is mandatory on

prototypes.

A.6.3 Applicability for complex components

As for regular functional testing, expanded functional testing will not have an

adequate coverage of a complex component’s total functionality, nor of the safety

related subset of this functionality. To catch up with the complexity issue, it is

necessary to divide the whole functionality into smaller, more manageable units.

Because this is not possible looking at component level, this partitioning needs to be

done at an earlier stage of the design process, e. g. using extended functional

simulation at module level.

A.6.4 Conclusion

Expanded functional testing is only possible at the boundary of the final component;

the coverage of the expanded functional test for internal building blocks of the

component will be unsatisfactory low in most cases. Again, it is necessary to go

“beyond the surface” of the component and to do the expanded functional testing

earlier in the design process, using an adequate “functional model”.

 – 46 –

 -

Appendix B: Technology Overview

The following paragraphs give an overview of typical products and design

methodologies for integrated circuits. The number of parties involved in the design

and validation process varies as well as the responsibility for the work packages

within the design flow.

 PLD
CPLD

FPGA gate array cell based
ASIC

core
based
ASIC

full custom
ASIC

standard
IC

functional
specification

C C C C C C V

implemen-
tation

C C D D D, M (1) D (1) V

place & route,
layout

V C V D D, M (1) D (1) V

wafer
production

V V V V V V V

packaging V V V V V V V

test (2) V, C (3) V, C (3) V, D (4) V, D (4) V, D (4) V V

Table 9: Overview Integrated Circuits

The following notation is used in Table 9:

responsibilities V IC / ASIC vendor (manufacturer)

C end customer, system and application development

D ASIC design centre

M macro core (pre-designed functional blocks) vendor

Notes (1) ASIC design centre of the silicon vendor or independent
design centre (third party)

 (2) For standard IC and ASIC design, “test” denotes the
production test that ensure integrity of the device prior to
shipping.

 (3) in this case: system integration test, in addition to production
test for the un-programmed devices

 (4) production test, done during manufacturing process by ASIC
Vendor; based on test patter generated and approved by D

B.1 Standard IC

Manufactured in large quantities and applied for different applications. Functionality,

validation, production and production test are solely in the hand of the semiconductor

 – 47 –

 -

vendor. Manual manipulations and optimisations at layout level are frequently used to

reduce required area. Not designed for safety-related systems, fault avoidance during

the design process is only adequate for standard products. Frequent changes in

production process, process technology and layout are likely for cost and yield

optimisation. Number of components manufactured using a certain process or mask

revision are not publicly known.

B.2 Full Custom ASIC

Application Specific Integrated Circuit. Design and production similar to standard IC,

with functionality defined by end customer.

B.3 Core Based ASIC

Based on pre-layouted or generated macro cores, connected by additional logic.

Examples for pre-layouted macros are standard microprocessor cores, peripheral

components, communication interfaces, analogue blocks, special function I/O cells.

Examples for generated macros include embedded RAM, ROM, EEPROM or

FLASH. Generated blocks are assumed to be „correct by construction“, based on

design rules. Pre-layouted or generated macros are process specific but may be

ported to different technologies. In most cases, the macro cores are not identical to

the original discrete off-the-shelf components (different process, provided by a third

party).

B.4 Cell Based ASIC

Based on logic primitives (like AND, OR, Flip-Flop, Latch) taken from a cell library.

The gate-level netlist containing the logic primitives and the interconnections is

usually created from a high level hardware description language (VHDL, Verilog)

using synthesis tools. The functional and timing characteristics of the logic primitives

is characterised in the cell library; these parameters are used to drive the synthesis

tool and are also used for simulation. In addition, layout tools are used to place the

cells and to route the interconnects.

 – 48 –

 -

B.5 Gate Array

Pre-manufactured silicon „masters“ with a fixed number of cells are the common

starting point for different components. The functionality is defined by the

interconnection matrix (metal layer) between the pre-manufactured cells. The design

process it very similar to that of a cell based ASIC, while the layout step is replaced

by a routing step to connect the already existing cells.

B.6 FPGA

Field Programmable Gate Array. Standard IC, using one-time programmable or re-

programmable elements to define the connection between functional blocks and to

configure the functionality of the individual blocks. It is not possible to test one-time

programmable FPGAs completely during production due to the nature of the

programmable element.

B.7 PLD

Programmable Logic Device. Standard IC, with low to medium complexity, using one-

time programmable or electrical erasable elements (“fuse”) to define combinatorial

logic – typical based on AND / OR product terms – and configurable storage

elements. Predictable timing and guaranteed maximum operating frequency in

synchronous design due to regular structure.

B.8 CPLD

Complex PLD. Multiple PLD-like blocks on a single chip, connected by a pro-

grammable interconnection matrix (crossbar). The programmable logic element is

re-programmable (EPROM or EEPROM) in most cases.

B.9 MCM

Multi Chip Module. Multiply chips (dies) and passive components mounted on a

common substrate and assembled into a single package. In most cases, package

and outline is similar a standard IC. The chips (dies) use for MCM production are

usually pre-validated, but not finally characterised. Thus, testing under environmental

conditions needs to be done at MCM level.

 – 49 –

 -

MCM is primarily a different packaging technology. Design methodology for the

individual parts of the MCM is mostly identical to the design methodology for system

build on conventional printed circuit boards. Therefore, MCM are not further

discussed in this report.

B.10 COB

Chip On Board. Instead of using chips (dies) in conventional packages, the die is

bonded directly on the printed circuit board and hermetically sealed afterwards.

As mentioned for MCM, COB is primarily a different packaging technology, thus no

further discussed in this report.

 – 50 –

 -

Appendix C: Complexity Metrics

To clarify the term „complex component“ in the context of safety validation, it is useful

to introduce a classification scheme for complex components. A classification makes

it possible to tag every component class with an individual set of required or

recommended safety validation test. In most cases, the set of validation tests

assignable to each class will be only a subset of all safety validation tests considered

in WP 3.3, leaving out those tests that are either not applicable or not meaningful for

the component class under consideration.

The classification of complex components may be done according to different

metrics. Possible metrics include, but are not limited to:

− structural complexity , e. g. measured in the number of bundled components or

the number of integrated gate equivalents

− functional complexity , e. g. measured in the number of functional requirements

assigned to the component or the extent of the component’s specification

− technology , including semiconductor process, packaging, mounting and

assembly technologies

− field experience

Structural and functional complexity should be clearly distinguished. For example,

state-of-the-art RAM chips are among the components with the highest structural

complexity, integrating millions of single-bit memory cells in a single chip. But, on the

other hand, the functional complexity of a RAM is very low – its functionality may be

specified in a few statements. The consequences for safety validation test are, that,

due to the low functional complexity and the regular structure, black box testing at

component level, e.g. with algorithms described in IEC 61508, is adequate and

ensures high coverage.

C.1 Structural Complexity

Advances in semiconductor process technology are the driving factors for increased

structural complexity of components. The typical structural complexity doubles with

every new process generation.

 – 51 –

 -

Due to the number of integrated circuitry and interconnections, all possible failure

modes of most complex component are not known nor is it possible to analyse the

effects of the known failure modes with respect to the module or board where this

component is used. Automatic tools for fault coverage analysis or fault injection

testing are already used during the design process of complex components.

Typically, these tools are well suited for fault coverage calculation using a given or

automatically constructed set of test patterns. The usability of such tools for failure

mode examinations has to be evaluated. Moreover, even for the fault detection

coverage, additional work is required to make coverage figures estimated for

functional test (e.g. self-test code executed by a microprocessor) comparable to

coverage figures calculated based on the actual structural information (like layout or

netlist). New fault models are required due to the advances in semiconductor

technology as the minimum feature size has moved far beyond one micron, resulting

in fault scenarios not covered by conventional stuck-at fault models.

C.2 Functional Complexity

As shown in Figure 2, more and more functionality may be integrated into a single

component. In every phase shown in the figure, functionality implemented at module

or board level is packed into a single components in the next generation. The total

complexity rises by several orders of magnitude.

 Integration
level

 discrete small, medium
scale

 large, very large
scale

 sub-micron
technologies

design
paradigm

 bread board schematic entry synthesis core-based,
design re-use

component
level

 discrete compo-
nents R, C, L, T

 standard logic
families, OAmps,
PALs

 CPU, µC, FPGA,
memory complex
analogue

 „systems on
silicon“

module level low complexity:

amplifier, filter,
combinatorial,
sequential logic

 single board
controller, cen-
tralised systems

 single chip con-
troller, distributed
systems

 ?

Figure 2: Integration Stages

 – 52 –

 -

For safety validation in the context of complex components, it is no longer adequate

to consider components as atomic building blocks of circuit modules or boards.

Instead of this „black box“ approach, it is necessary to move beyond the component

level to perform meaningful and adequate validation test. It is obvious that this kind of

testing is not possible after the integration. New methods and guidelines for

functional testing during the design and integration process are required.

C.3 Technology

Different technologies used for “complex components” are already discussed in

Appendix B: “Technology Overview”.

C.4 Field Experience

The definitions of IEC 61508 (part 2) for class A and B components implies that „...

field experience should be based on at least 100.000 hours operating time over a

period of two years with 10 systems in different applications.“ Especially for complex

standard components, it is not known to the end user whether the devices that are

actual used on the circuit board are manufactured for the required period of time with

the current mask revision and on the current process line. Even if the standard

component is available for many years, modifications during that period of time are

most likely, contradicting the requirements laid down in IEC 61508.

For complex application specific integrated circuits (ASICs), the terms „experience“ or

„proven in use“ should be clarified and related to the different inputs for the design

process:

− process technology

− design rules for cell placement, interconnect and layout

− pre-layouted or generated macro cores

− cell libraries, including layout information and simulation models

− soft macros

− design tools: layout, synthesis, simulation

 – 53 –

 -

Appendix D: ASIC Design Flow

A simplified design flow for application specific integrated circuits (ASICs) and Gate

Arrays is given in the following figure. The work packages shown in the design flow

and the validation tests are listed in the following paragraphs.

 – 54 –

 -

Place & Route

Schematic

flowchart, state
and block diagram

(V)HDL

Netlist

Netlist

Soft Cores

Code Generator

Core Generator

Wafer Production

Packaging

Production Test

Mask Generation

Test Insertion

SynthesisNetlister

(V)HDL EntrySchematic Entry

High Level /
Graphical Entry

Hard Cores Generated Core

Description

tested
Component

Mask Set

Layout, e.g. GDS-II

Design

Production

 – 55 –

 -

Figure 3: Simplified Gate Array / ASIC Design Flow

D.1 Design Entry

D.1.1 Hardware Description Languages

Design description using a hardware description language like VHDL or Verilog4. This

is most common hardware description methodology used today in ASIC and Gate

Array design. Both languages are defined by IEEE standards and are assumed to

satisfy the requirements for “high level programming languages” for safety related

E/E/PE systems stated in IEC 61508.

The hardware description language may be used both for design description and for

functional models or “test benches”. When used for design description, only a subset

of the language may be used; this synthesiseable code is often referred to as RTL

(“register transfer level”) code. Non synthesiseable code, adequate for functional

models and test benches is called “behavioural” code.

D.1.1.1 Verification of the Results

Verification of the functionality is done using standard (V)HDL simulators. Simulation

is done at (V)HDL source code level, ensuring the correct sequence of events but not

the actual timing behaviour. Test scenarios and test case are derived from the

specification requirements and have to be implemented manually, using the

hardware description language.

D.1.1.2 Potential safety hazards

− Simulated behaviour at (V)HDL source code level (RTL) may differ from behaviour

at gate level. For example, in an RTL description, a VHDL process may be defined

to be sensitive only to a subset of its input signals. After synthesis, at gate level,

the generated circuitry is always sensitive to every input signal.

4 The term (V)HDL is used in this paper to denote either the VHDL or Verilog hardware description

language.

 – 56 –

 -

− Wide variety of different language constructs. As for safety related software, only a

subset of the language should be used due to potential limitation of the synthesis

process and to improve readability.

− coverage of test scenarios and test cases.

D.1.2 High Level Design Entry

Comparatively easy to use graphical tools are used for high level design entry

(flowcharts, state diagrams, spreadsheets, block diagrams); this provides a very

descriptive method for design entry, with a high degree of self-documentation.

Additionally, it is possible to use this methodology already during specification. The

tools are able to create synthesiseable (V)HDL code from the graphical description.

In some cases the transformation is bi-directional, able to create a graphic

representation for (V)HDL source code, too.

D.1.2.1 Verification of the Results

Verification of the functionality is usually done by simulation, either with a simulator

working inside the graphical tool or with a standard (V)HDL simulator after code

generation, with back-annotation and visualisation of the simulation results in the

front end tool.

Test scenarios and test cases are derived from the specification requirements and

have to be implemented manually, in most cases in a tool specific environment and

language.

D.1.2.2 Potential safety hazards

− Weak semantics of the input „language“. The (V)HDL code generated is only one

possible representation of the functionality, leaving uncertainty about the

implementation generated.

− The generated code may be hard to understand, e. g. during code reviews.

− Simulation exclusively in the graphical environment does not reveal faults

introduced during the (V)HDL generation step.

 – 57 –

 -

− The quality of the test scenarios and test cases used during the verification may

be not high enough.

D.1.3 Use of “Soft Cores” or “Macro Blocks”

“Soft Cores” are pre-designed – often parameterisable – blocks with a closed

functionality, e. g. for multi-bit arithmetic (adder, multiplier, divider, etc.), commonly

used interfaces, peripherals or even processor cores. In most cases, soft cores are

used to build larger systems, to re-use already existing blocks and to speed up the

design process.

D.1.3.1 Verification of the Results

Used “as is”, verified together with the blocks of the surrounding system.

D.1.3.2 Potential safety hazards

– Inadequate verification that concentrates on the interaction with the surrounding

system only and does not verify the behaviour of the soft core or macro itself.

– Vendor-dependent quality of the soft core or macro libraries. Correctness is not

guaranteed.

– Encrypted or pre-compiled, source code not available.

D.1.4 Schematic Entry

Schematic entry of the circuit, using primitives (single logic gates, Flip Flops) from a

cell library or using macro functions (e.g. counters, standard logic components). The

schematic may be translated directly into a corresponding gate-level netlist. For

macros, a suitable gate-level representation is automatically substituted during the

conversion process.

D.1.4.1 Verification of the Results

Verification of the functionality is done using standard simulators at gate level. Back-

annotation of the results into the schematic is possible.

 – 58 –

 -

D.1.4.2 Potential safety hazards

− Old-fashioned design methodology, not used for larger designs in a state-of-the art

design process due to the low level of abstraction, demanding the designer to

generate the gate-level implementation of the required functionality manually.

− simulation results are depending on the simulation models stored in the macro

block library.

D.2 Implementation

D.2.1 Synthesis

Automatic, constraints guided transformation of a (V)HDL description into a gate level

netlist. The synthesis process is rather complex and is based on three different

inputs:

− the (V)HDL description to define the functionality

− synthesis constraints (e.g. for path delays, area) to guide the selection of an

appropriate implementation (out of all possible implementations that have the

required functionality)

− a cell library as a collection of available target cells. Every cell in the library is

characterised by its functionality and timing behaviour.

D.2.1.1 Verification of the Results

− internal housekeeping and checks during the synthesis process itself (auto-

matically performed by synthesis tool)

− simulation of gate level netlist against the RTL reference model (functional

equivalence)

− simulation of gate level netlist to verify timing constraints

− static timing analysis to verify timing constraints

D.2.1.2 Potential safety hazards

− functional discrepancy between (V)HDL source and gate level netlist due to

 – 59 –

 -

− language limitations (see (V)HDL Coding)

− faults during the synthesis process (caused by the synthesis tool)

− faults during manual interference in the synthesis process or manipulation of the

netlist

In general, these potential faults should be discovered during simulation of the

gate level netlist against the behaviour of the RTL reference.

It is important to note that simulation only reveals those faults actually covered by

the test cases. Although it is desirable to re-run the complete set of validation tests

done at RTL level after synthesis, in some cases this is not possible due to

runtime restrictions or due to modifications in the module hierarchy (e.g. if several

small modules are melted into a single module for the improvement of the

synthesis results).

− faults in the cell library may cause discrepancies between the cell’s actual

functionality or timing behaviour and the behaviour of the model stored in the

library. This may cause a “common cause failure” that is not revealed by

simulation, because synthesis, simulation and static timing analysis are depending

on information from the cell library. But, functional faults will be revealed during

production test if the functional mismatch is testable and covered by the test

pattern.

− very complex software and algorithms are used during the synthesis process. Due

to the complexity and the ongoing development of the tools, it seems not possible

nor desirable to certify a particular tool and ban the usage of not certified tools.

D.2.2 Conversion from Schematic to Gate Level Netli st (“Netlister”)

For schematic entry, the tool-internal design database that represents the schematic

must be translated into a gate level netlist. This process is similar to the synthesis

process described before, but far less complex.

D.2.2.1 Verification of the Results

− simulation of gate level netlist to verify functionality, eventually with back-

annotation into the original schematic

 – 60 –

 -

− simulation of gate level netlist to verify timing constraints

− static timing analysis to verify timing constraints (requires addition tools)

D.2.2.2 Potential safety hazards

− Functional discrepancy between the schematic and gate level netlist due to

− faults during the conversion process

− faults in the macro library, leading to a false implementation of the macro’s

functionality

− faults during manual interference in the synthesis process or manipulation of the

netlist

− No timing information in schematic, thus no timing constraints are respected in the

translation process

D.2.3 Test Insertion

Automatic insertion of test structures into the netlist, like scan (for automatic test

pattern generation, ATPG), boundary scan or build in self test (BIST). In addition to

the scan insertion, a set of test vectors is generated during the test insertion process.

Fault coverage, in most cases based on a „single-stuck-at“ fault model is

automatically calculated.

Test insertion, fault coverage analysis and fault simulations are primarily done to

ensure testability of the chip after manufacturing, in other words to detect structural

faults during the manufacturing process and guarantee the integrity of the

manufactured devices after the production test. The analysis is not done to reveal the

effects of faults with respect to the system.

D.2.3.1 Verification of the Results

− simulation of the netlist after test insertion against the behaviour of a reference

model (netlist prior to test insertion or RTL source code) with respect to

functionality and timing.

− Static timing analysis

 – 61 –

 -

− functional simulation of the ATPG test pattern set

− functional simulation of the boundary scan

− functional simulation of the BIST

− fault simulation (to check calculated coverage figures or to analyse coverage of

functional patterns and BIST)

D.2.3.2 Potential safety hazards

Faults during test insertion (functionality, timing). These faults are revealed by

simulating the behaviour of the netlist against a reference.

D.2.4 Generated Cores, Hard Cores

Regular structured macro cores, like RAM and ROM blocks, are usually generated

separately and linked to the design database for use in the layout process. The

generator provides two separate outputs: The pre-layouted macro core itself, directly

useable for layout and a simulation model of the core for the gate level simulation.

“Hard Cores” are an other type of pre-layouted macro. They span the same

functionality as “soft cores” (e. g. communication interfaces or peripherals,

microprocessors), but are provided as already optimised, but technology-dependent,

pre-layouted blocks.

D.2.4.1 Verification of the Results

− Use of a simulation model for functional simulations of the RTL description or the

gate level netlist to ensure proper interactions with the macro core.

− Design rule check (DRC) for the generated layout of the core.

D.2.4.2 Potential safety hazards

− In most cases, the model used for simulation and the core are derived from the

same source. But, besides this common origin, there is no further relation between

the functionality of the simulation model and the functionality of the core. Thus,

discrepancies between the two instances are possible.

 – 62 –

 -

− The design rules defined by the semiconductor vendor ensure adequate electrical

characteristics and compliance to the process requirements. Even if the DRC does

not detect violations, this does not guarantee correct functionality in any case.

Thus, for example, faults in a core generator may not be revealed.

− Hard cores are not portable between different technologies. In some cases, it is

possible to automatically convert the layout from one technology to an other.

Faults during this process may not be revealed.

D.2.5 Place and Route / Layout

In a first step, the cells found in the final gate level netlist and the macro cores are

placed on the chip. Note: This step is required for core and cell based designs only,

for gate arrays, a regular placement of universal cells has already be done during the

pre-production of the gate array master. In a second step, the interconnections are

routed. In a third step, timing information are derived form the actual layout and back-

annotated for post layout simulation.

In many cases, the place and route / layout step includes additional tasks like

− buffer sizing, adapting the output drive strength of individual gates to the actual

wire load after layout

− clock tree synthesis, generating a skew-optimised clock distribution system.

D.2.5.1 Verification of the Results

− Simulation of the netlist after layout against the behaviour of the reference model

(netlist or RTL source code) with respect to functionality and timing.

− Static timing analysis

− Design rule check (DRC) to guarantee the design rules dictated by the

semiconductor vendor.

− Layout versus schematic check (LVS): Extraction of a netlist from the polygons of

the final layout and automatic compare against the netlist used as input for the

layout tool. This ensures the integrity of the layout step.

 – 63 –

 -

D.2.5.2 Potential safety hazards

− Synthesis, simulation and layout are based on the same cell library (see synthesis

for further explanations about common cause failures).

− Faults caused by the layout tool or faults in manual manipulations during layout

optimisation are most likely detected by the LVS check.

− The functionality of circuitry created directly at layout level (e.g. analogue blocks,

highly area optimised structures) may be extracted from the layout for simulation

and verification purposes. Because there is no reference model the layout is

based on, faults during the extraction process may falsify simulation results, hiding

implementation faults.

− Design rules are dynamic for new process technologies, changing frequent to

improve yield and long term stability of the product. Designs based on early design

rules may suffer from reliability problems.

D.3 Production

D.3.1 Mask Generation

The structures created on silicon during wafer production are controlled by a set of

masks. The mask are generated (drawn) from the layout information (e.g. GDS-II

data stream).

D.3.1.1 Verification of the Results

The masks used for production are either manually inspected or automatically

compared. Automatic compare requires masks with two identical copies of the layout

for each layer.

D.3.1.2 Potential safety hazards

− Manual inspection is error-prone

− Automatic inspection detects only differences between the two copies. Possible

common cause faults like faults in the GDS-II data stream or misinterpretation of

the layout data are not detected.

 – 64 –

 -

− Most functional faults are revealed during production test.

D.3.2 Production Test

Test of the final, packaged component using an ASIC tester. Testing may include

static power consumption, analogue parameters and selected timing paths. The

functionality of the chip is verified using ATPG or functional pattern generated during

test insertion.

D.3.2.1 Verification of the Results

Production Test is the final test to ensure that the chip after production is functional

equivalent to the netlist used for layout.

D.3.2.2 Potential safety hazards

− Only faults covered by the test pattern set are revealed. Thus, high fault coverage

is mandatory.

− Timing is only verified for characteristic paths

 – 65 –

 -

Appendix E: PLD / FPGA Design Flow

Schematic flowchart, state
and block diagram(V)HDL

Design

Production

Boolean Equations
Configuration Data

Fitter Place & Route

Fusemap / Bitstream

Synthesis Converter

netlist
design database

Converter

Schematic Entry

configurable
Macro Blocks

(V)HDL Entry High Level /
Graphical Entry

State Transition
Equations, etc.Boolean Entry

Programmer

programmed
device

configuration
PROM

Figure 4: Simplified Design Flow for PLD and FPGA

E.1 Design Entry

E.1.1 Boolean Entry

The simplest type of design description – in most cases used for PLDs only – is to

write Boolean Equations (AND-OR product terms). The structure and sequence of

operators used in the equation exactly reflect the resources of the PLD (AND-OR

matrix). Combinatorial and registered logic is distinguished by special notation, e. g.

the operator used for the assignment of the output signal. This type of description is

mostly used for simple logic, e. g. address decoding, counters or simple state

machines.

 – 66 –

 -

E.1.1.1 Verification of the Results

Either manually, by walk-through of the equations or with simple simulator tools.

E.1.1.2 Potential safety hazards

– Error prone description, due to very low level of abstraction

– Limited capabilities of the available simulation tools, e. g. to handle feedback-

loops

– Common Cause Faults due to build-in simulators

– Tends to be unclear when used for medium and higher complexity

E.1.2 Low Level Hardware Description Languages

In addition to Boolean Equations, low level hardware description languages support

constructs for the description of state tables, decision tables and simple arithmetic.

Moreover, the design input is less dependent on the actual structure of the target

device.

E.1.2.1 Verification of the Results

Either manually or with medium complex build-in simulation tools. Using simulation, it

is often possible to specify “stimuli”-“response”-pattern for automated testing.

E.1.2.2 Potential safety hazards

– Low level of abstraction

– Limited capabilities of the available simulation tools

– Common Cause Faults due to build-in simulators

E.1.3 Schematic Entry

See D.1.4

E.1.4 Hardware Description Languages

See D.1.1

 – 67 –

 -

E.1.5 High Level Design Entry

See D.1.2

E.1.6 Use of Macro Blocks

See D.1.3

E.2 Implementation

E.2.1 Conversion from Schematic to Netlist / Design Database

Translation of the schematic (circuit primitives and interconnections) into a data

representation that may be used by the Place & Route tool. The result is either stored

in a standard netlist format or a proprietary design database.

E.2.1.1 Verification of the Results

In most cases, no format appropriate for the verification of this intermediate result is

provided by the tool vendors.

E.2.1.2 Potential safety hazards

The conversion process may produce a faulty output (resulting in a functional mis-

match). The fault may be not revealed at that point in the design flow.

E.2.2 Conversion from High Level Entry to Netlist / Design Database

Basically, as described for the conversion form Schematic to Netlist / Design

Database. See E.2.1.

E.2.3 Synthesis

See D.2.1

E.2.4 Device Fitter

Used for PLD / CPLD devices. A device fitter (program) is used to map the input

description (e. g. boolean equations) onto the structure of the target device and to

 – 68 –

 -

create the “fuse map” required for programming. Depending on the complexity of the

fitter, the input description needs to be more or less target device orientated.

E.2.4.1 Verification of the Results

Verification of the result is possible in two ways:

– In-circuit, using a device programmed with the generated fuse map or bit stream

– Using simulation. For most simpler devices – small and medium complex PLD –

simulation is only supported by the build-in simulators. For more complex devices,

additional external (third-party) standard simulators are supported.

E.2.4.2 Potential safety hazards

– In-circuit check of the expected behaviour has a limited fault detection capability,

due to the potential problems to stimulate the device and to observe the

responses in real-time.

– Build-in (proprietary) simulator tools often have limited capabilities. Moreover the

risk for an undetected common cause fault (introduced by the fitter, not revealed

by the simulator) increases.

– If third party simulators are supported, the validity of the result is depending on

the simulation library. This again is a potential source of a common cause fault.

– For PLD type devices, timing is assumed to be “correct by construction”, so the

actual timing is not verified.

E.2.5 Place & Route

Used for FPGA. In a first step, the cells found in the final design database need to be

mapped to the cells existing on FPGA. In a second step, the interconnections are

routed. In a third step, timing information are derived form the actual placement and

interconnection routing and back-annotated for post layout simulation. Finally, the

bitstream required for the programming of the device is generated from the

placement and interconnection database.

 – 69 –

 -

E.2.5.1 Verification of the Results

− Simulation of the netlist after layout against the behaviour of the reference model

(netlist or RTL source code) with respect to functionality and timing.

− Static timing analysis

− Design rule check (DRC) to guarantee the design rules dictated by the FPGA

vendor.

E.2.5.2 Potential safety hazards

− Synthesis, simulation and layout are based on the same cell library (see synthesis

for further explanations about common cause failures).

− Fault during bitstream generation.

E.3 Production

Different production schemas are used for volatile (RAM based) and non-volatile

(OTP, EEProm or Flash based) devices.

– Volatile devices – typically higher complex FPGAs – need to be re-programmed

(loaded) each time after power-on. The information required for this power-on

initialisation is usually stored in special non-volatile configuration PROMs; the

initialisation is controlled automatically by the FPGA after power-on.

– Non-volatile devices – typically PLDs, CPLDs and lower, up to medium complexity

FPGA – are programmed once, prior to the assembly.

E.3.1.1 Verification of the Results

Volatile devices:

– The integrity of the configuration PROMs contents may be checked automatically

after programming (readout and compare).

– The information transfer to the volatile component is usually protected by a

checksum; this ensures that the devices becomes operational only when a (most

likely) correct bit stream is loaded.

Non-volatile devices:

 – 70 –

 -

– The integrity of the programmed information in a non-volatile device may be

checked automatically after programming (readout and compare). In some cases

this includes a check of the programmable element (fuse) for correct parameter

rating, e. g. “on” or “off” resistance.

E.3.1.2 Potential safety hazards

Volatile devices:

– The protection of the bit stream itself is no guaranty for correct power-on

initialisation of the FPGA. Faults may occur when distributing the information in

the FPGA (after checksum removal) or stuck-at faults may exist inside the FPGA

that result in false behaviour.

Non-volatile devices:

– Only the successful programming may be checked by reading out the

programmed pattern. This does not guarantee correct behaviour of the device

(same reasoning as for volatile devices).

– Some signal paths in one-time programmable devices may not be checked during

chip production, due to the nature of the programmable element. This may lead to

unrevealed faults in the device itself.

 – 71 –

 -

Appendix F: Glossary / Acronyms

ASIC Application Specific Integrated Circuit

COB Chip On Board

CPLD Complex Programmable Logic Device

DRC Design Rule Check

EEPROM Electrical Erasable PROM

EPROM Erasable PROM

FPGA Field Programmable Gate Array

LVS Layout versus Schematic Check

MCM Multi Chip Module

OTP One Time Programmable (ROM)

PLD Programmable Logic Device

PROM Programmable ROM

RAM Random Access Memory

ROM Read Only Memory

RTL Register Transfer Level

VHDL VSLI (Very Large Scale Integration) Hardware Description Language

