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Abstract 

This paper sums up the results of the research on Work Package 3.3 “Safety 

Validation of Complex Components – Validation Tests”. The objective of this work 

package was to collect state of the art validation test methods and to assess the 

effectiveness of these test methods in the special context of complex components. 

Suitable sets of test methods will be recommended for the different types of complex 

components and these sets will be assigned to the safety categories of EN 954-1. 

This paper is structured in two main parts, as follows: First, the results of the work on 

WP 3.3, as the main part of this contribution. These results and conclusions are 

presented as compressed and as short as possible, to allow a more easy integration 

of the main points into the final report for the overall STSARCES project. Second, a 

number of appendices, that give the required background and in-depth information 

on the topics that are addressed in the first part. Although called “appendix”, this 

second part contains vulnerable working results of WP 3.3 and is intended to help for 

a thorough understanding of the first part of this final report. 
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2 Preface 

The STSARCES – Standards for Safety Related Complex Electronic Systems – 

project is funded by the European Commission SMT programme. Main objective of 

the STSARCES project is to render the machinery necessary for European industry 

as safe as possible from the design stage onwards. The STSARCES project is 

divided into several research work packages. This paper sums up the results of the 

research on Work Package 3.3 “Safety Validation of Complex Components – 

Validation Tests”. 

This report was prepared by Dipl.-Ing. Klaus Bosch, TÜV Product Service GmbH, 

and Dipl.-Inf. Frank Mayer, Fraunhofer Institut für Integrierte Schaltungen. 
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3 Overview 

This overview gives a short glance at the objectives of the WP 3.3 and how to 

proceed. 

3.1 What are the objectives of WP 3.3 ? 

Nowadays, complex components, like microprocessors, memories (RAM, EPROM, 

Flash), programmable logic (PLD, FPGA), ASICs and other high integrated circuits 

may be used as building blocks for safety related electronics. Due to large scale 

integration, it is possible today to integrate a whole system – that required a board or 

a assembly of boards some years ago – onto a single chip. 

In the context of the DIN V 0801, EN 954 and IEC 61508, different validation tests 

are well known and already described in those released or draft standards. But, this 

type of validation tests might fail short when confronted with complexities of several 

thousands – or up to millions – of interacting logic primitives and memory cells. 

Thus, the objectives of WP 3.3 is to fill this gap between existing validation tests and 

the requirements for a trustworthy safety validation of a single complex component or 

a system build of several complex components. In the reminder of this text, the terms 

“complex component” and “complex system” are used interchangeable; as it is shown 

in more detail in chapter C.3 both may be only different representations of the same 

functionality. A complex “system” that required a number of boards some time ago 

may be implemented in a single “component” today. 

3.2 How to proceed ? 

To get a standardised package of validation tests for complex components, it is 

necessary to go ahead step by step. 

The first step  is to consider all state of the art validation tests which are used up to 

now for complex or semi-complex components. These methods were evaluated and 

assessed. 

The second step  is to consider the changes in production and design of very 

complex components. Very complex components are designed with mighty software 

tools and special software languages (e. g. VHDL). Therefore, verification and 
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validation steps based on the different design flows were described and possible 

hazards were identified. 

The third step  is to find out suitable sets of validation tests for complex components. 

It was required to define a new approach for verification and validation of complex 

components. 
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4 State of the Art Validation Test Methods 

4.1 Safety Validation Concepts 

Safety validation nowadays is described in a couple of international standards. The 

most important of these standards are IEC 61508, part. 1 to 7, DIN V VDE 0801 and 

appendix A1, EN 50128 and EN 50129 (the last two especially for railway 

applications of programmable electronic systems) 

All these standards are defining methods of safety validation and methods of 

planning the safety validation. Especially in the IEC 61508 one of the main topics is 

the planning of the safety validation by using e. g. V&V-plan (verification & validation 

plans). 

4.2 Validation Test Methods 

The following text summarises and comments the state of the art validations test 

methods. In the following table „Safety validation tests for electronic systems“ the 

tests are assigned to the safety categories (CAT 1 - 4) introduced in EN 954-1. 

The following notation is used in Table 1 for each method. A qualitative rating (“high” 

– “medium” – “low”) for the required test coverage is given; this may be translated 

into more measurable figures (quantitative rating) by using the definitions in the IEC 

61508. 

qualitative rating for 
this method 

(first line) 

HR method is highly recommended for this safety category 

R method is recommended for this safety category 

– method is not required, but may be used 

required test coverage 
of this method 

(second line) 

high1 a high degree test coverage is required 

medium a medium degree of  test coverage is required 

low a acceptable degree of test coverage is required 

 

 

                                            
1 “high” replaces the misleading “mandatory” used in tables in existing standards, e. g. in the 61508. 
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Technique/measure Cat 1,2 Cat 3 Cat 4 

Functional testing 
HR 

high 

HR 

high 

HR 

high 

Functional testing under environmental conditions 
HR 

high 

HR 

high 

HR 

high 

Interference immunity testing 
HR 

high 

HR 

high 

HR 

high 

Fault injection  testing 
HR 

high 

HR 

high 

HR 

high 

Expanded functional testing 
– 

low 

HR 

low 

HR 

high 

Surge immunity testing 
– 

low 

– 

low 

– 

medium 

Black box testing 
R 

low 

R 

low 

R 

medium 

Statistical testing 
– 

low 

– 

low 

R 

medium 

“Worst case” testing 
– 

low 

– 

low 

R 

medium 

Table 1: Safety validation tests for electronic sys tems 

 

As listed above, a couple of validation test methods are already described in 

released and draft standards. Additional details for each method, based on the 

descriptions of the IEC 61508, and comments on the usability in the context of 

“complex components” may be found in Appendix A: “Safety Validation Methods”. 

The detailed analysis of these existing methods reveals a number of potential 

limitations when confronted with the validation of a complex component: 

─ complexity: the component might be far to complex for an adequate validation; it 

is not possible to reach the coverage figures from Table 1 for the given category. 

─ controllability: interconnections and logic inside the component is not directly 

controllable. 

─ observability: the reaction to input stimuli might not be observable; attaching 

probes is either not possible (internal signals) or affects the test results. 
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Moreover, an additional drawback of the listed validation tests is the fact that they are 

applicable only very late in the development process, because a “real” hardware is 

required to run most of the tests. The system that is used during the validation test 

has to be as close as possible to the one that will be used in the field, otherwise the 

result of the validation test is not expressive at all. 

Using validation testing late in the development process incorporates the risk that 

every hazard found during the test is likely to result in a time consuming re-design 

and product improvement process. Because potential problems might be found very 

late in the product development process, the overall development effort and time to 

market may be very hard to estimate in advance. 

4.3 Conclusion 

For complex components, validation testing has to go “beyond the surface” of the 

component and is advised much earlier in the development process. For example, 

functional testing has to start at module level – using modules with very limited 

complexity – and has to accompany the hierarchical (bottom up) integration of the 

modules to more complex building blocks, step by step, until the complete 

functionality of a “complex component” is reached and all application and safety 

requirements are met. 

To classify this proposed validation test scheme, it is useful to give a short reminder 

on the general definitions (ISO 8402) for validation and verification first: 

Validation := „Confirmation by examination and provision of objective evidence that 

the particular requirements for a specific intended use are fulfilled.“ 

Validation is the activity of demonstrating that the safety-related system under consideration, before or 

after installation, meets in all respects the safety requirements specification for that safety-related 

system. Therefore, for example, software validation means confirming by examination and provision of 

objective evidence that the software satisfies the software safety requirements specification. 

Verification := „Confirmation by examination and provision of objective evidence that 

the specific requirements have been fulfilled.“ 

Verification activities include: 

– reviews on outputs (documents from all phases of the safety lifecycle) to ensure compliance with 

the objectives and requirements of the phase, taking into account the specific inputs to that phase; 
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– design reviews; 

– tests performed on the designed products to ensure that they perform according to their 

specification; 

– integration tests performed where different parts of a system are put together in a step by step 

manner and by the performance of environmental tests to ensure that all the parts work together in 

the specified manner.  

In the context of these definitions, our proposed validation test scheme results in the 

sum of independent verification steps during the implementations process. The 

complete, uninterrupted sequence of verification steps provides the objective 

evidence („validation“) that the final result (e. g. the programmed FPGA) fulfils the 

initial requirements for the intended use and the required safety category. 
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5 Component Design and Production 

5.1 State of the Art Design Process 

Prior to define adequate validation tests – or, as concluded in the previous chapter: a 

continues, uninterrupted chain of verification steps parallel to the design process – 

we have to focus on state of the art PLD, FPGA and ASIC design process. 

5.1.1 Technology 

The term “complex component” may be applied to a wide variety of devices. The 

range spans different process technologies, different design and implementation 

methodologies as well as different levels of complexity. To clarify the term “complex 

component” in the context of safety validation, some typical examples for different 

technologies are given in Appendix B: “Technology Overview”. 

5.1.2 Complexity 

In Appendix C: “Complexity Metrics”, an attempt is made to objectively “measure” the 

complexity of a component, based on different complexity metrics. This helps to 

judge the effectiveness of the different validation methods for different level of 

complexity of the device under test. 

The metrics listed and described in Appendix C: “Complexity Metrics” are well known 

and some of them are referenced in other contributions to the STSARCES project. 

E.g. a component is considered to be complex if it has “more than 1000 gates and / 

or more than 24 pins”. The problem with all those metrics is the fact that no direct link 

from the measurable “complexity” to the required level of validation has been found 

up to now. This implies that it is not possible to categorise the required type or 

effectiveness of verification or validation tests based on any of the listed complexity 

metrics. Additional work and a different approach – presented as part of the chapter 

“Validation Tests for Complex Components” – was necessary to get this linkage 

between “complexity” and validation effort. 
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5.1.3 Design Flow 

Appendix E: “PLD / FPGA Design Flow” and Appendix D: “ASIC Design Flow” shows 

the different methodologies, design steps and tools typically used for the develop-

ment of complex components.  

5.1.4 Conclusion 

For safety-related integrated circuits, the different device types require different 

validation concepts. For example, the layout and placement of the cells of a gate 

array or a FPGA is fixed; components based on these predefined structures are 

manufactured in larger numbers, thus the structure itself might be considered as 

„proven in use“ after some time. For the various types of ASICs and standard ICs, the 

structure is defined during the layout process. Thus, especially for deep sub-micron 

processes, interference between neighbouring cells or interconnections are possible, 

with actual influence on the chips functionality. It is obvious that this situation has to 

be considered during validation testing and fault injection. 

5.2 Linkage between the Design and Validation Proce ss 

5.2.1 Phase Model 

It is useful to identify the major steps that lead to a production-ready component. This 

“phase model” is intended to be more general as the two design flows given above. 

Based on the phase model from the IEC 61508, the following phases are identified: 

(1) Specification: Textual or formal description of the device’s functionality 

(2) Design Description: Formal description (e. g.  Boolean Equations, Schematic, 

(V)HDL) that may be automatically translated into a fusemap / bitstream (PLD, 

FPGA) or gate level netlist (Gate Array, ASIC). 

(3) Implementation: Transformation of the design description into a netlist / fusemap 

/ bitstream that may be used to produce or program the component. This phase is 

subdivided into two phases: “Implementation I” maps the design description into 

the primitives of the target device (logic blocks, gates), “Implementation II” 

produces the final information required for the component production or 

programming (fusemap or bitstream file, layout database). 
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(4) Production: Production (programming) of the component, based on the output of 

the implementation phase. 

(5) Post Production: The component is available for standard system integration 

and validation tests. 

Phase Output 
(PLD / FPGA) 

Output 
(Gate Array, 
ASIC) 

level of detail usability for 
formal or simu-
lation based 
verification 

Specification Specification Documents (pure textual or 
semi-formal, e. g. using block and state 
diagrams, pseudo-code) 

“high level” 
description with 
low level of detail 

partial (only for 
those parts 
described semi-
formal)  

Design 
Description 

Formal description of the functionality of 
the device, usable for automatic 
translation. 

(virtual) 
components, 
blocks, 
processes 

RTL (“register 
transfer level”) 

all2 functional 
aspects 
(RTL level) 

no explicit 
information about 
timing behaviour 

Implemen-
tation I 

primitives netlist, 
(propriety) 
database 

gate level netlist FPGA primitives, 
ASIC gates;  
interconnections 

estimated timing 
behaviour 

Gate Level 

all functional 
aspects 
(Gate Level) 

estimated timing 
behaviour 

Implemen-
tation II 

fusemap / 
bitstream 

layout database 
(e. g. GDS-II) 

physical 
placement and 
interconnection 

all functional 
aspects 
(Gate Level) 

actual timing 
behaviour 

Production programmed 
device 
programmed 
configuration 
PROM 

packaged and 
tested device 

component device 
characteristics 
(overall 
functionality, 
timing) 

Post 
Production 

Board / System “black box” black box testing 
only3 

Table 2: Phase Model 

                                            
2 This is true if the functionality is independent of the timing behaviour, e. g. for a pure synchronous 

design that will be clocked with a frequency less than 1 / (maximum path delay). 

3 Although “on chip” measurements and tests are theoretical possible (e. g. E-Beam test); not feasible 

in most cases, because this would require high specialised equipment.  
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5.2.2 Validation Tests & Phase Model 

With the information from Table 2 it is now possible to map the known validation tests 

(Table 1) to the phases of our model. This is detailed in Table 3. 

Phase Validation Tests 
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Specification Note 
(1)         

Design Description Note 
(2)   

Note 
(6) 

Note 
(2)   

Note 
(2)  

Implementation I Note 
(2) 

Note 
(4)  

Note 
(6) 

Note 
(2)   

Note 
(2) 

Note 
(4) 

Implementation II Note 
(2) 

Note 
(4) 

Note 
(5) 

Note 
(6)     

Note 
(4) 

Production 
   

Note 
(7)      

Post Production Note 
(3) 

Note 
(3) 

Note 
(5) 

Note 
(3) 

Note 
(3) 

Note 
(5) 

Note 
(8) 

Note 
(3) 

Note 
(3) 

Table 3: Validation Testing linked to Phase Model 

The following notation is used in Table 3 for each method: 

rating for applicability 
of this method in this 
phase 

 test is not useable or expressive in this phase 

  
 test might be used in this phase (with limitation, see Notes) 

  
 test is well suited for this phase 

 

Notes: 

(1) Functional Testing in Specification Phase: Only if semi-formal methods are used during 

specification. Results are valid only if the implementation is derived directly from the 

specification and this may be verified. 

(2) Functional, Expanded Functional and Statistical Testing in Design Description and Implemen-

tation Phase: Depending on design description methodology. For pure synchronous designs, 

functional testing in the design description phase might be adequate. Timing-related 

functionality aspects need to be addressed in the Implementation Phase. 

(3)  Validation Tests in the Post Production Phase (of the component itself): In the Post Production 

Phase, two different aspects need to be distinguished: validation tests that concentrate on the 
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component itself and validation / integration tests for the board or system this component is 

used in. Table 3 refers to the component itself, thus the applicability of the validation tests is 

limited in most cases (for details, see chapter “State of the Art Validation Test Methods”). 

Nevertheless, through integration and validation testing at board / system level is advised, as 

already described in existing standards. 

(4) Testing under Environmental or Worst Case Conditions: This refers to the typical 

environmental condition that are considered for integrated circuits: Temperature, Supply 

Voltage and Process Deviation. Timing information – for path delays, setup- and hold times – 

that may be used for formal or simulation based validation testing is available for “best”, 

“typical” and “worst” case environmental conditions (see Table 4 for details). 

timing 
condition 

temperature supply voltage process 
deviation 

Remark 

“best” lowest 
specified 

highest 
specified 

best (fastest) 
process 

best case for path delay, but worst 
case for required setup and hold times 

“typical” typical 
(e. g. 25°C) 

nominal typical typical case 
(not meaningful in most cases) 

“worst” highest 
specified 
(on chip) 

lowest 
specified 

worst (slowest) 
process 

worst case for path delay 
(determines max. clock frequency for 
synchronous design) 

Table 4: Definition of “best”, “typical” and “worst ” operating conditions 

(5) Interference Immunity, Surge Immunity Testing: The behaviour of a component during surge 

immunity testing is dependent on various parameters; not all of them may be quantified during 

the implementation phase, nor is it possible to rely on existing models for a precise estimation. 

Thus, lump estimation and testing is possible without the final component. 

(6) Fault Injection Testing: This may be done with different levels of detail, e. g. looking a 

functional aspects during the design description phase and at stuck-at and coupling faults in 

the implementation phase. 

(7) Production Test (Gate Array, ASIC only): It is important to clearly distinguish fault injection 

testing during the design process and the production test for Gate Arrays and ASIC. Both 

methods use the same fault models (e. g. “single-stuck-at”), but for different types of analysis; 

thus it is not possible to mix the results of the two methods (e. g. to apply the fault coverage 

figure for the production test to fault injection testing in the design process). 

(8) Black Box Testing: Treating the complex component itself as “black box”. 

5.2.3 Completeness 

Moving validation tests to an earlier phase in the design and implementation process 

has the potential weakness that the result of a test carried out in an early design 

phase might be invalidated during the subsequent implementation steps. Thus it is 
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required to check the output of every implementation step against its input (= 

“verification”). This is shown in Figure 1 and results in additional verification tasks 

required in the validation process. 

Requirements

Specification

VHDL Source

Pre-Layout Netlist
est. Timing

Post-Layout Netlist
act. Timing

write
Specification

Implementation
in VHDL

Synthesis

Layout

Test Cases Spec

Test Benches

funct. Simulation

Gatelevel Simulation
(funct. + est. timing)

Gatelevel Simulation
(act. timing)

Pattern for
Regression Test

Review

Implementation Flow Verification Flow

 

Figure 1: Implementation and Verification 

The following table (Table 5) links the various work packages of the PLD/FPGA 

(Appendix E: ”PLD / FPGA Design Flow”) and ASIC (Appendix D: “ASIC Design 

Flow”) design flow to the phase model. Potential hazards – faults that may invalidate 

the result of a validation done earlier – are listed and possible countermeasures 

(verification concepts) are derived. A more detailed description of the work packages 

and more information on the potential hazards may be found in the two appendices. 

Note: The first entry in the “Hazards” column for each Work Package is usually blank; the belonging 

entry in the “Verification done” column lists the standard verification tasks for this package. 
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Phase Work Package in 
Design Flow 

Hazards Verification done 

 

S
pe

ci
fic

at
io

n 

Textual Description  by internal and independent 
review 

no automated check possible by review 

Specification, using 
semi-formal methods 

(state diagrams, flow 
charts, spreadsheets, 
block diagram 

 

 

 by internal and independent 
review 

by using the method itself, 
supported by automated tools 

by formal analysis and 
simulation of the specification 

same tool used for description 
and verification 

by review 

later in design flow 

no automated check done by review 

later in design flow  

partial verification, insufficient 
quality of the test cases 

by review 

later in design flow 

no direct link to 
implementation (e. g. code 
generation) 

by review 

later in design flow 

Modelling 

(behavioural model, 
written in behavioural 
VHDL or C code) 

 by internal and independent 
review 

by formal analysis or 
simulation of the model 

by using the model in the 
system context 

partial verification, insufficient 
quality of the test cases 

by review 

later in design flow 

no direct link to the 
implementation (limited 
accuracy of the model 

by review 

later in design flow 
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D
es

ig
n 

D
es

cr
ip

tio
n 

Boolean Entry  by walk-trough (review) 

by functional simulation (if 
supported) 

error prone, low level of 
abstraction 

by functional simulation 

limited capabilities of the 
simulation tools 

by plausibility checking of the 
simulation results 

common-cause faults 
(common data base for im-
plementation and simulation) 

additional validation later in 
design flow 

Use of Low Level 
Hardware Description 
Languages 

 by functional simulation 
(build-in or third party) 

limited capabilities of the 
simulation tools 

by plausibility checking of the 
simulation results 

common-cause faults 
(common data base for im-
plementation and simulation) 

additional validation later in 
design flow 

Use of Hardware Des-
cription Languages, 
e. g. (V)HDL 

 by functional simulation 

poor design methodology 
(limited testability, timing 
critical (asynchronous) 
constructs)  

by code review 

some problems are also 
revealed automatically, later in 
the design process. 

wide variety of different 
language constructs (with 
impact on synthesis results) 

code review 

High Level Design 
Entry 

(same scope as 
“semi-formal” methods 
in specification phase) 

automated code 
generation 

 by functional simulation in the 
high level environment 

weak semantics of the input 
language 

by review of the generated 
code 

by extended functional 
simulation of the generated 
code 

by automatic compare of the 
simulation results against the 
behaviour of the high level 
description 

faults during code generation 

quality and reproducibility of 
the generated code 

by extended functional 
simulation of the generated 
code 

by automatic compare of the 
simulation results against the 
behaviour of the high level 
description 

validation only within high 
level entry tool (e. g. build-in 
simulator) 

by functional simulation of the 
generated code, using an 
independent tool 
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D
es

ig
n 

D
es

cr
ip

tio
n 

Use of “Soft Cores” or 
“Macro Blocks” 

 by functional simulation of the 
interaction with the surroun-
ding blocks 

concentration on the 
interaction with the 
surrounding blocks 

by functional simulation of the 
core or macro itself 

vendor dependent quality 
(correctness) of the core 

by review 

by functional simulation 

encrypted or pre-compiled 
(“black box”) 

by expanded functional 
simulation 

Schematic Entry  by review 

low level of abstraction 
(description at gate level) 

by functional simulation 

use of macro blocks by functional simulation 

all types of design 
entry 

functional deviation from 
specification 

by functional simulation 
(manual compare against 
specification) 

by (automated) cross check 
against specification 

 partial verification, insufficient 
quality of the test cases 

review of the test cases 

semi-formal methods to 
ensure coverage of the test 
cases 
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Im
pl

em
en

ta
tio

n 
I 

Conversion from 
Schematic to Netlist / 
Design Database 

 none; “correct by construction” 

(semantic) faults during 
conversion 

by simulation (manual check 
against specification) 

by simulation (automated 
check against the simulation 
of the schematic) 

later in design flow 

no timing constraints by additional tools 

later in design flow 

Conversion from High 
Level Entry to Netlist / 
Design Database 

 none; “correct by construction” 

(semantic) faults during 
conversion 

by simulation (manual check 
against specification) 

by simulation (automated 
check against the simulation 
in the high level environment) 

later in design flow 

no timing constraints by additional tools 

later in design flow 

Synthesis  none; “correct by construction” 

faults during synthesis 
process (resulting in functional 
discrepancies) 

by automated cross check of 
the gate level simulation 
against the functional 
simulation (RTL) 

differences between the 
behaviour prior and post 
synthesis (related to poor 
design style or methodology) 

by code review 

by automated cross check of 
the gate level simulation 
against the functional 
simulation (RTL) 

high complexity of the 
software and algorithms used 
for synthesis 

by build-in checks 

by extended simulation of the 
results 

inappropriate timing by gate level simulation with 
timing information 

by (static) timing analysis with 
independent tool 

Test Insertion  none; “correct by construction” 

fault, leading to modified 
functionality 

by automated cross check of 
the simulation post vs. prior 
test insertion 

by formal equivalence check 

modified timing by gate level simulation with 
timing information 

by (static) timing analysis 

wrong coverage figures by fault simulation with 
independent tool 
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Im

pl
em

en
ta

tio
n 

I 

Use of “Generated 
Cores” or “Hard 
Cores” 

 none; “correct by construction” 

violation of design rules later in design flow, by DRC 

mismatch between simulation 
model and behaviour of 
generated core 

by using qualified generators 
or qualified core cells 

later, during production test or 
in circuit test 

 conversion between 
technologies 

by DRC 

by netlist and timing 
extraction, plus extended gate 
level simulation 

all implementation 
methodologies 

faults in library (common 
cause fault for synthesis and 
simulation) 

by using qualified or “proven 
in use” libraries 

 faults in electrical or design 
rule set of the semiconductor 
vendor 

by using qualified or “proven 
in use” information 

 manual interference, 
manipulation of intermediate 
or final netlist or design 
database 

by automated cross check of 
the simulation post vs. prior 
manipulation 

by formal equivalence check 
(if possible) 

 partial verification, insufficient 
quality of the test cases used 
for manual or automated cross 
checks 

by review of the test cases 

by semi-formal methods to 
ensure coverage of the test 
cases 
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Im
pl

em
en

ta
tio

n 
II 

Device Fitter  none; “correct by construction” 

in-circuit verification only by extended (documented) 
in-circuit tests 

by additional simulation  

build-in simulator tools by in-circuit tests 

by cross check with 
independent simulator 

timing violation by review (PLD only, 
guaranteed for strict 
synchronous designs) 

by timing analysis (automated 
or manual) 

faults in library (common 
cause fault for fitter and 
simulation) 

by using “proven in use” 
devices and environment 

by in-circuit tests 

Place & Route (FPGA)  none; “correct by construction” 

functional mismatch due to 
faults in P&R tool 

by gate level simulation (post 
P&R netlist vs. prior P&R) 

timing violation by gate level simulation (post 
P&R netlist and timing) 

by static timing analysis 

bitstream generation (FPGA 
only) 

by in-circuit test 

Place & Route 
(Gate Array) 

 none; “correct by construction” 

functional mismatch due to 
faults in P&R tool 

by gate level simulation (post 
P&R netlist vs. prior P&R) 

by LVS (if supported) 

later in design flow (production 
test) 

timing violation by gate level simulation (post 
P&R netlist and timing) 

by static timing analysis 

design rule violations by DRC 

Layout (ASIC)  none; “correct by construction” 

functional mismatch due to 
faults in layout process 

by gate level simulation (post 
layout vs. pre layout) 

by LVS 

timing violation by gate level simulation (post 
P&R netlist and timing) 

by static timing analysis 

design rule violations by DRC 
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P
ro

du
ct

io
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programming of non-
volatile devices 

 none; “correct by construction” 

invalid programming by readback of the 
programmed information 

by parameter testing during 
the program cycle (e. g. 
resistance measurement) 

functional deviation 
(unrevealed device faults) 

by running production test 
pattern 

by in-circuit test (all devices!) 

volatile devices  none; “correct by construction” 

corrupted bitstream (during 
download) 

by checksum (if supported) 

functional deviation (after 
download) 

by additional in-circuit 
measures 

mask generation 
(ASIC, Gate Array) 

 none; “correct by construction” 

faults during mask generation by manual inspection 

by compare (two mask sets 
required) 

later in design flow (production 
test) 

production test (ASIC, 
Gate Array) 

 by production test (running 
test pattern) 

 process variations by inspection of critical paths 

by measurement of 
characteristically parameters 

 

P
os

t 
P

ro
du

ct
io

n   by running set of standard 
validation tests, in addition to 
the pre-validation tests done 
during design and 
implementation phases. 

Table 5: Fault Revealing in Design Flow 
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6 Validation Tests for Complex Components 

To categorise the validation test sets for complex components, two parameters have 

to be considered: 

– Safety Category, based on EN 954-1 

– Complexity of the component 

From these two parameters, the Safety Category is already clearly defined in EN 

954-1. To categorise the complexity of a component, the following – indirect, based 

on “testability” – classification is used: 

– A component is of low test complexity if it is adequate to run the standard 

validation tests on the final component (post production phase), and to reach the 

validation test coverage defined in Table 1. 

– A component if of medium test complexity if running the standard validation tests 

on the final component achieves a maximum test coverage for at least one test 

that is one level less than required (e. g. “medium” coverage of functional testing 

instead of the required “high” coverage). 

– A component is of high test complexity if running the standard validation tests on 

the final component achieves a maximum coverage for at least one test that is two 

or more level less than required (e. g. “low” coverage of functional testing instead 

of the required “high” coverage). 

6.1 Testability and Complexity 

To a certain extend, it is possible to use the “testability” rating from above as a mean 

to categorise the functional and structural complexity of a device or system. For 

example, a “simple” component, e.g. a member of the 74XX or 40XX TTL or CMOS 

series has a very limited functionality which makes it possible to do some functional 

tests and to achieve 100% test coverage. A more sophisticated component, like an 

embedded 8 bit micro controller may not be fully functional testable, due to practical 

limitations (time and effort required to create adequate functional tests); the test 

coverage might not be sufficient to fulfil the requirements from Table 1. In this 

situation, additional measures are required to fill the gap between achieved and 
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required test coverage. These additional measures may be of non technical nature, 

for example claiming “proven in use” for this device or may required additional 

verification / validation steps carried out during the design process. The later 

approach is detailed in the following chapter. 

In most cases, the relation between “testability” and “complexity is bi-directional. This 

means that components with “low test complexity” has a “low functional complexity” 

and vice versa. Components with limited “testability” usually components with 

medium complexity and components with high complexity result usually in insufficient 

“testability”. 

This bi-directional relation between “testability” and “complexity” does not necessarily  

exist in every case, so we use this classification scheme only to quantify validation 

tests, not to introduce a new complexity metrics. Introducing a new complexity seems 

promising right now, but this would require additional work, and is beyond the scope 

of WP3.3 or the STSARCES project. 

6.2 Validation Tests carried out during Design 

6.2.1 Components with Low Test Complexity 

For components with low test complexity (good “testability”), it is adequate to run the 

standard validation test set after component production. This is a direct implication of 

how the term “low test complexity” is defined at the beginning of this chapter. The 

result is shown in Table 6 (which, in this case, is equivalent to Table 1). No validation 

tests during the design process are required. 
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Technique / measure Cat 1,2 Cat 3 Cat 4 

During 
Design 
Flow 

Post 
Produc-

tion 

During 
Design 
Flow 

Post 
Produc-

tion 

During 
Design 
Flow 

Post 
Produc-

tion 

Functional testing – 
– 

HR 
high 

– 
– 

HR 
high 

– 
– 

HR 
high 

Functional testing under 
environmental conditions 

– 
– 

HR 
high 

– 
– 

HR 
high 

– 
– 

HR 
high 

Interference immunity testing – 
– 

HR 
high 

– 
– 

HR 
high 

– 
– 

HR 
high 

Fault injection testing – 
– 

HR 
high 

– 
– 

HR 
high 

– 
– 

HR 
high 

Expanded functional testing – 
– 

– 
low 

– 
– 

HR 
low 

– 
– 

HR 
high 

Surge immunity testing – 
– 

– 
low 

– 
– 

– 
low 

– 
– 

– 
medium 

Black box testing – 
– 

R 
low 

– 
– 

R 
low 

– 
– 

R 
medium 

Statistical testing – 
– 

– 
low 

– 
– 

– 
low 

– 
– 

R 
medium 

“Worst case” testing – 
– 

– 
low 

– 
– 

– 
low 

– 
– 

R 
medium 

Table 6: Validation Tests for Components with Low T est Complexity 

6.2.2 Components with Medium Test Complexity 

For components with medium test complexity, some validation tests need to be run 

during the design and implementation phases. The required test set and the required 

coverage is given in Table 7; Chapter 5.2.2 “Validation Tests & Phase Model” shows 

at which point in the design process it is advised to run the individual tests (for 

details, see Table 3). 

Additional verification loops are required. See chapter 6.3. 
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Technique / measure Cat 1,2 Cat 3 Cat 4 

During 
Design 
Flow 

Post 
Produc-

tion 

During 
Design 
Flow 

Post 
Produc-

tion 

During 
Design 
Flow 

Post 
Produc-

tion 

Functional testing HR 
high 

HR 
high 

HR 
high 

high medium high medium high medium 

Functional testing under 
environmental conditions 

HR 
high 

HR 
high 

HR 
high 

high medium high medium high medium 

Interference immunity testing HR 
high 

HR 
high 

HR 
high 

– high – high – high 

Fault injection testing HR 
high 

HR 
high 

HR 
high 

high medium high medium high medium 

Expanded functional testing – 
low 

HR 
low 

HR 
high 

low low low low high medium 

Surge immunity testing – 
low 

– 
low 

– 
medium 

– low – low medium low 

Black box testing R 
low 

R 
low 

R 
medium 

– low – low medium low 

Statistical testing – 
low 

– 
low 

R 
medium 

low low low low medium low 

“Worst case” testing – 
low 

– 
low 

R 
medium 

low low low low medium low 

Table 7: Validation Tests for Components with Mediu m Test Complexity 

6.2.3 Components with High Test Complexity 

For components with high test complexity, a reasonable number validation tests need 

to be run during the design and implementation phases. For safety reasons, it is not 

useful to give general recommendations about the required test set and the required 

coverage for components with high test complexity without detailed knowledge about 

the component and its intended use.  
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6.3 Implementation / Verification Loops 

Moving the validation testing to an earlier point in the design flow, the subsequent 

steps need to be more thorough verified, to ensure that the results of the validation 

are still valid for the final component. All listed verification steps need to be carried 

out that are required for an uninterrupted chain of cross-checks, starting at the 

validation test in the design process and ending at the final component. The 

coverage for each step needs to be at least as high as the coverage for the validation 

test itself (Table 7). If more than one verification method is listed, at least one (or any 

meaningful combination) has to be used.  

Table 8 sums up the verification tasks from Table 5. 
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Phase Implementation Step Verification Step 

 

S
pe

ci
fi-

ca
tio

n 

– – – – – – 

 

D
es

ig
n 

D
es

cr
ip

tio
n 

Code generation from High Level Design 
Description 

functional simulation of the resulting code 

equivalence check, using automatic 
compare of the simulation results in the 
High level environment vs. the simulation 
results of the generated code 

Use of “Soft Cores” or “Macro Blocks” functional simulation of the core or macro + 
code review 

extended functional simulation of the core 
or macro (if no source code is available) 
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Im
pl

em
en

ta
tio

n 
I 

Conversion from Schematic to 
netlist / design database 

simulation of the resulting netlist (manual 
check against specification) 

simulation of the resulting netlist 
(equivalence check against behaviour of 
schematic) 

Conversion from High Level Entry to 
netlist / design database 

simulation of the resulting netlist (manual 
check against specification) 

simulation of the resulting netlist 
(equivalence check against behaviour of 
high level description) 

Synthesis simulation of the resulting gate level netlist 
(manual check against specification) [only if 
low coverage is required] 

simulation of the resulting gate level netlist 
(equivalence check against behaviour of 
(V)HDL source code) 

simulation of the gate level netlist with 
timing information, to verify timing 
constraints 

static timing analysis 

Test Insertion simulation of the resulting gate level netlist 
(equivalence check against the netlist prior 
to test insertion) 

formal equivalence check 

simulation of the gate level netlist with 
timing information, to verify timing 
constraints 

static timing analysis 

Use of “Generated Cores” or “Hard Cores” DRC (design rule check) 

netlist extraction, extended simulation of 
the resulting netlist 

 

netlist and timing extraction, extended 
simulation of the netlist with timing 
information, to verify timing constraints 

netlist and timing extraction, static timing 
analysis 

 



 – 35 – 

 - 

Im
pl

em
en

ta
tio

n 
II 

Device Fitter extended in-circuit test 

export into a netlist, simulation 

Place & Route (FPGA) export of P&R database into a netlist, 
extended simulation of the netlist 

export of P&R database into a netlist, 
simulation (equivalence check against 
the pre P&R netlist) 

export of P&R database into a netlist, 
formal equivalence check 

export of P&R database into a netlist and 
into a timing file, gate level simulation 
with timing, to verify timing constraints) 

export of P&R database into a netlist and 
into a timing file, static timing analysis 

Place & Route (FPGA) export of P&R database into a netlist, 
extended simulation of the netlist 

export of P&R database into a netlist, 
simulation (equivalence check against 
the pre P&R netlist) 

export of P&R database into a netlist, 
formal equivalence check 

export of P&R database into a netlist and 
into a timing file, gate level simulation 
with timing, to verify timing constraints) 

export of P&R database into a netlist and 
into a timing file, static timing analysis 

DRC (design rule check) 

LVS (layout vs. schematic check) 

Layout (ASIC) netlist extraction from layout, extended 
simulation of the netlist 

netlist extraction from layout, simulation 
(equivalence check against the pre P&R 
netlist) 

netlist extraction from layout, formal 
equivalence check 

netlist and timing extraction from layout, 
gate level simulation with timing, to verify 
timing constraints) 

netlist and timing extraction from layout, 
static timing analysis 

DRC (design rule check) 

LVS (layout vs. schematic check) 
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P
ro

du
ct

io
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non-volatile devices (PLD, CPLD, FPGA) readback of programmed device, 
parameter testing 

running “production test” pattern on final 
device 

volatile devices readback of configuration PROM 

mask generation (ASIC) mask inspection 

mask compare 

defects running “production test” pattern on final 
devices 

process variations timing measurement (on ASIC tester) of 
critical / characteristic paths 

measurement of typical process 
parameters 

Table 8: Verification Tasks 
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7 Conclusion 

As part of the work on Work Package 3.3 “Safety Validation of Complex Components 

– Validation Tests”, several state of the art validation test methods that are in use for 

complex or semi-complex components where evaluated and assessed. Typical work 

flows for the design of PLDs, FPGAs and (cell based) ASICs were used as reference 

to identify possible safety hazards in the design and development process of such 

complex (hardware) components. 

As a result of the work on Work Package 3.3, guidelines for suitable validation tests – 

that consist of a number of validation tasks that need to be carried out during the 

design and development process – were proposed. This enables the designer of this 

type of components to provide the objective evidence that the functional and the 

safety objectives for the complex component under consideration are met. 
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Appendix A: Safety Validation Methods 

This chapter gives some additional information on the different “Safety Validation 

Methods” mentioned in the main part of this report. The main base of these 

descriptions is the IEC 61508. 

A.1 Functional testing 

Functional testing is used to reveal failures during the specification and design 

phases and to avoid failures during implementation and the integration of software 

and hardware. 

A.1.1 How to proceed ? 

During the functional tests, reviews are carried out to see whether the specified 

characteristics of the system have been achieved. The system is given input data 

which adequately characterises the normally expected operation. The outputs are 

observed and their response is compared with that given by the specification. 

Deviations from the specification and indications of an incomplete specification are 

documented. 

Functional testing of electronic components – designed for a multi-channel 

architecture – is carried out by testing the manufactured components against pre-

validated partner components. In addition to this, it is recommended to test the 

manufactured components in combination with other partner components of the 

same batch, in order to reveal common mode faults which would otherwise have 

remained masked. 

A.1.2 Comments based on practical use 

The method of functional testing is one of the most popular methods during the past 

years to deal with safety relevant programmable electronic systems. But with 

increasing complexity of the components used for electronic systems the 

effectiveness of the coverage of detection of faults and defects of these complex 

circuits is decreasing. It is not possible to test all logic combinations of a complex 

circuit. Also a subset of tests delivers an insufficient result. 
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A.1.3 Applicability for complex components 

Beside the problem of pure complexity that makes is practical impossible to do a 

adequate functional testing, the use of high complex components raises additional 

problems: 

controllability: During functional testing, each complex component has to be treated 

as a special type of “black box”. Although all details about this “black box” may be 

specified and known to the tester, it is not possible to go “inside” the component to do 

a functional testing of the individual building blocks. Thus it might not be possible to 

check most of the functional details that are not directly controllable from the 

components boundary. More disadvantageous, not even all safety functions may be 

tested, especially those part that deal with potential faults (e. g. using self-testing 

logic or redundancy) might not be tested because they may not be activated during 

normal operation. 

observability: Internal states of a integrated component may not be fully visible for 

the outside world. Thus the behaviour of the single component or a complex system 

may be non-deterministic from the testers point of view. This type of “random” 

behaviour may be triggered by a special sequence of events that might not be 

reproducible nor be classified with respect to the safety function. 

repercussion: The test setup required for functional testing itself may have a serious 

impact on the system under test. For example, it might not be possible to run the 

system at full speed (because an emulator is use instead of the on-board CPU) or it 

is necessary to attach probes – that represent an additional capacitive and inductive 

load – to trace on-board signals. 

A.1.4 Conclusion 

From the practical experience, functional testing is an very effective method for 

validation testing, but only if the system under test has a limited complexity. 

Functional testing is applicable for complex systems and components, but high 

complex monolithic systems need to be partitioned into smaller, more manageable 

units to benefit from a functional test. Moreover, “virtual” functional testing, e. g. using 

simulation during the design process, may provide a very precise information about 

the behaviour of the system under special modes of operation – even under those 
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conditions that might not be checked during a “real” functional test, due to the 

mentioned lack of controllability. 

A.2 Functional testing under environmental conditio ns 

This method provides that the safety-related system is designed to operate under the 

specified environmental conditions and that it is protected against typical environ-

mental influences. 

A.2.1 How to proceed ? 

The system is put under various environmental conditions (for example according to 

the standards in the IEC 60068 series or the IEC 61000 series), during which the 

normal operation and the safety functions are assessed.  

A.2.2 Comments based on practical use 

The method of functional testing under environmental conditions is a very good 

method to check a subset of functions during or after exposure to environmental 

stress (climatic, mechanic as well as electromagnetic stress etc.). But it is not 

possible to test all logic combinations of a complex circuit. This method can be 

understood as an addition to functional testing as already commented. 

A.2.3 Applicability for complex components 

It is a well known fact that environmental stress (e. g. high temperature) has a 

statistical impact on the expected lifetime of different types of components. Based on 

long term experience and process characterisation, many of the operating conditions 

(e. g. supply voltage, ambient temperature) required for reliable and long-term stable 

operation are known in advance.  

A.2.4 Conclusion 

In addition to the functional testing under environmental conditions, the functionality 

and behaviour of a complex component under environmental conditions may be 

estimated in advance, based on known characteristics of the devices physics and the 

manufacturing process.  
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A.3 Interference surge immunity testing 

To check the capability of the safety-related system to handle peak loads, the method 

of interference surge immunity testing is to be done. 

A.3.1 How to proceed ? 

The system is loaded with a typical application program and all the peripheral lines 

(all digital, analogue and serial interfaces as well as the bus connections and power 

supply) are subjected to standard noise signals. In order to obtain a quantitative 

statement, it is sensible to approach the surge limit carefully. The chosen class of 

noise is not complied with if the function fails. 

A.3.2 Comments based on practical use 

This method is one of the basic methods to ascertain, that the programmable 

electronic system is able to work under special environmental conditions (especially 

electromagnetic conditions) without loss of the safety function. 

A.3.3 Applicability for complex components 

The main focus of interference surge immunity testing is on external interfaces and 

on interconnections. Thus, surge immunity is primary a problem to be addressed on 

board level – where additional protection circuitry might be required – primarily 

independent of the complexity of the components used to implement the core 

functionality. 

A.3.4 Conclusion 

Surge immunity testing is applicable independent of the type of components used on 

a board. But, high complex components might demand a higher level of external 

protection circuitry, due to lower immunity to noise and voltage surge. 

A.4 Fault injection testing 

Fault injection testing is used to introduce or simulate faults in the system hardware 

and document the responses. 
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A.4.1 How to proceed ? 

This is a qualitative method of assessing dependability. Preferably, detailed 

functional block, circuit and wiring diagrams are used in order to describe the location 

and type of fault and how it is introduced. For example: power can be cut from 

various modules; power, bus or address lines can be open/short circuited; 

components or their ports can be opened or shorted; relays can fail to close or open, 

or do it at the wrong time, etc. Resulting system failures are classified, as in tables I 

and II of IEC 60812, for example. In principle, single steady state faults are 

introduced. However, in case that a fault is not revealed by the built-in diagnostic 

tests or otherwise does not become evident, it can be left in the system and the effect 

of a second fault must be considered. The number of faults can easily increase to 

hundreds. The work is done by a multidisciplinary team and the vendor of the system 

should be present and consulted. The mean time between failure for faults that have 

grave consequences should be calculated or estimated. If the calculated time is low, 

modifications should be made. 

A.4.2 Comments based on practical use 

Fault injection testing is mandatory, because a clear reaction of the system or the 

component on a fault or a faulty state only can be available by fault injection. The 

theoretical base of fault injection testing normally is a failure mode and effects 

analysis (FMEA) either on system level or on levels of analysis lower than the system 

level. The lowest level is the component level. The FMEA is one of the best 

theoretical instruments to analyse system or component states and the reaction of 

the system or subsystem or component to faults. It is an essential need, that tests 

that are based on the method of fault injection testing are defined as a result of a 

theoretical / analytical method like the FMEA, FTA or ETA, Cause Consequence 

Diagrams, Worst Case Analysis, et cetera. Only with this procedure, the 

effectiveness of testing is guaranteed. With this analytical methods the possible faults 

of the systems or components were analysed and the effects of faults on different 

system levels are to be considered systematically. 
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A.4.3 Applicability for complex components 

As described above, the lowest level of an FMEA is the component level. But, in the 

context of complex components, each such component (e. g. a microprocessor with 

on-board RAM and program ROM and a full custom ASIC) may represent a full 

self-contained, independent sub-system. Treating such a component as a single, 

indivisible entity in an FMEA might render the complete FMEA useless. Moreover, 

during fault injection testing, it might be impossible to reach all relevant internal states 

and nodes from the inputs of the complex component under test. 

A.4.4 Conclusion 

As for functional testing, it is also required for FMEA and fault injection testing to 

move “beyond to surface” of a complex component. Due to limited controllability – it 

might not be possible to inject faults into a component, even with high sophisticated 

test equipment – fault injection testing has to move to an earlier stage in the design 

process. The most promising approach is to use fault injection testing together with 

functional simulation.  

A.5 Worst case testing 

To test the cases specified during worst case analysis. 

A.5.1 How to proceed ? 

The operational capacity of the system and the component dimensioning is tested 

under worst case conditions. The environmental conditions are changed to their 

highest permissible marginal values. The most essential responses of the system are 

inspected and compared with the specification. 

A.5.2 Comments based on practical use 

Worst case testing is not always possible, because it is very difficult to define the 

limits, where the equipment under test is not destroyed or damaged with long time 

defects. Normally worst case testing is done with a couple of prototypes after running 

tests under normal specified conditions for the system or the component. After this 

normal condition testing the prototypes will be tested slowly to their limits to define 
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the real limits of use. After worst case testing the equipment under test is analysed 

closely. The equipment under test normally is damaged when the worst case test 

was done successfully. 

A.5.3 Applicability for complex components 

If the defects due to worst case testing are assumed to be equally distributed, worst 

case testing of a complex component will result in random failure modes. To get an 

expressive result – a classification or numerical distribution – for the portion of safety 

related faults, a quite large number of systems will be required for worst case testing. 

This is not acceptable, not only from the commercial point of view. 

As already stated in the chapter “Functional testing under environmental conditions”, 

a priory knowledge from experience and process characterisation, may help to find 

out the absolute maximum conditions for worst case testing. Static analysis might 

help to characterise the actual behaviour under worst case stress and clearly show 

the weakest points of the component, without the necessity to run a destructive test. 

A.5.4 Conclusion 

A priory knowledge about the behaviour of a component under stress is useful, both 

for the improvement of the component itself as well as for a prediction of the outcome 

of a worst case test. Used at an early point in the design process, it might help to 

reveal potential problems that would otherwise first show up during worst case 

testing. Moreover, a prediction about the expected behaviour might help to focus on 

the “right” part of the system during worst case test. 

A.6 Expanded functional testing 

Used to reveal failures during the specification, design and development phases. 

Also used to check the behaviour of the safety-related system in the event of rare or 

unspecified inputs. 

A.6.1 How to proceed ? 

Expanded functional testing reviews the functional behaviour of the safety-related 

system in response to input conditions which are expected to occur only rarely (for 
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example major failure), or which are outside the specification of the safety-related 

system (for example incorrect operation). For rare conditions, the observed behaviour 

of the safety-related system is compared with the specification. Where the response 

of the safety-related system is not specified, one should check that the plant safety is 

preserved by the observed response. 

A.6.2 Comments based on practical use 

This method is done for testing the limits of normal use and to define the system 

reactions in case of unknown stress and unknown fault combinations. For safety 

related complex components expanded functional testing is mandatory on 

prototypes. 

A.6.3 Applicability for complex components 

As for regular functional testing, expanded functional testing will not have an 

adequate coverage of a complex component’s total functionality, nor of the safety 

related subset of this functionality. To catch up with the complexity issue, it is 

necessary to divide the whole functionality into smaller, more manageable units. 

Because this is not possible looking at component level, this partitioning needs to be 

done at an earlier stage of the design process, e. g. using extended functional 

simulation at module level. 

A.6.4 Conclusion 

Expanded functional testing is only possible at the boundary of the final component; 

the coverage of the expanded functional test for internal building blocks of the 

component will be unsatisfactory low in most cases. Again, it is necessary to go 

“beyond the surface” of the component and to do the expanded functional testing 

earlier in the design process, using an adequate “functional model”. 
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Appendix B: Technology Overview 

The following paragraphs give an overview of typical products and design 

methodologies for integrated circuits. The number of parties involved in the design 

and validation process varies as well as the responsibility for the work packages 

within the design flow. 

 PLD 
CPLD 

FPGA gate array cell based 
ASIC 

core 
based 
ASIC 

full custom 
ASIC 

standard 
IC 

functional 
specification 

C C C C C C V 

implemen-
tation 

C C D D D, M (1) D (1) V 

place & route, 
layout 

V C V D D, M (1) D (1) V 

wafer 
production 

V V V V V V V 

packaging V V V V V V V 

test (2) V, C (3) V, C (3) V, D (4) V, D (4) V, D (4) V V 

Table 9: Overview Integrated Circuits 

The following notation is used in Table 9: 

responsibilities V IC / ASIC vendor (manufacturer) 

C end customer, system and application development 

D ASIC design centre 

M macro core (pre-designed functional blocks) vendor 

Notes (1) ASIC design centre of the silicon vendor or independent 
design centre (third party) 

 (2) For standard IC and ASIC design, “test” denotes the 
production test that ensure integrity of the device prior to 
shipping. 

 (3) in this case: system integration test, in addition to production 
test for the un-programmed devices 

 (4) production test, done during manufacturing process by ASIC 
Vendor; based on test patter generated and approved by D 

B.1 Standard IC 

Manufactured in large quantities and applied for different applications. Functionality, 

validation, production and production test are solely in the hand of the semiconductor 
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vendor. Manual manipulations and optimisations at layout level are frequently used to 

reduce required area. Not designed for safety-related systems, fault avoidance during 

the design process is only adequate for standard products. Frequent changes in 

production process, process technology and layout are likely for cost and yield 

optimisation. Number of components manufactured using a certain process or mask 

revision are not publicly known.  

B.2 Full Custom ASIC 

Application Specific Integrated Circuit. Design and production similar to standard IC, 

with functionality defined by end customer. 

B.3 Core Based ASIC 

Based on pre-layouted or generated macro cores, connected by additional logic. 

Examples for pre-layouted macros are standard microprocessor cores, peripheral 

components, communication interfaces, analogue blocks, special function I/O cells. 

Examples for generated macros include embedded RAM, ROM, EEPROM or 

FLASH. Generated blocks are assumed to be „correct by construction“, based on 

design rules. Pre-layouted or generated macros are process specific but may be 

ported to different technologies. In most cases, the macro cores are not identical to 

the original discrete off-the-shelf components (different process, provided by a third 

party). 

B.4 Cell Based ASIC 

Based on logic primitives (like AND, OR, Flip-Flop, Latch) taken from a cell library. 

The gate-level netlist containing the logic primitives and the interconnections is 

usually created from a high level hardware description language (VHDL, Verilog) 

using synthesis tools. The functional and timing characteristics of the logic primitives 

is characterised in the cell library; these parameters are used to drive the synthesis 

tool and are also used for simulation. In addition, layout tools are used to place the 

cells and to route the interconnects. 



 – 48 – 

 - 

B.5 Gate Array 

Pre-manufactured silicon „masters“ with a fixed number of cells are the common 

starting point for different components. The functionality is defined by the 

interconnection matrix (metal layer) between the pre-manufactured cells. The design 

process it very similar to that of a cell based ASIC, while the layout step is replaced 

by a routing step to connect the already existing cells. 

B.6 FPGA 

Field Programmable Gate Array. Standard IC, using one-time programmable or re-

programmable elements to define the connection between functional blocks and to 

configure the functionality of the individual blocks. It is not possible to test one-time 

programmable FPGAs completely during production due to the nature of the 

programmable element. 

B.7 PLD 

Programmable Logic Device. Standard IC, with low to medium complexity, using one-

time programmable or electrical erasable elements (“fuse”) to define combinatorial 

logic – typical based on AND / OR product terms – and configurable storage 

elements. Predictable timing and guaranteed maximum operating frequency in 

synchronous design due to regular structure.  

B.8 CPLD 

Complex PLD. Multiple PLD-like blocks on a single chip, connected by a pro-

grammable interconnection matrix (crossbar). The programmable logic element is 

re-programmable (EPROM or EEPROM) in most cases. 

B.9  MCM 

Multi Chip Module. Multiply chips (dies) and passive components mounted on a 

common substrate and assembled into a single package. In most cases, package 

and outline is similar a standard IC. The chips (dies) use for MCM production are 

usually pre-validated, but not finally characterised. Thus, testing under environmental 

conditions needs to be done at MCM level. 
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MCM is primarily a different packaging technology. Design methodology for the 

individual parts of the MCM is mostly identical to the design methodology for system 

build on conventional printed circuit boards. Therefore, MCM are not further 

discussed in this report.  

B.10 COB 

Chip On Board. Instead of using chips (dies) in conventional packages, the die is 

bonded directly on the printed circuit board and hermetically sealed afterwards. 

As mentioned for MCM, COB is primarily a different packaging technology, thus no 

further discussed in this report. 
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Appendix C: Complexity Metrics 

To clarify the term „complex component“ in the context of safety validation, it is useful 

to introduce a classification scheme for complex components. A classification makes 

it possible to tag every component class with an individual set of required or 

recommended safety validation test. In most cases, the set of validation tests 

assignable to each class will be only a subset of all safety validation tests considered 

in WP 3.3, leaving out those tests that are either not applicable or not meaningful for 

the component class under consideration. 

The classification of complex components may be done according to different 

metrics. Possible metrics include, but are not limited to: 

− structural complexity , e. g. measured in the number of bundled components or 

the number of integrated gate equivalents  

− functional complexity , e. g. measured in the number of functional requirements 

assigned to the component or the extent of the component’s specification 

− technology , including semiconductor process, packaging, mounting and 

assembly technologies  

− field experience  

Structural and functional complexity should be clearly distinguished. For example, 

state-of-the-art RAM chips are among the components with the highest structural 

complexity, integrating millions of single-bit memory cells in a single chip. But, on the 

other hand, the functional complexity of a RAM is very low – its functionality may be 

specified in a few statements. The consequences for safety validation test are, that, 

due to the low functional complexity and the regular structure, black box testing at 

component level, e.g. with algorithms described in IEC 61508, is adequate and 

ensures high coverage. 

C.1 Structural Complexity 

Advances in semiconductor process technology are the driving factors for increased 

structural complexity of components. The typical structural complexity doubles with 

every new process generation. 
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Due to the number of integrated circuitry and interconnections, all possible failure 

modes of most complex component are not known nor is it possible to analyse the 

effects of the known failure modes with respect to the module or board where this 

component is used. Automatic tools for fault coverage analysis or fault injection 

testing are already used during the design process of complex components. 

Typically, these tools are well suited for fault coverage calculation using a given or 

automatically constructed set of test patterns. The usability of such tools for failure 

mode examinations has to be evaluated. Moreover, even for the fault detection 

coverage, additional work is required to make coverage figures estimated for 

functional test (e.g. self-test code executed by a microprocessor) comparable to 

coverage figures calculated based on the actual structural information (like layout or 

netlist). New fault models are required due to the advances in semiconductor 

technology as the minimum feature size has moved far beyond one micron, resulting 

in fault scenarios not covered by conventional stuck-at fault models.  

C.2 Functional Complexity 

As shown in Figure 2, more and more functionality may be integrated into a single 

component. In every phase shown in the figure, functionality implemented at module 

or board level is packed into a single components in the next generation. The total 

complexity rises by several orders of magnitude. 

             Integration 
level 

 discrete   small, medium 
scale 

  large, very large 
scale  

  sub-micron 
technologies 

 

             
design 
paradigm 

 bread board   schematic entry   synthesis   core-based, 
design re-use 

 

             

component 
level 

 discrete compo-
nents R, C, L, T 

  standard logic 
families, OAmps, 
PALs 

  CPU, µC, FPGA, 
memory complex 
analogue 

  „systems on 
silicon“ 

 

             
module level  low complexity: 

amplifier, filter, 
combinatorial, 
sequential logic   

  single board 
controller, cen-
tralised systems 

  single chip con-
troller, distributed 
systems 

  ?  

             
Figure 2: Integration Stages 
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For safety validation in the context of complex components, it is no longer adequate 

to consider components as atomic building blocks of circuit modules or boards. 

Instead of this „black box“ approach, it is necessary to move beyond the component 

level to perform meaningful and adequate validation test. It is obvious that this kind of 

testing is not possible after the integration. New methods and guidelines for 

functional testing during the design and integration process are required.  

C.3 Technology 

Different technologies used for “complex components” are already discussed in 

Appendix B: “Technology Overview”.  

C.4 Field Experience 

The definitions of IEC 61508 (part 2) for class A and B components implies that „... 

field experience should be based on at least 100.000 hours operating time over a 

period of two years with 10 systems in different applications.“ Especially for complex 

standard components, it is not known to the end user whether the devices that are 

actual used on the circuit board are manufactured for the required period of time with 

the current mask revision and on the current process line. Even if the standard 

component is available for many years, modifications during that period of time are 

most likely, contradicting the requirements laid down in IEC 61508. 

For complex application specific integrated circuits (ASICs), the terms „experience“ or 

„proven in use“ should be clarified and related to the different inputs for the design 

process: 

− process technology 

− design rules for cell placement, interconnect and layout 

− pre-layouted or generated macro cores 

− cell libraries, including layout information and simulation models 

− soft macros 

− design tools: layout, synthesis, simulation 
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Appendix D: ASIC Design Flow 

A simplified design flow for application specific integrated circuits (ASICs) and Gate 

Arrays is given in the following figure. The work packages shown in the design flow 

and the validation tests are listed in the following paragraphs. 
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Figure 3: Simplified Gate Array / ASIC Design Flow 

D.1 Design Entry 

D.1.1 Hardware Description Languages 

Design description using a hardware description language like VHDL or Verilog4. This 

is most common hardware description methodology used today in ASIC and Gate 

Array design. Both languages are defined by IEEE standards and are assumed to 

satisfy the requirements for “high level programming languages” for safety related 

E/E/PE systems stated in IEC 61508. 

The hardware description language may be used both for design description and for 

functional models or “test benches”. When used for design description, only a subset 

of the language may be used; this synthesiseable code is often referred to as RTL 

(“register transfer level”) code. Non synthesiseable code, adequate for functional 

models and test benches is called “behavioural” code. 

D.1.1.1 Verification of the Results 

Verification of the functionality is done using standard (V)HDL simulators. Simulation 

is done at (V)HDL source code level, ensuring the correct sequence of events but not 

the actual timing behaviour. Test scenarios and test case are derived from the 

specification requirements and have to be implemented manually, using the 

hardware description language. 

D.1.1.2 Potential safety hazards 

− Simulated behaviour at (V)HDL source code level (RTL) may differ from behaviour 

at gate level. For example, in an RTL description, a VHDL process may be defined 

to be sensitive only to a subset of its input signals. After synthesis, at gate level, 

the generated circuitry is always sensitive to every input signal.   

                                            
4 The term (V)HDL is used in this paper to denote either the VHDL or Verilog hardware description 

language. 
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− Wide variety of different language constructs. As for safety related software, only a 

subset of the language should be used due to potential limitation of the synthesis 

process and to improve readability. 

− coverage of test scenarios and test cases. 

D.1.2 High Level Design Entry 

Comparatively easy to use graphical tools are used for high level design entry 

(flowcharts, state diagrams, spreadsheets, block diagrams); this provides a very 

descriptive method for design entry, with a high degree of self-documentation. 

Additionally, it is possible to use this methodology already during specification. The 

tools are able to create synthesiseable (V)HDL code from the graphical description. 

In some cases the transformation is bi-directional, able to create a graphic 

representation for (V)HDL source code, too. 

D.1.2.1 Verification of the Results 

Verification of the functionality is usually done by simulation, either with a simulator 

working inside the graphical tool or with a standard (V)HDL simulator after code 

generation, with back-annotation and visualisation of the simulation results in the 

front end tool. 

Test scenarios and test cases are derived from the specification requirements and 

have to be implemented manually, in most cases in a tool specific environment and 

language. 

D.1.2.2 Potential safety hazards 

− Weak semantics of the input „language“. The (V)HDL code generated is only one 

possible representation of the functionality, leaving uncertainty about the 

implementation generated. 

− The generated code may be hard to understand, e. g. during code reviews. 

− Simulation exclusively in the graphical environment does not reveal faults 

introduced during the (V)HDL generation step. 
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− The quality of the test scenarios and test cases used during the verification may 

be not high enough. 

D.1.3 Use of “Soft Cores” or “Macro Blocks” 

“Soft Cores” are pre-designed – often parameterisable – blocks with a closed 

functionality, e. g. for multi-bit arithmetic (adder, multiplier, divider, etc.), commonly 

used interfaces, peripherals or even processor cores. In most cases, soft cores are 

used to build larger systems, to re-use already existing blocks and to speed up the 

design process.  

D.1.3.1 Verification of the Results 

Used “as is”, verified together with the blocks of the surrounding system. 

D.1.3.2 Potential safety hazards 

– Inadequate verification that concentrates on the interaction with the surrounding 

system only and does not verify the behaviour of the soft core or macro itself. 

– Vendor-dependent quality of the soft core or macro libraries. Correctness is not 

guaranteed. 

– Encrypted or pre-compiled, source code not available. 

D.1.4 Schematic Entry 

Schematic entry of the circuit, using primitives (single logic gates, Flip Flops) from a 

cell library or using macro functions (e.g. counters, standard logic components). The 

schematic may be translated directly into a corresponding gate-level netlist. For 

macros, a suitable gate-level representation is automatically substituted during the 

conversion process. 

D.1.4.1 Verification of the Results 

Verification of the functionality is done using standard simulators at gate level. Back-

annotation of the results into the schematic is possible. 
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D.1.4.2 Potential safety hazards 

− Old-fashioned design methodology, not used for larger designs in a state-of-the art 

design process due to the low level of abstraction, demanding the designer to 

generate the gate-level implementation of the required functionality manually. 

− simulation results are depending on the simulation models stored in the macro 

block library. 

D.2 Implementation 

D.2.1 Synthesis 

Automatic, constraints guided transformation of a (V)HDL description into a gate level 

netlist. The synthesis process is rather complex and is based on three different 

inputs: 

− the (V)HDL description to define the functionality 

− synthesis constraints (e.g. for path delays, area) to guide the selection of an 

appropriate implementation (out of all possible implementations that have the 

required functionality)  

− a cell library as a collection of available target cells. Every cell in the library is 

characterised by its functionality and timing behaviour. 

D.2.1.1 Verification of the Results 

− internal housekeeping and checks during the synthesis process itself (auto-

matically performed by synthesis tool) 

− simulation of gate level netlist against the RTL reference model (functional 

equivalence) 

− simulation of gate level netlist to verify timing constraints 

− static timing analysis to verify timing constraints 

D.2.1.2 Potential safety hazards 

− functional discrepancy between (V)HDL source and gate level netlist due to 
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− language limitations (see (V)HDL Coding) 

− faults during the synthesis process (caused by the synthesis tool) 

− faults during manual interference in the synthesis process or manipulation of the 

netlist 

In general, these potential faults should be discovered during simulation of the 

gate level netlist against the behaviour of the RTL reference. 

It is important to note that simulation only reveals those faults actually covered by 

the test cases. Although it is desirable to re-run the complete set of validation tests 

done at RTL level after synthesis, in some cases this is not possible due to 

runtime restrictions or due to modifications in the module hierarchy (e.g. if several 

small modules are melted into a single module for the improvement of the 

synthesis results). 

− faults in the cell library may cause discrepancies between the cell’s actual 

functionality or timing behaviour and the behaviour of the model stored in the 

library. This may cause a “common cause failure” that is not revealed by 

simulation, because synthesis, simulation and static timing analysis are depending 

on information from the cell library. But, functional faults will be revealed during 

production test if the functional mismatch is testable and covered by the test 

pattern. 

− very complex software and algorithms are used during the synthesis process. Due 

to the complexity and the ongoing development of the tools, it seems not possible 

nor desirable to certify a particular tool and ban the usage of not certified tools. 

D.2.2 Conversion from Schematic to Gate Level Netli st (“Netlister”) 

For schematic entry, the tool-internal design database that represents the schematic 

must be translated into a gate level netlist. This process is similar to the synthesis 

process described before, but far less complex. 

D.2.2.1 Verification of the Results 

− simulation of gate level netlist to verify functionality, eventually with back-

annotation into the original schematic 
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− simulation of gate level netlist to verify timing constraints 

− static timing analysis to verify timing constraints (requires addition tools) 

D.2.2.2 Potential safety hazards 

− Functional discrepancy between the schematic and gate level netlist due to 

− faults during the conversion process 

− faults in the macro library, leading to a false implementation of the macro’s 

functionality 

− faults during manual interference in the synthesis process or manipulation of the 

netlist 

− No timing information in schematic, thus no timing constraints are respected in the 

translation process 

D.2.3 Test Insertion 

Automatic insertion of test structures into the netlist, like scan (for automatic test 

pattern generation, ATPG), boundary scan or build in self test (BIST). In addition to 

the scan insertion, a set of test vectors is generated during the test insertion process. 

Fault coverage, in most cases based on a „single-stuck-at“ fault model is 

automatically calculated. 

Test insertion, fault coverage analysis and fault simulations are primarily done to 

ensure testability of the chip after manufacturing, in other words to detect structural 

faults during the manufacturing process and guarantee the integrity of the 

manufactured devices after the production test. The analysis is not done to reveal the 

effects of faults with respect to the system. 

D.2.3.1 Verification of the Results 

− simulation of the netlist after test insertion against the behaviour of a reference 

model (netlist prior to test insertion or RTL source code) with respect to 

functionality and timing. 

− Static timing analysis 
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− functional simulation of the ATPG test pattern set 

− functional simulation of the boundary scan 

− functional simulation of the BIST 

− fault simulation (to check calculated coverage figures or to analyse coverage of 

functional patterns and BIST) 

D.2.3.2 Potential safety hazards 

Faults during test insertion (functionality, timing). These faults are revealed by 

simulating the behaviour of the netlist against a reference. 

D.2.4 Generated Cores, Hard Cores 

Regular structured macro cores, like RAM and ROM blocks, are usually generated 

separately and linked to the design database for use in the layout process. The 

generator provides two separate outputs: The pre-layouted macro core itself, directly 

useable for layout and a simulation model of the core for the gate level simulation. 

“Hard Cores” are an other type of pre-layouted macro. They span the same 

functionality as “soft cores” (e. g. communication interfaces or peripherals, 

microprocessors), but are provided as already optimised, but technology-dependent, 

pre-layouted blocks.  

D.2.4.1 Verification of the Results 

− Use of a simulation model for functional simulations of the RTL description or the 

gate level netlist to ensure proper interactions with the macro core. 

− Design rule check (DRC) for the generated layout of the core. 

D.2.4.2 Potential safety hazards 

− In most cases, the model used for simulation and the core are derived from the 

same source. But, besides this common origin, there is no further relation between 

the functionality of the simulation model and the functionality of the core. Thus, 

discrepancies between the two instances are possible. 
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− The design rules defined by the semiconductor vendor ensure adequate electrical 

characteristics and compliance to the process requirements. Even if the DRC does 

not detect violations, this does not guarantee correct functionality in any case. 

Thus, for example, faults in a core generator may not be revealed. 

− Hard cores are not portable between different technologies. In some cases, it is 

possible to automatically convert the layout from one technology to an other. 

Faults during this process may not be revealed. 

D.2.5 Place and Route / Layout 

In a first step, the cells found in the final gate level netlist and the macro cores are 

placed on the chip. Note: This step is required for core and cell based designs only, 

for gate arrays, a regular placement of universal cells has already be done during the 

pre-production of the gate array master. In a second step, the interconnections are 

routed. In a third step, timing information are derived form the actual layout and back-

annotated for post layout simulation. 

In many cases, the place and route / layout step includes additional tasks like 

− buffer sizing, adapting the output drive strength of individual gates to the actual 

wire load after layout 

− clock tree synthesis, generating a skew-optimised clock distribution system. 

D.2.5.1 Verification of the Results 

− Simulation of the netlist after layout against the behaviour of the reference model 

(netlist or RTL source code) with respect to functionality and timing. 

− Static timing analysis 

− Design rule check (DRC) to guarantee the design rules dictated by the 

semiconductor vendor. 

− Layout versus schematic check (LVS): Extraction of a netlist from the polygons of 

the final layout and automatic compare against the netlist used as input for the 

layout tool. This ensures the integrity of the layout step. 
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D.2.5.2 Potential safety hazards 

− Synthesis, simulation and layout are based on the same cell library (see synthesis 

for further explanations about common cause failures). 

− Faults caused by the layout tool or faults in manual manipulations during layout 

optimisation are most likely detected by the LVS check. 

− The functionality of circuitry created directly at layout level (e.g. analogue blocks, 

highly area optimised structures) may be extracted from the layout for simulation 

and verification purposes. Because there is no reference model the layout is 

based on, faults during the extraction process may falsify simulation results, hiding 

implementation faults. 

− Design rules are dynamic for new process technologies, changing frequent to 

improve yield and long term stability of the product. Designs based on early design 

rules may suffer from reliability problems. 

D.3 Production 

D.3.1 Mask Generation 

The structures created on silicon during wafer production are controlled by a set of 

masks. The mask are generated (drawn) from the layout information (e.g. GDS-II 

data stream). 

D.3.1.1 Verification of the Results 

The masks used for production are either manually inspected or automatically 

compared. Automatic compare requires masks with two identical copies of the layout 

for each layer. 

D.3.1.2 Potential safety hazards 

− Manual inspection is error-prone 

− Automatic inspection detects only differences between the two copies. Possible 

common cause faults like faults in the GDS-II data stream or misinterpretation of 

the layout data are not detected. 
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− Most functional faults are revealed during production test. 

D.3.2 Production Test 

Test of the final, packaged component using an ASIC tester. Testing may include 

static power consumption, analogue parameters and selected timing paths. The 

functionality of the chip is verified using ATPG or functional pattern generated during 

test insertion. 

D.3.2.1 Verification of the Results 

Production Test is the final test to ensure that the chip after production is functional 

equivalent to the netlist used for layout. 

D.3.2.2 Potential safety hazards 

− Only faults covered by the test pattern set are revealed. Thus, high fault coverage 

is mandatory. 

− Timing is only verified for characteristic paths 
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Appendix E: PLD / FPGA Design Flow 
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Figure 4: Simplified Design Flow for PLD and FPGA 

E.1 Design Entry 

E.1.1 Boolean Entry 

The simplest type of design description – in most cases used for PLDs only – is to 

write Boolean Equations (AND-OR product terms). The structure and sequence of 

operators used in the equation exactly reflect the resources of the PLD (AND-OR 

matrix). Combinatorial and registered logic is distinguished by special notation, e. g. 

the operator used for the assignment of the output signal. This type of description is 

mostly used for simple logic, e. g. address decoding, counters or simple state 

machines. 
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E.1.1.1 Verification of the Results 

Either manually, by walk-through of the equations or with simple simulator tools. 

E.1.1.2 Potential safety hazards 

– Error prone description, due to very low level of abstraction 

– Limited capabilities of the available simulation tools, e. g. to handle feedback-

loops 

– Common Cause Faults due to build-in simulators  

– Tends to be unclear when used for medium and higher complexity 

E.1.2 Low Level Hardware Description Languages 

In addition to Boolean Equations, low level hardware description languages support 

constructs for the description of state tables, decision tables and simple arithmetic. 

Moreover, the design input is less dependent on the actual structure of the target 

device. 

E.1.2.1  Verification of the Results 

Either manually or with medium complex build-in simulation tools. Using simulation, it 

is often possible to specify “stimuli”-“response”-pattern for automated testing. 

E.1.2.2 Potential safety hazards 

– Low level of abstraction 

– Limited capabilities of the available simulation tools 

– Common Cause Faults due to build-in simulators 

E.1.3 Schematic Entry 

See D.1.4 

E.1.4 Hardware Description Languages 

See D.1.1 
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E.1.5 High Level Design Entry 

See D.1.2 

E.1.6 Use of Macro Blocks 

See D.1.3 

E.2 Implementation 

E.2.1 Conversion from Schematic to Netlist / Design  Database 

Translation of the schematic (circuit primitives and interconnections) into a data 

representation that may be used by the Place & Route tool. The result is either stored 

in a standard netlist format or a proprietary design database.  

E.2.1.1 Verification of the Results 

In most cases, no format appropriate for the verification of this intermediate result is 

provided by the tool vendors. 

E.2.1.2 Potential safety hazards 

The conversion process may produce a faulty output (resulting in a functional mis-

match). The fault may be not revealed at that point in the design flow. 

E.2.2 Conversion from High Level Entry to Netlist /  Design Database 

Basically, as described for the conversion form Schematic to Netlist / Design 

Database. See E.2.1. 

E.2.3 Synthesis 

See D.2.1 

E.2.4 Device Fitter 

Used for PLD / CPLD devices. A device fitter (program) is used to map the input 

description (e. g. boolean equations) onto the structure of the target device and to 



 – 68 – 

 - 

create the “fuse map” required for programming. Depending on the complexity of the 

fitter, the input description needs to be more or less target device orientated. 

E.2.4.1 Verification of the Results 

Verification of the result is possible in two ways: 

– In-circuit, using a device programmed with the generated fuse map or bit stream 

– Using simulation. For most simpler devices – small and medium complex PLD – 

simulation is only supported by the build-in simulators. For more complex devices, 

additional external (third-party) standard simulators are supported. 

E.2.4.2 Potential safety hazards 

– In-circuit check of the expected behaviour has a limited fault detection capability, 

due to the potential problems to stimulate the device and to observe the 

responses in real-time. 

– Build-in (proprietary) simulator tools often have limited capabilities. Moreover the 

risk for an undetected common cause fault (introduced by the fitter, not revealed 

by the simulator) increases. 

– If third party simulators are supported, the validity of the result is depending on 

the simulation library. This again is a potential source of a common cause fault. 

– For PLD type devices, timing is assumed to be “correct by construction”, so the 

actual timing is not verified. 

E.2.5 Place & Route 

Used for FPGA. In a first step, the cells found in the final design database need to be 

mapped to the cells existing on FPGA. In a second step, the interconnections are 

routed. In a third step, timing information are derived form the actual placement and 

interconnection routing and back-annotated for post layout simulation. Finally, the 

bitstream required for the programming of the device is generated from the 

placement and interconnection database. 



 – 69 – 

 - 

E.2.5.1 Verification of the Results 

− Simulation of the netlist after layout against the behaviour of the reference model 

(netlist or RTL source code) with respect to functionality and timing. 

− Static timing analysis 

− Design rule check (DRC) to guarantee the design rules dictated by the FPGA 

vendor. 

E.2.5.2 Potential safety hazards 

− Synthesis, simulation and layout are based on the same cell library (see synthesis 

for further explanations about common cause failures). 

− Fault during bitstream generation. 

E.3 Production 

Different production schemas are used for volatile (RAM based) and non-volatile 

(OTP, EEProm or Flash based) devices.  

– Volatile devices – typically higher complex FPGAs – need to be re-programmed 

(loaded) each time after power-on. The information required for this power-on 

initialisation is usually stored in special non-volatile configuration PROMs; the 

initialisation is controlled automatically by the FPGA after power-on. 

– Non-volatile devices – typically PLDs, CPLDs and lower, up to medium complexity 

FPGA – are programmed once, prior to the assembly. 

E.3.1.1 Verification of the Results 

Volatile devices: 

– The integrity of the configuration PROMs contents may be checked automatically 

after programming (readout and compare). 

– The information transfer to the volatile component is usually protected by a 

checksum; this ensures that the devices becomes operational only when a (most 

likely) correct bit stream is loaded. 

Non-volatile devices: 
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– The integrity of the programmed information in a non-volatile device may be 

checked automatically after programming (readout and compare). In some cases 

this includes a check of the programmable element (fuse) for correct parameter 

rating, e. g. “on” or “off” resistance. 

E.3.1.2 Potential safety hazards 

Volatile devices: 

– The protection of the bit stream itself is no guaranty for correct power-on 

initialisation of the FPGA. Faults may occur when distributing the information in 

the FPGA (after checksum removal) or stuck-at faults may exist inside the FPGA 

that result in false behaviour. 

Non-volatile devices: 

– Only the successful programming may be checked by reading out the 

programmed pattern. This does not guarantee correct behaviour of the device 

(same reasoning as for volatile devices). 

– Some signal paths in one-time programmable devices may not be checked during 

chip production, due to the nature of the programmable element. This may lead to 

unrevealed faults in the device itself. 
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Appendix F: Glossary / Acronyms 

ASIC Application Specific Integrated Circuit 

COB Chip On Board 

CPLD Complex Programmable Logic Device 

DRC Design Rule Check 

EEPROM Electrical Erasable PROM 

EPROM Erasable PROM 

FPGA Field Programmable Gate Array 

LVS Layout versus Schematic Check 

MCM Multi Chip Module 

OTP One Time Programmable (ROM) 

PLD Programmable Logic Device 

PROM Programmable ROM 

RAM Random Access Memory 

ROM Read Only Memory 

RTL Register Transfer Level 

VHDL VSLI (Very Large Scale Integration) Hardware Description Language 

 


